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1. Introduction
Variational inequalities have been the subject of considerable research owing to its profound
contributions in a variety of problems arising in the fields of optimization, economics,
transportation, elasticity and applied sciences. The classical variational inequality problem
was introduced and studied by Stampacchia [18] in early 1960’s. Because of its wide
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applications, the classical variational inequality problem has been studied and generalized in
different directions. Among these generalizations, variational inclusion is of much interest and
importance and has been extensively studied in the recent years (see, e.g., Ding and Feng [4],
Ding and Lou [5], Fang and Huang [6], Fang et al. [7], He et al. [8], Malik et al. [14], Shan et
al. [17] and the references therein).

One of the most important and challenging aspect in the theory of variational inequality is
the development of an efficient and implementable algorithm for solving variational inequalities
and its generalizations. Among several methods proposed for solving variational inclusion
problems, resolvent operator technique has been widely used. It is well known that monotonicity
of the underlying operators plays a crucial role in the solution of variational inequalities and
variational inclusions. In the recent past, several researchers have explored and improved
resolvent operator technique to discuss the approximation solvability of several classes of
variational inclusions (see, for instance Ding and Feng [4], Ding and Lou [5], Fang and Huang
[6], Fang et al. [7], Huang and Fang [9], Kazmi et al. [10, 11], Malik et al. [15], and Zeng et
al. [19]).

In recent years, the fixed point theory and its applications have been extensively studied
in real ordered Banach spaces. Therefore, it is very important and natural to study the
generalized nonlinear ordered variational inequalities (inclusions). In 2008, Li [12] introduced
the generalized nonlinear ordered variational inequalities and proposed an algorithm to
approximate the solution for a class of generalized nonlinear ordered variational inequalities in
real ordered Banach spaces. Since then several researchers have used XOR operation and its
allied forms to solve some classes of variational inequality and variational inclusion problems
in real ordered Hilbert and Banach spaces (see, e.g., Ahmad et al. [1–3], Li [13], and Sarfaraz et
al. [16]).

With inspiration and motivation from recent investigations in this area, we have defined
a new type of operator known as (α,ρ)-XOR-NODSM operator and the associated resolvent
operator and discussed some of the important properties of the resolvent operator associated
with the (α,ρ)-XOR-NODSM operator supported by a well constructed example. As an
application, we have considered a generalized system of variational inclusion problems involving
XOR operator in the setting of real ordered positive Hilbert space. Using the resolvent operator
technique, we proved the existence of solution for the system considered. Furthermore, we
have discussed the approximation solvability of the generalized system of variational inclusion
problems involving the XOR operator. The results proved in this paper unify and generalize
many known results present in the literature in this direction.

2. Preliminaries
Let C be a cone with partial ordering “≤”. An ordered Hilbert space with norm ∥ ·∥ and inner
product 〈·, ·〉 is called positive if 0≤ x and 0≤ y, then 0≤ 〈x, y〉 holds. Throughout the paper, Hp

is assumed to be a real ordered positive Hilbert space. We denote by 2Hp (respectively, C⋆(Hp)),
the family of nonempty (respectively, compact) subsets of Hp, d is the metric induced by the
norm and D(·, ·) is the Hausdorff metric on C⋆(Hp).
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We recall some known concepts and results which are needed to prove the main results of
this paper.

Definition 2.1 ([2]). A nonempty closed convex subset C of Hp is said to be a cone if:
(i) for any x ∈ C and any λ> 0, λx ∈ C;

(ii) for x ∈ C and −x ∈ C, then x = 0.

Definition 2.2 ([2]). Let C be the cone, then:
(i) C is called a normal cone if there exists a constant λN > 0 such that 0 ≤ x ≤ y implies

∥x∥ ≤λN∥y∥, for all x, y ∈Hp ;

(ii) for any x, y ∈Hp , x ≤ y if and only if y− x ∈ C;

(iii) x and y are said to be comparative to each other if either x ≤ y or y ≤ x holds and is
denoted by x ∝ y.

Definition 2.3 ([2]). For any x, y ∈Hp, lub{x, y} denotes the least upper bound and glb{x, y}
denotes the greatest lower bound of the set {x, y}. Suppose lub{x, y} and glb{x, y} exist, then
some binary operations are given below:

(i) x∨ y= lub{x, y};

(ii) x∧ y= glb{x, y};

(iii) x⊕ y= (x− y)∨ (y− x);

(iv) x⊙ y= (x− y)∧ (y− x).

The operations ∨, ∧, ⊕ and ⊙ are called OR, AND, XOR and XNOR operations, respectively.

Lemma 2.4 ([2]). If x ∝ y, then lub{x, y} and glb{x, y} exist such that (x− y) ∝ (y− x) and
0≤ (x− y)∨ (y− x).

