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A-transform of Wavelet Frames

F.A. Shah and N.A. Sheikh

Abstract. In this paper, we introduced the concept of A-transform A = (ap,q, j,k)
and study the action of A on f ∈ L2(R+) and on its wavelet coefficients. Further,
we also establish the Parseval frame condition for A-transform of f ∈ L2(R+)
whose wavelet series expansion is known.

1. Introduction

Frames for Hilbert spaces were first introduced by Duffin and Schaeffer [8] in
1952 to study some deep problems in non-harmonic Fourier series, reintroduced
in 1986 by Daubechies, Grossmann and Meyer [7] and popularized from then on.
Nice properties of frames make them useful in characterization of function spaces
and other fields of applications such as filter bank theory, medicine, optics, sigma-
delta quantization, signal and image processing and wireless communications.
Recently the theory of frames also showed connections to theoretical problems
such as the Kadison-Singer Problem. We refer [2, 12, 13] for an introduction to
frame theory and its applications.

In 1982, Jean Morlet, introduced the idea of the wavelet transform and
provided a new mathematical tool for time-frequency analysis. Morlet first
introduced wavelets as a family of functions constructed from translations and
dilations of a single function ψ(x) called the mother wavelet and defined as

ψa,b(x) =
1p|a|ψ
�

x − b

a

�
, a, b ∈ R, a ̸= 0

where a represents the dilation parameter and b the translation parameter. For
some very special choices of ψ and a, b, the ψa,b constitute an orthonormal basis
for L2(R). In particular, if we choose a = 2− j , b = k2− j , j, k ∈ Z, then there exists
ψ such that the functions

ψ j,k(x) =ψa,b(x) = 2 j/2ψ(2 j x − k)
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constitute an orthonormal basis for L2(R) (see [6, 24]).
Wavelet systems that form frames for L2(R) have a wide variety of applications.

An important problem in practice is therefore to determine conditions for wavelet
systems to be frames. Many results, including necessary conditions and sufficient
conditions, have been established during last two decades. For example, in 1990,
Daubechies [6] proved the first result on the necessary and sufficient conditions
for the wavelet system ψa,b(x) to be a frame for L2(R), Chui and Shi improved
the result of Daubechies in [3] and gave the characterization of tight wavelet
frames for an arbitrary dilation factor a > 1 in [4], Casazza and Christenson
established a stronger version of Daubechies sufficient condition for wavelet frames
in [1, 2]. Recently, Shi and Chen [25] have established a set of necessary conditions
for wavelet frames and showed that these conditions are also sufficient for tight
frames.

In the early nineties, a general scheme for the construction of wavelets was
defined. This scheme is based on the notion of multiresolution analysis (MRA)
introduced by Mallat [17]. Immediately specialists started to implement new
wavelet systems and in recent years, the concept MRA on Rn has been extended
to many different setups, for example, Dahlke introduced multiresolution analysis
and wavelets on locally compact Abelian groups [5], Lang [14, 15, 16] constructed
compactly supported orthogonal wavelets on the locally compact Cantor dyadic
group C by following the procedure of Daubechies [6] via scaling filters and these
wavelets turn out to be certain lacunary Walsh series on the real line. Later on,
Farkov [9] extended the results of Lang [14, 15, 16] on the wavelet analysis
on the Cantor dyadic group C to the locally compact Abelian group G which is
defined for an integer p ≥ 2 and coincides with C when p = 2. The construction
of dyadic compactly supported wavelets for L

2
(R+
) have been given by Protasov

and Farkov in [19] where the latter author has given the general construction of all
compactly supported orthogonal p-wavelets in L

2
(R+
) and proved necessary and

sufficient conditions for scaling filters with pn many terms (p, n≥ 2) to generate a
p-MRA analysis in L2(R+) (see [10]). More results in this direction can be found
in [21, 22, 23] and the references therein.

