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Abstract. Two vertices of a graph G are said to be radial to each other if the distance between them
is equal to the radius of the graph. The radial graph of a graph G, denoted by R(G), has the vertex set
as in G and two vertices are adjacent in R(G) if and only if they are radial to each other in G. If G is
disconnected, then the two vertices are adjacent in R(G) if they belong to different components of G.
The main objective of this paper is to determine the radial graphs of some families of product graphs.
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1. Introduction
In 1967, Harary and Wilcox [6] and Abay-Asmerom et al. [1] defined various boolean operations
in graphs. Also, El-Kholy et al. [4] described the new operations in graphs. Let G be an
undirected graph with vertex set V and edge set E. The distance d(u,v) between a pair of
vertices u and v is the length of the shortest path connecting them. The eccentricity of a vertex
of a connected graph G is the maximum distance from the vertex to any other vertex. The
radius of G, denoted by r(G), is the minimum eccentricity of the vertices of the graph. The
diameter d(G) of G is the maximum eccentricity of the vertices of the graph. A graph for
which r(G)= d(G) is called a self-centered graph. Kathiresan and Marimuthu [7] introduced the
concept of radial graphs and Avadaiyappan and Bhuvaneswari [3] developed the concepts of
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radial graphs. Let F12 and F22 denote the set of all connected graphs of G for which r(G)= 1,
d(G)= 2 and r(G)= d(G)= 2, respectively (Kathiresan and Marimuthu [8]). The eccentric graph
(Akiyama et al. [2]) based on G, denoted by Ge, is the graph whose vertex set is V (G) and two
vertices u and v are adjacent in Ge if and only if d(u,v)=min{e(u), e(v)}.

Let G1 = (V1,E1) and G2 = (V2,E2) be two graphs with V1 ∩V2 = ;. Then, the Cartesian
product [6] of G1 and G2, denoted by G1 ×G2, is a graph having the vertex set V1 ×V2 and
whose edge set consists of all elements {(u1,u2), (v1,v2)} where either u1 = v1 and (u2,v2) ∈ E2
or u2 = v2 and (u1,v1) ∈ E1.
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The conjunction [6] of G1 and G2, denoted by G1 ∧G2, is a graph having the vertex set
V1 ×V2 and whose edge set consists of all elements {(u1,u2), (v1,v2)} where (u1,v1) ∈ E1 and
(u2,v2) ∈ E2. The composition or lexicographic product [6] of G1 and G2, denoted by G1 [G2], is a
graph having the vertex set V1×V2 and whose edge set consists of all elements {(u1,u2), (v1,v2)}
where either (u1,v1) ∈ E1 or [u1 = v1 and (u2,v2) ∈ E2].

The disjunction [6] of G1 and G2, denoted by G1□G2, is a graph having the vertex set V1×V2
and whose edge set consists of all elements {(u1,u2), (v1,v2)} where (u1,v1) ∈ E1 or (u2,v2) ∈ E2
or both. The rejection [6] of G1 and G2, denoted by G1/G2, is a graph having the vertex set
V1 ×V2 and whose edge set consists of all elements {(u1,u2), (v1,v2)} where (u1,v1) ∉ E1 and
(u2,v2) ∉ E2. The corona of G1 and G2, denoted by G1 ◦G2, is a graph obtained by taking one
copy of G1 of order p1 and p1 copies of G2 and then joining the ith vertex of G1 to every vertex
in the ith copy of G2.

The join [5] of two graphs G1 and G2, denoted by G1 +G2, is the graph with vertex set
V (G1+G2)=V (G1)∪V (G2) and edge set E(G1+G2)= E(G1)∪E(G2)∪{uv : u ∈V (G1),v ∈V (G2)}.
The tensor product [9] G1⊗G2 of graphs G1 and G2 is a graph such that the vertex set of G1⊗G2
is the Cartesian product V (G1)×V (G2) and vertices (g,h) and (g′,h′) are adjacent in G1 ⊗G2 if
and only if g is adjacent to g′ in G1 and h is adjacent to h′ in G2.
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This paper determines the radial graphs for some families of Boolean operation graphs.