Lemma 2.5 ([13]). For any natural number n, x ∝ yn and yn → y⋆ as n →∞, then x ∝ y⋆.

Proposition 2.6 ([13]). Let ⊕ and ⊙ be an XOR and XNOR operations, respectively. Then,
the following relations hold for all x, y,u,v,w ∈Hp and α,β,λ ∈R:

(i) x⊙ x = 0, x⊙ y= y⊙ x =−(x⊕ y)=−(y⊕ x);

(ii) x ∝ 0, then −x⊕0≤ x ≤ x⊕0;

(iii) (λx)⊕ (λy)= |λ|(x⊕ y);

(iv) 0≤ x⊕ y, if x ∝ y;

(v) if x ∝ y, then x⊕ y= 0 if and only if x = y;

(vi) (x+ y)⊙ (u+v)≥ (x⊙u)+ (y⊙v);

(vii) (x+ y)⊙ (u+v)≥ (x⊙v)+ (y⊙u);

(viii) if x, y and w are comparative to each other, then (x⊕ y)≤ (x⊕w)+ (w⊕ y);

(ix) αx⊕βx = |α−β|x = (α⊕β)x, if x ∝ 0.
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Proposition 2.7 ([2]). Let C be a normal cone in Hp with constant λN , then for each x, y ∈Hp ,
the following relations hold:

(i) ∥0⊕0∥ = ∥0∥ = 0;

(ii) ∥x∨ y∥ ≤ ∥x∥∨∥y∥ ≤ ∥x∥+∥y∥;

(iii) ∥x⊕ y∥ ≤ ∥x− y∥ ≤λN∥x⊕ y∥;

(iv) if x ∝ y, then ∥x⊕ y∥ = ∥x− y∥.

Definition 2.8 ([2]). Let F :Hp →Hp be a single-valued mapping, then
(i) F is said to be comparison mapping, if for each x, y ∈Hp , x ∝ y then F(x)∝ F(y), x ∝ F(x)

and y∝ F(y);

(ii) F is said to be strongly comparison mapping, if F is a comparison mapping and F(x)∝ F(y)
if and only if x ∝ y, for all x, y ∈Hp .

Definition 2.9 ([2]). A single-valued mapping F :Hp →Hp is said to be β-ordered compression
mapping if F is a comparison mapping and

F(x)⊕F(y)≤β(x⊕ y), for 0<β< 1.

Definition 2.10 ([2]). Let M :Hp → 2Hp be a set-valued mapping. Then:
(i) M is said to be a comparison mapping if for any vx ∈ M(x), x ∝ vx, and if x ∝ y, then for

vx ∈ M(x) and vy ∈ M(y), vx ∝ vy, for all x, y ∈Hp ;

(ii) A comparison mapping M is said to be α-non-ordinary difference mapping if there exists
a constant θ > 0 such that:

(vx ⊕vy)⊕α(x⊕ y)= 0 holds, for all x, y ∈Hp,vx ∈ M(x) and vy ∈ M(y);

(iii) A comparison mapping M is said to be θ-ordered rectangular if there exists a constant
θ > 0 such that:

〈vx ⊙vy,−(x⊕ y)〉 ≥ θ∥x⊕ y∥2 holds, for all x, y ∈Hp, vx ∈ M(x) and vy ∈ M(y).

Definition 2.11 ([1]). Let A,B :Hp →Hp and H :Hp ×Hp →Hp be single-valued mappings.
Then ∀ x, y ∈Hp , then H is said to be:

(i) t1-ordered compression mapping in the first argument, if

H(x, ·)⊕H(y, ·)≤ t1(x⊕ y), 0< t1 < 1;

(ii) t2-ordered compression mapping in the second argument, if

H(·, x)⊕H(·, y)≤ t2(x⊕ y), 0< t2 < 1;

(iii) k1-ordered compression mapping with respect to A, if

H(A(x), ·)⊕H(A(y), ·)≤ k1(x⊕ y), 0< k1 < 1;

(iv) k2-ordered compression mapping with respect to B, if

H(·,B(x))⊕H(·,B(y))≤ k2(x⊕ y), 0< k2 < 1.
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Definition 2.12 ([1]). Let A,B :Hp →Hp and H :Hp ×Hp →Hp be single-valued mappings.
Then

(i) H is said to be mixed comparison mapping with respect to A and B, if for each x, y ∈Hp,
x ∝ y, then H(A(x),B(x))∝ H(A(y),B(y)), x ∝ H(A(x),B(x)) and y∝ H(A(y),B(y));

(ii) H is said to be mixed comparison mapping with respect to A and B, if for each x, y ∈Hp,
x ∝ y, then H(A(x),B(x))∝ H(A(y),B(y)), if and only if x ∝ y.