Recently, Shah and Debnath [22], have constructed dyadic wavelet frames on
the positive half-line R+ using the Walsh-Fourier transform and have established a
necessary and a sufficient conditions for the system

{ψ j,k(x) =: 2 j/2ψ(2 j x ⊖ k) : j ∈ Z, k ∈ Z+}
to be a frame in L2(R+). The conditions obtained by Shah and Debnath are better
than those of Daubechies [6], Chui and Shi [3, 4], and Casazza and Christenson
[1, 2]. In this paper, we further investigate the dyadic wavelet system ψ j,k by A-
transform, where A= (ap,q, j,k)p,q, j,k is a regular double infinite matrix and we will
establish the Parseval frame condition for this system. Further, wavelet coefficients
and the convergence of these coefficients are also being established.
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We have organized this paper as follows. In Section 2, we state some basic
notations and preliminaries related to the operations on positive half-line R+,
Walsh functions and polynomials. In Section 3, we explore the new concept of
A-transform and derive our main results.

2. Notations and preliminaries

Let R+
= [0,+∞) be the positive half-line, Z+ and N be the sets of positive

integers and natural numbers, respectively. Designate C0, the space of all double
sequences in R+ which converges to zero. Let us denote the integer and the
fractional parts of a number x ∈ R+ by [x] and {x} respectively. Then, for each
x ∈ R+

and any j ∈ N, the values x j , x− j ∈ {0,1} are defined as follows:

x j = [2
j x](mod 2), x− j = [2

1− j x](mod 2). (2.1)

For each x ∈ R+, these numbers are the digits of the binary expansion

x = [x] + {x}=∑
j<0

x j2
− j−1 +
∑
j>0

x j2
− j .

It is clear that

[x] =
∞∑
j=1

x− j2
j−1, {x}=

∞∑
j=1

x j2
− j

and there exists k = k(x) in N such that x− j = 0 for all j > k.
The binary addition on R+ is defined by the formula

x ⊕ y =
∑
j<0

|x j − y j |2− j−1 +
∑
j>0

|x j − y j |2− j

where x j , y j are defined in (2.1). Moreover, we note that x⊕ y = x⊖ y as x⊖ y = 0
where ⊖ denotes the substitution modulo 2 on R+.

For x ∈ [0,1), let w1(x) be given by

w1(x) =

¨
1, if x ∈ [0,1/2)
−1, if x ∈ [1/2,1).

The extension of the function w1 to R+
is denoted by the equality w1(x + 1) =

w1(x) for all x ∈ R+
. Then, the generalized Walsh functions {wn(x) : n ∈ Z+} are

defined by

w0(x)≡ 1, wn(x) =
k∏

j=0

�
w1(2

j x)
�µ j , n ∈ N, x ∈ R+,

where n=
k∑

j=0
µ j2

j , µ j ∈ {0,1}, µk = 1, k = k(n).

Note that the Walsh functions almost behaves like characters with respect to
dyadic addition, namely

wn(x ⊕ y) = wn(x)wn(y), n ∈ N, x , y ∈ [0,1). (2.2)
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Thus, for each fixed y , equality (2.2) is valid for all x ∈ R+ except countably many
of them.

For x , y ∈ R+
, let

χ(x , y) = (−1)σ(x ,y), where σ(x , y) =
∞∑
j=1

(x j y− j + x− j y j) (2.3)

and x j , y j are given by (2.1). Note that χ(x , 2−nm) = χ(2−n x , m) = wm(2−n x),
for all x ∈ [0, 2−n) and m, n ∈ Z+. It is shown in [11] that both the systems
{χ(α, ·)}∞α=0 and {χ(·,α)}∞α=0 are orthonormal bases in L

2
[0,1).

The Walsh-Fourier transform of a function f ∈ L
1
(R+
) is defined by

f̂ (ξ) =

∫
R+

f (x)χ(x ,ξ) d x ,

where χ(x ,ξ) is given by (2.3). The properties of the Walsh-Fourier transform are
quite similar to those of the classic Fourier transform (see [11, 20]). In particular,
if f ∈ L

2
(R+
), then f̂ ∈ L

2
(R+
) and

∥ f̂ ∥L2 (R+ ) = ∥ f ∥L2 (R+ ).