Result 1.1 ([7]). For a graph of order n, R(G)= Kn if and only if either G or G is Kn.

2. Main Results
Theorem 2.1. For any two integers m,n ≥ 3, R(Cm ×Cn)= R(Cm)∧R(Cn).

Proof. Let u and v be vertices in Cm which are radial to each other and x, y be two vertices
in Cn which are radial to each other. Then uv ∈ E(R(Cm)) and xy ∈ E(R(Cn)), that is,
(u, x), (v, y) ∈ E(R(Cm)∧R(Cn)). Also, (u, x) and (v, y) are radial to each other in Cm ×Cn. Thus,
(u, x), (v, y) ∈ E(R(Cm ×Cn)). Hence R(Cm ×Cn)= R(Cm)∧R(Cn).

Corollary 2.2. For any two integers m,n ≥ 3, R(Pm ×Pn)= R(Pm)∧R(Pn).

Theorem 2.3. For any integers m and n, R(Km ×Kn)= Km ×Kn = R(Km)∧R(Kn)= Km ∧Kn.

Proof. Let u1,u2, . . . ,um be the vertices of Km and v1,v2, . . . ,vn be the vertices of Kn. Then
(ui,v j) ∈ Km×Kn for all 1≤ i ≤ m and 1≤ j ≤ n. Since uiuk ∈ E(Km), for all k ̸= i and v jvl ∈ E(Kn)
for all l ̸= j, d((ui,v j), (uk,vl)) ≤ 2. Therefore, Km ×Kn ∈ F22. Hence R(Km ×Kn) = Km ×Kn.
In Km ×Kn,d((ui,v j), (uk,vl)) = 2 if and only if i ̸= k and j ̸= l, that is, (ui,v j) and (uk,vl) are
adjacent in R(Km×Kn) if and only if i ̸= k and j ̸= l. On the other hand, R(Km)∧R(Kn)= Km∧Kn.
In Km ∧Kn, (ui,v j) and (uk,vl) are adjacent if and only if uiuk ∈ E(Km) and v jvl ∈ E(Kn) if and
only if i ̸= k and j ̸= l. Hence R(Km ×Kn)= R(Km)∧R(Kn)= Km ∧Kn.

Theorem 2.4. For any two integers m,n ≥ 3, R(Cm[Kn])= R(Cm)∨R(Kn).

Proof. Let u0,u1,u2, . . . ,um−1 be the vertices of Cm and v0,v1,v2, . . . ,vn−1 be the vertices of Kn.
Then (ui,v j) are the vertices of Cm [Kn], for 0≤ i ≤ m−1 and 0≤ j ≤ n−1.

Case (i): m is odd.
For each ui , the radial vertices in Cm are ui+⌊m

2 ⌋ and ui−⌊m
2 ⌋ where the subscript is taken over

addition modulo n. Therefore, r(Cm[Kn])= r(Cm)= ⌊m
2 ⌋. In Cm[Kn], for any j, the radial vertices

of (ui,v j) are (uk,vl) where k = i±⌊m
2 ⌋ and 0 ≤ l ≤ n−1, 0 ≤ i ≤ m−1. Thus, any two vertices

(ui,v j) and (uk,vl) are adjacent in R(Cm[Kn]) if and only if k = i±⌊m
2 ⌋. On the other hand, since

R(Kn)= Kn, we have R(Kn)= Kn, a totally disconnected graph. Hence any two vertices (ui,v j)
and (uk,vl) are adjacent in R(Cm)∨R(Kn) if and only if ui and uk are adjacent in R(Cm) if and
only if k = i±⌊m

2 ⌋ where 0≤ i ≤ m−1.

Case (ii): m is even.
For each ui , the radial vertices in Cm are ui+m

2
where the subscript is taken over addition

modulo n. Therefore, r(Cm[Kn])= r(Cm)= m
2 . For any j, the radial vertices of (ui,v j) in Cm[Kn]

are (uk,vl) where k = i + m
2 and 0 ≤ l ≤ n−1, 0 ≤ i ≤ m−1. Hence any two vertices (ui,v j)

and (uk,vl) are adjacent in R(Cm[Kn]) if and only if k = i + m
2 . On the other hand, since

R(Kn)= Kn, a totally disconnected graph. Thus, any two vertices (ui,v j) and (uk,vl) are adjacent
in R(Cm)∨R(Kn) if and only if ui and uk are adjacent in R(Cm) if and only if k = i+ m

2 where
0≤ i ≤ m−1.