Definition 2.13 ([1]). A set-valued mapping M :Hp → 2Hp is said to be ρ-XOR-ordered strongly
monotone compression mapping if x ∝ y, then there exists a constant ρ > 0 such that:

ρ(vx ⊕vy)≥ x⊕ y, ∀ x, y ∈Hp, vx ∈ M(x),vy ∈ M(y).

Definition 2.14 ([1]). A set-valued mapping T : Hp → C⋆(Hp) is said to be D-Lipschitz
continuous if for all x, y ∈Hp , x ∝ y, there exists a constant λT > 0 such that:

D(T(x),T(y))≤λT∥x⊕ y∥.

Definition 2.15 ([1]). A single-valued mapping F : Hp → Hp is said to be Lipschitz-type
continuous if there exists a constant λF > 0 such that:

∥F(x)⊕F(y)∥ ≤λF∥x⊕ y∥, ∀ x, y ∈Hp.

Definition 2.16. Let A,B :Hp →Hp, and H :Hp ×Hp →Hp be single-valued mappings such
that H(·, ·) is k1-ordered compression mapping with respect to A and k2-ordered compression
mapping with respect to B. Then, a set-valued comparison mapping M :Hp ×Hp → 2Hp is said
to be (α,ρ)-XOR-NODSM if M is an α-non-ordinay difference mapping and ρ-XOR-ordered
strongly monotone compression mapping and [H(A,B)⊕ρM(·,ζ)](Hp) = Hp, for some fixed
ζ ∈Hp and ρ > 0.

Definition 2.17. Let A,B :Hp →Hp, and H :Hp ×Hp →Hp be single-valued mappings such
that H(·, ·) is k1-ordered compression mapping with respect to A and k2-ordered compression
mapping with respect to B and M :Hp ×Hp → 2Hp be (α,ρ)-XOR-NODSM mapping. Then the
generalized resolvent operator R

H(A,B)
ρ,M(·,ζ) :Hp →Hp is defined for fixed ζ ∈Hp as:

R
H(A,B)
ρ,M(·,ζ)(ω)= [H(A,B)⊕ρM(·,ζ)]−1(ω), ∀ ω ∈Hp. (2.1)

Now, we discuss some properties of the generalized resolvent operator.

Proposition 2.18. Let A,B : Hp → Hp,H : Hp ×Hp → Hp be single-valued mappings such
that H(·, ·) is k1-ordered compression mapping with respect to A and k2-ordered compression
mapping with respect to B. Let M : Hp ×Hp → 2Hp is the set-valued θ-ordered rectangular
mapping with ρθ > |k1 − k2|. Then, the generalized resolvent operator R

H(A,B)
ρ,M(·,ζ) : Hp →Hp is

single-valued.

Proof. For any given u ∈Hp and ρ > 0, let x, y ∈ [H(A,B)⊕ρM(·,ζ)]−1(u). Then,

vx = 1
ρ

[u⊕H(A(x),B(x))] ∈ M(x,ζ) and vy = 1
ρ

[u⊕H(A(y),B(y))] ∈ M(y,ζ).
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In view of (i) and (ii) of Proposition 2.6, we have

vx ⊙vy = 1
ρ

[u⊕H(A(x),B(x))]⊙ 1
ρ

[u⊕H(A(y),B(y))]

= 1
ρ

{[u⊕H(A(x),B(x))]⊙ [u⊕H(A(y),B(y))]}

=−1
ρ

{[u⊕H(A(x),B(x))]⊕ [u⊕H(A(y),B(y))]}

=−1
ρ

{(u⊕u)⊕ [H(A(x),B(x))⊕H(A(y),B(y))]}

=−1
ρ

{0⊕ [H(A(x),B(x))⊕H(A(y),B(y))]}

≤−1
ρ

[H(A(x),B(x))⊕H(A(y),B(y))]

≤−1
ρ

{[H(A(x),B(x))⊕H(A(x),B(y))]⊕ [H(A(x),B(y))⊕H(A(y),B(y))]}. (2.2)

Using the fact that M is θ-ordered rectangular mapping, H(·, ·) is k1-ordered compression
mapping with respect to A and k2-ordered compression mapping with respect to B and using
(2.2), we have

θ∥x⊕ y∥2 ≤ 〈vx ⊙vy,−(x⊕ y)〉

≤
〈
−1
ρ

{[H(A(x),B(x))⊕H(A(x),B(y))]⊕ [H(A(x),B(y))⊕H(A(y),B(y))]},−(x⊕ y)
〉

≤ 1
ρ

{〈H(A(x),B(x))⊕H(A(x),B(y)
)
, x⊕ y〉⊕〈H(A(x),B(y))⊕H(A(y),B(y)), x⊕ y〉}

≤ 1
ρ
〈k1(x⊕ y), x⊕ y〉⊕〈k2(x⊕ y), x⊕ y〉

≤ |k1 −k2|
ρ

∥x⊕ y∥2.

i.e., (
θ− |k1 −k2|

ρ

)
∥x⊕ y∥2 ≤ 0, for θ > |k1 −k2|

ρ
,

which shows that ∥x⊕ y∥ = 0, which implies x⊕ y= 0.
Therefore, x = y, that is the resolvent operator R

H(A,B)
ρ,M(·,ζ) is single-valued for ρθ > |k1 −k2|.