For any function ψ ∈ L2(R+), we consider the system of functions
{ψ j,k}( j,k)∈Z×Z+ in L2(R+) as

{ψ j,k(x) =: 2 j/2ψ(2 j x ⊖ k) : j ∈ Z, k ∈ Z+, x ∈ R+}. (2.4)

By taking Walsh-Fourier transform to (2.4), we obtain

ψ̂ j,k(ξ) = 2− j/2ψ̂(2− jξ)wk(2
− jξ).

Therefore, by Plancheral theorem, we have

c j,k = 〈 f ,ψ j,k〉=
∫
R+

f (x)ψ j,k(x)d x , f ∈ L2(R+). (2.5)

We recall that the system (2.4) is a wavelet frame for L2(R+) if there exist
constants C and D, 0< C ≤ D <∞ such that, for every f ∈ L2(R+)

C∥ f ∥2 ≤∑
j∈Z

∑
k∈Z+
��〈 f ,ψ j,k〉
��2 ≤ D∥ f ∥2. (2.6)

The constants C and D are known respectively as lower and upper frame bounds.
A frame is called tight frame if the lower and upper frame bounds are equal,
C = D. A frame is a Parseval frame if C = D = 1 and in this case, every function
f ∈ L2(R+) can be written as

f (x) =
∑
j∈Z

∑
k∈Z+

c j,kψ j,k(x) (2.7)

where c j,k = 〈 f ,ψ j,k〉 are given by (2.5), usually known as wavelet coefficients of
the given wavelet series (2.7).
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Let A= (ap,q, j,k) be a double infinite matrix of real numbers. Then, A-transform
of double sequence {x j,k}( j,k)∈Z+×Z+ is defined as∑

j∈Z+

∑
k∈Z+

ap,q, j,k x j,k. (2.8)

This definition is due to Moricz and Rhoades [18]. It is shown in [18] that the
necessary and sufficient condition for a matrix A to be regular is

(i) lim
p,q→+∞
∑

j∈Z+
∑

k∈Z+
ap,q, j,k = 1

(ii) lim
p,q→+∞
∑

j∈Z+
|ap,q, j,k|= 0, for every k ∈ Z+

(iii) lim
p,q→+∞
∑

k∈Z+
|ap,q, j,k|= 0, for every j ∈ Z+

(iv) ∥A∥= supp,q∈N
∑

j∈Z+
∑

k∈Z+
|ap,q, j,k|<∞.

Either of conditions (ii) and (iii) implies that

lim
p,q→∞ ap,q, j,k = 0. (2.9)

3. Main results

Theorem 3.1. Let A= (ap,q, j,k) be a double regular matrix whose elements are of the
form ap,q, j,k = 〈ψp,q,ψ j,k〉 and if

(i)
∑

j∈Z+
∑

k∈Z+
ψ j,k

∫
R+ f (y)ψ j,k(y)d y = 1

(ii) lim
p,q→∞ψp,q(x) =ψ(x).

Then, A-transform of the sequence of wavelet coefficients {c j,k} belong to C0.

Proof. Since the elements of a double non-negative infinite matrix are of the type
〈ψ j,k,ψp,q〉 and the wavelet coefficients c j,k are given by Eq. (2.5). Thus, we have

ap,q, j,kc j,k = 〈ψ j,k,ψp,q〉〈 f ,ψ j,k〉

=

∫
R+
ψ j,k(x)ψp,q(x)d x

∫
R+

f (x)ψ j,k(x)d x

=

∫
R+

f (x)ψp,q(x)d x

∫
R+
ψ j,k(x)ψ j,k(x)d x

Therefore, we can write∑
j∈Z+

∑
k∈Z+

ap,q, j,kc j,k =
∑
j∈Z+

∑
k∈Z+

∫
R+

∫
R+
ψp,q(x)ψ j,k(x) f (y)ψ j,k(y)d x d y

Using condition (i) and (ii), and the fact that the dyadic wavelet ψ satisfies∫
R+ψ(x)d x = 0, we obtain

lim
p,q→∞
∑
j∈Z+

∑
k∈Z+

ap,q, j,kc j,k = lim
p,q→∞

∫
R+
ψp,q(x)d x =

∫
R+
ψ(x)d x = 0. �
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Theorem 3.2. Let A = (ap,q, j,k) be a double non-negative regular matrix and if c j,k

are the wavelet coefficients associated with the wavelet expansion (2.7). Then, the
frame condition for A-transform of f ∈ L2(R+) is given by