Theorem 2.5. For any two integers m and n, R(Pm[Kn])= R(Pm)∨R(Kn).
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Proof. Let u0,u1,u2, . . . ,um−1 be the vertices of Pm and v0,v1,v2, . . . ,vn−1 be the vertices of Kn.
Case (i): m is odd.
In Pm, each ui is radial to ui+m−1

2
for 0 ≤ i ≤ m−3

2 and radial to u0 and um−1 for i = m−1
2 and

radial to ui−m−1
2

for m+1
2 ≤ i ≤ m−1. Therefore, r(Pm)= m−1

2 = r(Pm[Kn]). In Pm[Kn], for any j

and 0≤ i ≤ m−3
2 , (ui,v j) is radial to (uk,vl) where k = i+ m−1

2 , 0≤ l ≤ n−1. For i = m−1
2 , (ui,v j)

is radial to (uk,vl) where k = 0 and k = m−1, 0 ≤ l ≤ n−1, and for m+1
2 ≤ i ≤ m−1, (ui,v j) is

radial to (uk,vl), where k = i− m−1
2 , 0≤ l ≤ n−1. Hence in R(Pm[Kn]), two vertices (ui,v j) and

(uk,vl) are adjacent if and only if ui and uk are radial vertices in Pm.
Case (ii): m is even.
In Pm, each ui is radial to ui+m

2
for 0 ≤ i ≤ m

2 −1 and radial to ui−m
2

for m
2 ≤ i ≤ m−1. Thus,

r(Pm) = m
2 = r(Pm[Kn]). In Pm[Kn], for any j and 0 ≤ i ≤ m

2 − 1, (ui,v j) is radial to (uk,vl)
where k = i+ m

2 , 0≤ l ≤ n−1, and for m
2 ≤ i ≤ m−1, (ui,v j) is radial to (uk,vl) where k = i− m

2 ,
0≤ l ≤ n−1. Thus, two vertices (ui,v j) and (uk,vl) are adjacent in R(Pm[Kn]) if and only if ui
and uk are radial vertices in Pm.

Therefore, in both cases, two vertices (ui,v j) and (uk,vl) are adjacent in R(Pm[Kn]) if
and only if ui and uk are radial vertices in Pm. On the other hand, since R(Kn) is a totally
disconnected graph, any two vertices (ui,v j) and (uk,vl) are adjacent in R(Pm)∨R(Kn) if and
only if ui and uk are adjacent in R(Pm) if and only if ui and uk are radial vertices in Pm.

Theorem 2.6. For any graph G with r(G)≥ 2, R(Km[G])= Km/G.

Proof. Let u1,u2, . . . ,um be the vertices of Km and v1,v2, . . . ,vn be the vertices of G and let
(ui,v j) and (uk,vl) be any two vertices in Km[G].
Case (i): i ̸= k.
Since ui is adjacent to uk in Km, d((ui,v j), (uk,vl)) = 1 in Km[G] where j and l varies from
1,2, . . . ,n.
Case (ii): i = k.
If v j is adjacent to vl in G, then d((ui,v j), (uk,vl))= 1 and if v j is not adjacent to vl in G, then
d((ui,v j), (uk,vl))= 2.

Thus, the eccentricity of each vertex in Km[G] is 2 and hence Km[G] is of radius 2 and
diameter 2. Hence R(Km[G])= Km[G]. Then by the definition of rejection and composition, this
result follows.

Observation 2.7. For any graphs G and H, r(G ◦H)= r(G)+1 and d(G ◦H)= d(G)+2.

Proof. Clearly, r(G ◦H)= r(G)+1. Let d(G)= k. Then the length of the path in G is k. Let it be
v1,v2, . . . ,vk. In G ◦H, every vertex vi of G is joined to each other vertex of the corresponding
ith copy of H. In particular, vk+1 is joined to each vertex in the (k+1)th copy of H. Therefore,
the length of the longest path in G ◦H should be k+2.