Proposition 2.19. Let M :Hp ×Hp → 2Hp be an (α,ρ)-XOR-NODSM set-valued mapping with
respect to R

H(A,B)
ρ,M(·,ζ) such that H(·, ·) is mixed strongly comparison mapping with respect to A

and B. Then, the generalized resolvent operator R
H(A,B)
ρ,M(·,ζ) is a comparison mapping.

Proof. Since M is (α,ρ)-XOR-NODSM set-valued mapping with respect to R
H(A,B)
ρ,M(·,ζ), thus M is

α-non-ordinary difference as well as ρ-XOR-ordered strongly monotone compression mapping
with respect to R

H(A,B)
ρ,M(·,ζ).
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For any x, y ∈Hp , let x ∝ y,

v∗x = 1
ρ

[
x⊕H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(x)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(x)

))]
∈ M

(
R

H(A,B)
ρ,M(·,ζ)(x),ζ

)
(2.3)

and

v∗y =
1
ρ

[
y⊕H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(y)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(y)

))]
∈ M

(
R

H(A,B)
ρ,M(·,ζ)(y),ζ

)
. (2.4)

Since M is ρ-XOR-ordered strongly monotone compression mapping with respect to R
H(A,B)
ρ,M(·,ζ),

therefore using (2.3) and (2.4), we have

(x⊕ y)≤ ρ(v∗x ⊕v∗y)

≤ ρ

ρ

{[
x⊕H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(x)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(x)

))]
⊕

[
y⊕H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(y)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(y)

))]}
≤ (x⊕ y)⊕

[
H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(x)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(x)

))
⊕H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(y)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(y)

))]
.

Thus,

0≤ H
(
A

(
R

H(A,B)
ρ,M(·,ζ)(x)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(x)

))
⊕H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(y)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(y)

))
0≤

[
H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(x)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(x)

))
−H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(y)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(y)

))]
∨

[
H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(y)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(y)

))
−H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(x)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(x)

))]
.

It follows that either

0≤
[
H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(x)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(x)

))
−H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(y)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(y)

))]
or

0≤
[
H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(y)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(y)

))
−H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(x)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(x)

))]
Thus, in both cases, we have

H(A,B)
(
R

H(A,B)
ρ,M(·,ζ)(x)

)∝ H(A,B)
(
R

H(A,B)
ρ,M(·,ζ)(y)

)
.

Since H(·, ·) is mixed strongly comparison mapping with respect to A,B and R
H(A,B)
ρ,M(·,ζ), thus we

have, RH(A,B)
ρ,M(·,ζ)(x)∝R

H(A,B)
ρ,M(·,ζ)(y), i.e., the resolvent operator RH(A,B)

ρ,M(·,ζ) is a comparison mapping.

Proposition 2.20. Let the mappings A,B,H, M be same as defined in Proposition 2.18, then the
generalized resolvent operator R

H(A,B)
ρ,M(·,ζ) is 1

ρθ−(k1+k2) -Lipschitz-type continuous for ρθ > (k1+k2),
i.e., ∥∥∥RH(A,B)

ρ,M(·,ζ)(x)⊕R
H(A,B)
ρ,M(·,ζ)(y)

∥∥∥≤ 1
ρθ− (k1 +k2)

∥x⊕ y∥, ∀ x, y ∈Hp.

Proof. Let x, y ∈Hp , x ∝ y, and

v∗x = 1
ρ

[
x⊕H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(x)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(x)

))]
∈ M

(
R

H(A,B)
ρ,M(·,ζ)(x),ζ

)
and

v∗y =
1
ρ

[
y⊕H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(y)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(y)

))]
∈ M

(
R

H(A,B)
ρ,M(·,ζ)(y),ζ

)
.
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Now,

v∗x ⊕v∗y =
1
ρ

{[
x⊕H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(x)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(x)

))]
⊕

[
y⊕H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(y)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(y)

))]}
= 1
ρ

{
(x⊕ y)⊕

[
H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(x)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(x)

))
⊕H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(y)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(y)

))]}
.