Cψ∥ f ∥22 ≤
∑
p∈Z

∑
q∈Z+
|〈Af ,ψp,q〉|2 ≤ Dψ∥ f ∥22

where Af is the A-transform of f ∈ L2(R+) and 0< Cψ ≤ Dψ <∞.

Proof. We have

f (x) =
∑
j∈Z

∑
k∈Z+
〈 f ,ψ j,k〉ψ j,k(x)

Taking A-transform of f , we get

Af (x) =
∑
p∈Z

∑
q∈Z+
〈Af ,ψp,q〉ψp,q(x)

and therefore∑
p∈Z

∑
q∈Z+
|〈Af ,ψp,q〉|2 ≤
∑
p∈Z

∑
q∈Z+

∫
R+
|Af (x)|2|ψp,q(x)|2d x

≤ ∥A∥2∥ f ∥22
∑
p∈Z

∑
q∈Z+
∥ψp,q∥2.

Since we have assumed that A is a regular matrix and ∥ψp,q∥2 = 1. Thus, we have∑
p∈Z

∑
q∈Z+
|〈Af ,ψp,q〉|2 ≤ Dψ∥ f ∥22 (3.1)

where Dψ is a positive constant.
Now, for any arbitrary function f ∈ L2(R+), we define

g(x) =
�∑

p∈Z

∑
q∈Z+
|〈Af ,ψp,q〉|2
�−1/2

f (x).

Clearly

〈Ag,ψp,q〉=
�∑

p∈Z

∑
q∈Z+
|〈Af ,ψp,q〉|2
�−1/2

〈Af ,ψp,q〉.
Hence ∑

p∈Z

∑
q∈Z+
|〈Af ,ψp,q〉|2 ≤ 1.

Now, if there exists a constant M > 0 such that ∥Ag∥22 ≤ M , then�∑
p∈Z

∑
q∈Z+
|〈Af ,ψp,q〉|2
�−1

∥Af ∥22 ≤ M

or �∑
p∈Z

∑
q∈Z+
|〈Af ,ψp,q〉|2
�−1

∥ f ∥22 ≤
M

∥A∥22 = Cψ > 0
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or

Cψ∥ f ∥22 ≤
∑
p∈Z

∑
q∈Z+
|〈Af ,ψp,q〉|2. (3.2)

Combining (3.1) and (3.2), we obtain

Cψ∥ f ∥22 ≤
∑
p∈Z

∑
q∈Z+
|〈Af ,ψp,q〉|2 ≤ Dψ∥ f ∥22.

which is the desired result. �

Theorem 3.3. If {c j,k} are the wavelet coefficients of f ∈ L2(R+). Then

dp,q =
∑
j∈Z

∑
k∈Z+

ap,q, j,kc j,k (3.3)

where {dp,q} is defined as the A-transform of {c j,k}.
Proof. By taking A-transform of Eq. (2.5), we obtain

〈Af ,ψ j,k〉=
∫
R+

Af (x)ψp,q(x)d x

=

∫
R+

∑
j∈Z

∑
k∈Z+

ap,q, j,kc j,kψ j,k(x)ψp,q(x)d x

Hence,∑
p∈Z

∑
q∈Z+
〈Af ,ψp,q〉ψp,q(x) =

∑
p∈Z

∑
q∈Z+

∫
R+

∑
j∈Z

∑
k∈Z+

ap,q, j,kc j,kψ j,k(x)ψp,q(x)d x

=
∑
p∈Z

∑
q∈Z+

dp,qψp,q(x)

∫
R+
∥ψp,q∥22

=
∑
p∈Z

∑
q∈Z+

dp,qψp,q(x).