Theorem 2.8. If G1 is a self centered graph with p1 vertices and r(G1)≥ 2, then R(G1 ◦G2) is a
(p1 +1)-partite graph where G2 is any connected graph.

Proof. Let v1,v2, . . . ,vp1 be the vertices of G1 and let wi1 ,wi2 , . . . ,wi p2
be the vertices of ith

copy of G2. In G1 ◦G2, e(vi) = eG1(vi)+ 1 where 1 ≤ i ≤ p1 and e(wi j ) = eG1(vi)+ 2 where
1 ≤ i ≤ p1 and 1 ≤ j ≤ p2. Hence r(G1 ◦G2) = r(G1)+1 and d(G1 ◦G2) = d(G1)+2. Since G1
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is self-centered, dG1(vi,v j) ≤ r(G1) and hence dG1◦G2(vi,v j) will never be equal to r(G1)+1.
Therefore, (vi,v j) ∉ E(R(G1◦G2)). In G1◦G2,d(wi j ,wik )≤ 2 and hence (wi j ,wik ) ∉ E(R(G1◦G2)).
Hence {v1,v2, . . . ,vp1}, {wi1 ,wi2 ,wi3 , . . . ,wi p2

: 1≤ i ≤ p1} are the partitions of R(G1 ◦G2). Since
r(G1 ◦G2) is finite, R(G1 ◦G2) is connected and hence the result follows.

Theorem 2.9. If G1 ∈ F12, G1 is a m-partite graph and G2 is a n-partite graph, then R(G1 ◦G2)
is a (m+n)-partite graph.

Proof. Let G1 ∈ F12. Then r(G1) = 1 and d(G1) = 2. Now, r(G1 ◦G2) = r(G1) + 1 = 2 and
d(G1 ◦G2) = d(G1)+2 = 4. Let G1 be the m-partite graph with partitions {a11,a12, . . . ,a1r1},
{a21,a22, . . . ,a2r2}, . . . , {am1,am2, . . . ,amrm} and G2 be the n-partite graph with partitions
{b11,b12, . . . ,b1s1}, {b21,b22, . . . ,b2s2}, . . . , {bn1,bn2, . . . ,ansn} where r1 + r2 +·· ·+ rm = p1 and s1 +
s2 +·· ·+ sn = p2. Since ai1,ai2, . . . ,air i belong to the same partition in G1 for each i, they are
not adjacent to each other in G1 and hence they are adjacent in G1. Then by the definition of
G1 ◦G2, they are adjacent to each other in R(G1 ◦G2). As r(G1 ◦G2)= 2, they are not adjacent to
each other in R(G1 ◦G2). Therefore, {ai1,ai2, . . . ,air i }, 1≤ i ≤ m are the m-partitions of vertices
of G1 in G1 ◦G2. Since b j1,b j2, . . . ,b js j are in the same partition of G2 for each j, they are
not adjacent in G2 and hence adjacent in G2. Thus, they are adjacent in G1 ◦G2 with labels
as bi j1,bi j2, . . . ,bi js j in the ith copy of G2 where 1 ≤ i ≤ p1. These vertices are not adjacent
in R(G1 ◦G2). Thus, bi j1,bi j2, . . . ,bi js j for all i = 1,2, . . . , p1 belong to the same partition in
R(G1 ◦G2). This is true for each of the n-partitions. Hence the result follows.

Theorem 2.10. For any two integers m,n > 3, the radius of the join graph of Pm and Pn is 2.

Proof. In Pm +Pn, every vertices of Pm is adjacent to every vertices of Pn, that is, the distance
between every vertices of Pm and every vertices of Pn is 1. Also, the distance between any two
vertices of Pm is 2 in Pm +Pn, and the distance between any two vertices of Pn is 2 in Pm +Pn.
Hence the radius of the graph Pm +Pn is 2.

Corollary 2.11. For any two integers m,n > 3, the radius of the join graph of Cm and Cn is 2.

Theorem 2.12. For any two integers m,n > 3, R(Km +Kn)= Km +Kn.