(2.5)
Since M(·,ζ) is θ-ordered rectangular mapping and using (2.5), for any
R

H(A,B)
ρ,M(·,ζ)(x) ∈ M

(
R

H(A,B)
ρ,M(·,ζ)(x),ζ

)
and R

H(A,B)
ρ,M(·,ζ)(y) ∈ M

(
R

H(A,B)
ρ,M(·,ζ)(y),ζ

)
, we have

θ
∥∥∥RH(A,B)

ρ,M(·,ζ)(x)⊕R
H(A,B)
ρ,M(·,ζ)(y)

∥∥∥2

≤ 〈
v∗x ⊙v∗x ,−(

R
H(A,B)
ρ,M(·,ζ)(x)⊕R

H(A,B)
ρ,M(·,ζ)(y)

)〉
≤ 〈

v∗x ⊕v∗x ,RH(A,B)
ρ,M(·,ζ)(x)⊕R

H(A,B)
ρ,M(·,ζ)(y)

〉
= 1
ρ

〈
(x⊕ y)⊕

[
H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(x)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(x)

))
⊕ H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(y)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(y)

))]
,RH(A,B)

ρ,M(·,ζ)(x)⊕R
H(A,B)
ρ,M(·,ζ)(y)

〉
≤ 1
ρ

{∥∥∥(x⊕ y)⊕
[
H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(x)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(x)

))
⊕ H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(y)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(y)

))]∥∥∥∥∥∥RH(A,B)
ρ,M(·,ζ)(x)⊕R

H(A,B)
ρ,M(·,ζ)(y)

∥∥∥}
≤ 1
ρ

{∥∥∥(x⊕ y)−
[
H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(x)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(x)

))
⊕ H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(y)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(y)

))]∥∥∥∥∥∥RH(A,B)
ρ,M(·,ζ)(x)⊕R

H(A,B)
ρ,M(·,ζ)(y)

∥∥∥}
≤ 1
ρ

{[
∥x⊕ y∥+

∥∥∥H
(
A

(
R

H(A,B)
ρ,M(·,ζ)(x)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(x)

))
⊕ H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(y)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(y)

))∥∥∥]∥∥∥RH(A,B)
ρ,M(·,ζ)(x)⊕R

H(A,B)
ρ,M(·,ζ)(y)

∥∥∥}
≤ 1
ρ

{
∥x⊕ y∥

∥∥∥RH(A,B)
ρ,M(·,ζ)(x)⊕R

H(A,B)
ρ,M(·,ζ)(y)

∥∥∥+∥∥∥H
(
A

(
R

H(A,B)
ρ,M(·,ζ)(x)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(x)

))
⊕ H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(y)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(y)

))∥∥∥∥∥∥RH(A,B)
ρ,M(·,ζ)(x)⊕R

H(A,B)
ρ,M(·,ζ)(y)

∥∥∥}
. (2.6)

Since H(·, ·) is k1-ordered compression mapping with respect to A and k2-ordered compression
mapping with respect to B, we have∥∥∥H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(x)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(x)

))
⊕H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(y)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(y)

))∥∥∥
=

∥∥∥[
H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(x)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(x)

))
⊕H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(y)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(x)

))]
⊕

[
H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(y)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(x)

))
⊕H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(y)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(y)

))]∥∥∥
≤

∥∥∥[
H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(x)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(x)

))
⊕H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(y)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(x)

))]
−

[
H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(y)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(x)

))
⊕H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(y)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(y)

))]∥∥∥
≤

∥∥∥H
(
A

(
R

H(A,B)
ρ,M(·,ζ)(x)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(x)

))
⊕H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(y)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(x)

))∥∥∥
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+
∥∥∥H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(y)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(x)

))
⊕H

(
A

(
R

H(A,B)
ρ,M(·,ζ)(y)

)
,B

(
R

H(A,B)
ρ,M(·,ζ)(y)

))∥∥∥
≤ (k1 +k2)

∥∥∥RH(A,B)
ρ,M(·,ζ)(x)⊕R

H(A,B)
ρ,M(·,ζ)(y)

∥∥∥ .

Thus from (2.6), we obtain

θ
∥∥∥RH(A,B)

ρ,M(·,ζ)(x)⊕R
H(A,B)
ρ,M(·,ζ)(y)

∥∥∥2

≤ 1
ρ
∥x⊕ y∥

∥∥∥RH(A,B)
ρ,M(·,ζ)(x)⊕R

H(A,B)
ρ,M(·,ζ)(y)

∥∥∥+ k1 +k2

ρ

∥∥∥RH(A,B)
ρ,M(·,ζ)(x)⊕R

H(A,B)
ρ,M(·,ζ)(y)

∥∥∥2
.