Thus ∑
p∈Z

∑
q∈Z+

dp,qψp,q(x) =
∑
p∈Z

∑
q∈Z+
〈Af ,ψp,q〉ψp,q(x)

which implies that dp,q = 〈 f ,ψp,q〉 are the wavelet coefficients of Af . �

Theorem 3.4. Let A = (ap,q, j,k) be a double non-negative infinite matrix whose
elements are 〈ψ j,k,ψp,q〉. Then∑

p∈Z

∑
q∈Z+
|dp,q|2 =
∑
p∈Z

∑
q∈Z+
|〈 f ,ψp,q〉|2 = ∥ f ∥22

where dp,q = 〈 f ,ψp,q〉 is the A-transform of the wavelet coefficients c j,k.
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Proof. We have∑
p∈Z

∑
q∈Z+
|dp,q|2 =
∑
p∈Z

∑
q∈Z+
|ap,q, j,kc j,k|2

=
∑
p∈Z

∑
q∈Z+
|〈 f ,ψp,q〉|2

=
∑
p∈Z

∑
q∈Z+
|〈 f̂ , ψ̂p,q〉|2

=
∑
p∈Z

∑
q∈Z+

����2−p/2

∫
R+

f̂ (ξ)ψ̂(2−pξ)wq(2
−pξ)dξ

����2

=
∑
p∈Z

∑
q∈Z+

����2−p/2

∫ 2p

0

�∑
ℓ∈Z+

Fp,ℓ(ξ)
�

wq(2
−pξ)dξ

����2 (3.4)

where Fp,ℓ(ξ) = f̂ (ξ⊕ 2pℓ)ψ̂(2−pξ⊕ ℓ). Now, for each p ∈ Z, we define

Fp(ξ) =
∑
ℓ∈Z+

Fp,ℓ(ξ). (3.5)

Clearly Fp(ξ ⊕ 2p) = Fp(ξ), for all ξ ∈ R+ and therefore it can be expanded in
Walsh series as

Fp(ξ) =
∑
q∈Z+

gq(Fp)wq(2
−pξ), ξ ∈ [0,2p),

where gq(Fp) = 2−p
∫ 2p

0
Fp(ξ)wq(2−pξ)dξ. Moreover, by Parsevals formula, we

have ∑
q∈Z+
|gq(Fp)|2 = 2−p

∫ 2p

0

|Fp(ξ)|2dξ. (3.6)

By in-cooperating (3.5) and (3.6) in (3.4) and using the fact that
∑
p∈Z
|ψ̂(2−pξ)|2 =

1 a.e, we get∑
p∈Z

∑
q∈Z+
|dp,q|2 =
∑
p∈Z

∑
q∈Z+

2−p

����∫ 2p

0

Fp(ξ)wq(2
−pξ)dξ

����2
=
∑
p∈Z

2−p
∑
q∈Z+
|gq(Fp)|2

=
∑
p∈Z

∫ 2p

0

|Fp(ξ)|2dξ

=
∑
p∈Z

∫ 2p

0

Fp(ξ)Fp(ξ)dξ
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=
∑
p∈Z

∫ 2p

0

�∑
ℓ∈Z+

f̂ (ξ⊕ 2pℓ)ψ̂(2−pξ⊕ ℓ)ψ̂(2−pξ⊕ ℓ) f̂ (ξ⊕ 2pℓ)
�

dξ

=
∑
p∈Z

∑
ℓ∈Z+

∫ 2p(ℓ+1)

2pℓ

f̂ (ξ) f̂ (ξ)ψ̂(2−pξ)ψ̂(2−pξ)dξ

=

∫
R+
| f̂ (ξ)|2∑

p∈Z
|ψ̂(2−pξ)|2dξ

=

∫
R+
| f̂ (ξ)|2dξ

= ∥ f ∥22.

This completes the proof of the theorem. �
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