Proof. In Km +Kn, the distance between every vertices of Pm and every vertices of Pn is 1,
and r(Kn)= 1 for all n. Thus, the radius of Km +Kn is 1, that is, Km +Kn is a complete graph.
Therefore, by the Result 1.1, R(Km +Kn)= Km +Kn.

Theorem 2.13. For any two graphs G1 and G2, and both are not complete graphs with atleast
four vertices, the radius of the join graph of G1 and G2 is 2.

Proof. Every vertices of G1 is adjacent to every vertices of G2 in G1 +G2. Also, the distance
between any two vertices of G1 is 2 in G1+G2, and the distance between any two vertices of G2
is 2 in G1 +G2. Hence the radius of the graph G1 +G2 is 2.

Theorem 2.14. For any integers m and n ≥ 3, Pm ⊗Pn is a graph of infinite radius.

Proof. Since there is no path connecting the vertices uivi and uivi+1 in Pm ⊗Pn, the distance
between uivi and uivi+1 is ∞ for any vertex uivi , that is, the eccentricity of any vertex uivi is
∞. Hence Pm ⊗Pn is a graph of infinite radius.
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3. Conclusion
In this paper, we explored the concept of radial graphs, defining radial vertices as those pairs
whose distance equals the radius of the graph, and constructed radial graphs R(G) based on
this definition. We examined the behavior of radial graphs in various families of product graphs,
including Cartesian, direct, and strong products, each exhibiting unique properties affecting the
structure of their radial graphs. This study enhances our understanding of the connectivity and
structure of complex networks, with implications for network theory, communication systems,
and parallel computing. The findings provide a foundation for further research into specific
applications and extensions to other graph operations and transformations.

Competing Interests
The authors declare that they have no competing interests.

Authors’ Contributions
All the authors contributed significantly in writing this article. The authors read and approved
the final manuscript.

References
[1] G. Abay-Asmerom, R. Hammack, C. E. Larson and D. T. Taylor, Notes on the independence number

in the Cartesian product of graphs, Discussiones Mathematicae Graph Theory 31(1) (2011), 25 – 35,
URL: https://eudml.org/doc/270895.

[2] J. Akiyama, K. Ando and D. Avis, Eccentric graphs, Discrete Mathematics 56(1) (1985), 1 – 6,
DOI: 10.1016/0012-365X(85)90188-8.

[3] S. Avadayappan and M. Bhuvaneswari, A note on radial graphs, Journal of Modern Science 7
(1)(2015), 14 – 21.

[4] E. M. El-Kholy, El-Said R. Lashin and S. N. Daoud, New operations on graphs and graph foldings,
International Mathematical Forum 7(46) (2012), 2253 – 2268.

[5] F. Harary, Graph Theory, Addison-Wesley Publishing Company, Reading, ix + 274 pages (1969).

[6] F. Harary and G. W. Wilcox, Boolean operations on graphs, Mathematica Scandinavica 20 (1967), 41
– 51, DOI: 10.7146/math.scand.a-10817.

[7] K. M. Kathiresan and G. Marimuthu, A study on radial graphs, Ars Combinatoria 96 (2010), 353 –
360, URL: http://combinatoire.ca/ArsCombinatoria/Vol96.html.

[8] K. Kathiresan and G. Marimuthu, Further results on radial graphs, Discussiones Mathematicae
Graph Theory 30(1) (2010), 75 – 83, DOI: 10.7151/dmgt.1477.

[9] P. M. Weichsel, The Kronecker product of graphs, Proceedings of the American Mathematical Society
13 (1962), 47 – 52, DOI: 10.1090/S0002-9939-1962-0133816-6.

Communications in Mathematics and Applications, Vol. 15, No. 1, pp. 185–190, 2024

https://eudml.org/doc/270895
http://doi.org/10.1016/0012-365X(85)90188-8
http://doi.org/10.7146/math.scand.a-10817
http://combinatoire.ca/ArsCombinatoria/Vol96.html
http://doi.org/10.7151/dmgt.1477
http://doi.org/10.1090/S0002-9939-1962-0133816-6

	Introduction
	Main Results
	Conclusion
	References