This implies,∥∥∥RH(A,B)
ρ,M(·,ζ)(x)⊕R

H(A,B)
ρ,M(·,ζ)(y)

∥∥∥≤ 1
ρθ− (k1 +k2)

∥x⊕ y∥, ∀ x, y ∈Hp,

for ρθ > (k1 +k2).

This completes the proof.

Example 2.1. Let Hp = [0,∞) × [0,∞) with the usual inner product and norm, and let
C=[0,1]×[0,1] be a normal cone. Let A,B :Hp→Hp and H :Hp ×Hp→Hp be defined by

A(x)=
( x1

9
+3,

x2

9
+6

)
, B(x)=

( x1

3
+1,

x2

3
+2

)
and

H (A(x),B(x))= A(x)
3

⊕B(x), ∀ x = (x1, x2) ∈Hp.

For x = (x1, x2), y= (y1, y2) ∈Hp , x ∝ y, we have

H (A(x),u)⊕H (A(y),u)=
( A(x)

3
⊕u

)
⊕

( A(y)
3

⊕u
)

= 1
3

(A(x)⊕ A(y))

= 1
3

[(A(x)− A(y))∨ (A(y)− A(x))]

= 1
3

[{( x1

9
+3,

x2

9
+6

)
−

( y1

9
+3,

y2

9
+6

)}
∨

{( y1

9
+3,

y2

9
+6

)
−

( x1

9
+3,

x2

9
+6

)}]
= 1

3

[( x1 − y1

9
,
x2 − y2

9

)
∨

( y1 − x1

9
,

y2 − x2

9

)]
= 1

27
[(x− y)∨ (y− x)]

= 1
27

(x⊕ y)

≤ 1
24

(x⊕ y).

Hence, H is 1
24 -ordered compression mapping with respect to A. Similarly, we can show that H

is 1
2 -ordered compression mapping with respect to B.
Suppose that the set-valued mapping M :Hp → 2Hp be defined by

M(x)= {(3x1,3x2)}, ∀ x = (x1, x2) ∈Hp.
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It can be easily verified that M is a comparison mapping, 1-XOR-ordered strongly monotone
compression mapping and 3-non-ordinary difference mapping. Further, it is clear that for ρ = 1,
[H(A,B)+ρM](Hp)=Hp . Hence, M is an (3,1)-XOR-NODSM strongly monotone compression
mapping.

Let υx = (3x1,3x2) ∈ M(x) and υy = (3y1,3y2) ∈ M(y), then

〈υx ⊙υy,−(x⊕ y)〉 = 〈υx ⊕υy, x⊕ y〉
= 〈3x⊕3y, x⊕ y〉
= 3〈x⊕ y, x⊕ y〉
= 3∥x⊕ y∥2

≥ 2∥x⊕ y∥2,

i.e.,

〈υx ⊙υy,−(x⊕ y)〉 ≥ 2∥x⊕ y∥2, ∀ x, y ∈Hp.

Thus, M is 2-ordered rectangular comparison mapping.
The resolvent operator defined by (2.1) is given by

R
H(A,B)
ρ,M (x)=

(
27x1

73
,
27x2

73

)
, ∀ x = (x1, x2) ∈Hp.

It is easy to verify that the resolvent operator defined above is comparison and single-valued
mapping.

Further,∥∥∥RH(A,B)
ρ,M (x)⊕R

H(A,B)
ρ,M (y)

∥∥∥=
∥∥∥∥27x

73
⊕ 27y

73

∥∥∥∥
= 27

73
∥x⊕ y∥

≤ 24
35

∥x⊕ y∥.

i.e., ∥∥∥RH(A,B)
ρ,M (x)⊕R

H(A,B)
ρ,M (y)

∥∥∥≤ 24
35

∥x⊕ y∥, ∀ x, y ∈Hp.

This shows that the resolvent operator is R
H(A,B)
ρ,M is 24

35 -Lipschitz-type-continuous.

3. Generalized System of Set-Valued Variational Inclusion Problems
and Associated Fixed Point Formulation

Let A,B, g i, pi,G i : Hp → Hp, Ni,H : Hp ×Hp → Hp,Fi : Hp ×Hp ×Hp → Hp, for i = 1,2 be
single-valued mappings and S,T :Hp → C∗(Hp), Mi :Hp ×Hp → 2Hp be set-valued mappings.
Then, for any fixed ζ ∈Hp , we consider the following generalized system of set-valued variational
inclusion problems (in short, GSSVIP):

Find u,v ∈Hp, x ∈ S(u), y ∈ T(u) such that

0 ∈ N1((g1 − p1)(x),G1(y))⊕F1(u, x, y)⊕M1(u,ζ),

0 ∈ N2((g2 − p2)(y),G2(x))⊕F2(v, x, y)⊕M2(v,ζ).

}
(3.1)
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Here, we remark that the problem considered in [1] can be deduced from GSSVIP (3.1) by
taking N1 ≡ N2 ≡ N , (g1 − p1)≡ (g2 − p2)≡ I , G1 ≡G2 ≡ I , F1 ≡ F2 ≡ 0 and M1(u,ζ)= M2(v,ζ)=
M(u) and the problem considered in [3] can be obtained by taking N1 ≡ N2 ≡ 0, F1 ≡ F2 ≡ F and
M1(u,ζ) = M2(v,ζ) = M(u). Furthermore, under appropriate selections of different mappings
and the underlying space Hp in GSSVIP (3.1), one can get many new and known classes of
variational inequalities and variational inclusions (see, e.g., Ahmad et al. [1–3], Li [13] and the
related references cited therein).

Lemma 3.1. Let u,v ∈Hp, x ∈ S(u) and y ∈ T(u), then (u,v, x, y) is a solution of GSSVIP (3.1)
involving ⊕ operation if and only if it satisfies:

u =R
H(A,B)
ρ1,M1(·,ζ){ρ1[N1((g1 − p1)(x),G1(y))⊕F1(u, x, y)]⊕H(A,B)(u)} (3.2)

and

v =R
H(A,B)
ρ2,M2(·,ζ){ρ2[N2((g2 − p2)(y),G2(x))⊕F2(v, x, y)]⊕H(A,B)(v)}, (3.3)

where R
H(A,B)
ρ i ,Mi(·,ζ) = [H(A,B)⊕ρ iMi(·,ζ)]−1, for i = 1,2 and ρ i > 0.

Proof. Using the definition of the generalized resolvent operator, we have by (3.2)

u =R
H(A,B)
ρ1,M1(·,ζ){ρ1[N1((g1 − p1)(x),G1(y))⊕F1(u, x, y)]⊕H(A,B)(u)}

⇐⇒ u = [H(A,B)⊕ρ1M1(·,ζ)]−1{ρ1[N1((g1 − p1)(x),G1(y))⊕F1(u, x, y)]⊕H(A,B)(u)}

⇐⇒ H(A,B)(u)⊕ρ1M1(u,ζ) ∋ ρ1[N1((g1 − p1)(x),G1(y))⊕F1(u, x, y)]⊕H(A,B)(u)

⇐⇒ 0 ∈ N1((g1 − p1)(x),G1(y))⊕F1(u, x, y)⊕M1(u,ζ).

Similarly, using (3.3), we can prove that

0 ∈ {N2((g2 − p2)(y),G2(x))⊕F2(v, x, y)}⊕M2(v,ζ).

4. Iterative Algorithm, Existence Result and Convergence Analysis
Lemma 3.1 along with Nadler’s Theorem allows us to suggest the following iterative algorithm
for finding the approximate solution of GSSVIP (3.1).

Iterative Algorithm 4.1. For any arbitrary u0,v0 ∈Hp , choose x0 ∈ S(u0), y0 ∈ T(u0), let

u1 = (1−α)u0 +αRH(A,B)
ρ1,M1(·,ζ){ρ1[N1((g1 − p1)(x0),G1(y0))⊕F1(u0, x0, y0)]⊕H(A,B)(u0)}

and

v1 = (1−α)v0 +αRH(A,B)
ρ2,M2(·,ζ){ρ2[N1((g2 − p2)(y0),G2(x0))⊕F2(v0, x0, y0)]⊕H(A,B)(v0)}.

Since x0 ∈ S(u0), y0 ∈ T(u0), by Nadler’s Theorem, there exists x1 ∈ S(u1), y1 ∈ T(u1) and
using Proposition 2.7, we have

∥x0 ⊕ x1∥ ≤ ∥x0 − x1∥ ≤ (1+1)D(S(u0),S(u1))

and

∥y0 ⊕ y1∥ ≤ ∥y0 − y1∥ ≤ (1+1)D(T(u0),T(u1)),
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where D(·, ·) is the Hausdorff metric on C⋆(HP ). Let

u2 = (1−α)u1 +αRH(A,B)
ρ1,M1(·,ζ){ρ1[N1((g1 − p1)(x1),G1(y1))⊕F1(u1, x1, y1)]⊕H(A,B)(u1)}

and

v2 = (1−α)v1 +αRH(A,B)
ρ2,M2(·,ζ){ρ2[N2((g2 − p2)(y1),G2(x1))⊕F2(v1, x1, y1)]⊕H(A,B)(v1)}.

Again by Nadler’s Theorem, there exists x2 ∈ S(u2), y2 ∈ T(u2) such that

∥x1 ⊕ x2∥ ≤ ∥x1 − x2∥ ≤ (1+2−1)D(S(u1),S(u2))

and

∥y1 ⊕ y2∥ ≤ ∥y1 − y2∥ ≤ (1+2−1)D(T(u1),T(u2)).

Continuing the process inductively, we have the following scheme:

un+1 = (1−α)un +αRH(A,B)
ρ1,M1(·,ζ){ρ1[N1((g1 − p1)(xn),G1(yn))⊕F1(un, xn, yn)]⊕H(A,B)(un)}

and

vn+1 = (1−α)vn +αRH(A,B)
ρ2,M2(·,ζ){ρ2[N1

(
(g2 − p2)(yn),G2(xn))⊕F2(vn, xn, yn)]⊕H(A,B)(vn)}.

Since xn+1 ∈ S(un+1), yn+1 ∈ T(un+1) such that

∥xn ⊕ xn+1∥ ≤ ∥xn − xn+1∥ ≤ (1+ (1+n)−1)D(S(un),S(un+1))

and

∥yn ⊕ yn+1∥ ≤ ∥yn − yn+1∥ ≤ (1+ (1+n)−1)D(T(un),T(un+1)),

where α ∈ [0,1], n = 0,1,2, . . ..

Next, we prove the following theorem which ensures the existence of solution of GSSVIP (3.1)
and convergence of sequences generated by the Iterative Algorithm 4.1.

Theorem 4.2. Let C ⊂ Hp be a normal cone with constant λN . For i = 1,2, let A,B, g i, pi :
Hp →Hp and H, Ni :Hp ×Hp →Hp be single-valued mappings such that H(·, ·) is k1-ordered
compression mapping with respect to A and k2-ordered compression mapping with respect to B;
Ni be τi-Lipschitz-type continuous with respect to (g i − pi) in first argument and σi-Lipschitz-
type continuous with respect to G i in second argument, respectively. Let Mi : Hp ×Hp → 2Hp

and S,T : Hp → C⋆(Hp) be set-valued mappings such that Mi is (αi,ρ i)-XOR-NODSM and
θi-ordered rectangular mapping, respectively; S is γ1-D-Lipschitz continuous and T is γ2-D-
Lipschitz continuous. Further, let Fi :Hp×Hp×Hp →Hp be (l i,mi,ni)-Lipschitz-type continuous
in first, second and third arguments, respectively. If un+1 ∝ un, vn+1 ∝ vn, for n = 0,1,2, . . . and
following conditions are satisfied: ϕ< 1 and ϑ< 1, where

ϕ= {λN(1−α)+αλNΘ(k1 +k2)+αλN |ρ1|Θ[γ1(τ1 +m1)+γ2(σ1 +n1)+ l1]},

ϑ= {λN(1−α)+αλNΘ
′+αλNΘ

′(k1 +k2)},

Θ= 1
ρ1θ1−(k1+k2) , Θ

′ = 1
ρ2θ2−(k1+k2) .

 (4.1)

Then GSSVIP (3.1) has a solution (u,v, x, y), where u,v ∈ Hp, x ∈ S(u), y ∈ T(u). Also, the
Iterative sequences {un}, {vn}, {xn}, {yn} generated by the Iterative Algorithm 4.1 converge strongly
to u,v, x, y, respectively.
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Proof. By Algorithm 4.1 and Proposition 2.6, we have

0≤ un+1 ⊕un

=
[
(1−α)un +αRH(A,B)

ρ1,M1(·,ζ){ρ1[N1((g1 − p1)(xn),G1(yn))⊕F1(un, xn, yn)]⊕H(A,B)(un)}
]

⊕
[
(1−α)un−1 +αRH(A,B)

ρ1,M1(·,ζ){ρ1[N1((g1 − p1)(xn−1),G1(yn−1))⊕F1(un−1, xn−1, yn−1)]

⊕H(A,B)(un−1)}
]

= (1−α)(un ⊕un−1)+α
[
R

H(A,B)
ρ1,M1(·,ζ){ρ1[N1((g1 − p1)(xn),G1(yn))⊕F1(un, xn, yn)]

⊕H(A,B)(un)}⊕ R
H(A,B)
ρ1,M1(·,ζ){ρ1[N1((g1 − p1)(xn−1),G1(yn−1))⊕F1(un−1, xn−1, yn−1)]

⊕H(A,B)(un−1)}
]
.

Now, using Proposition 2.7 and Lipschitz-type continuity of the generalized resolvent operator,
we have

∥un+1 ⊕un∥
≤λN

∥∥∥(1−α)(un ⊕un−1)+α
[
R

H(A,B)
ρ1,M1(·,ζ){ρ1[N1((g1 − p1)(xn),G1(yn))⊕F1(un, xn, yn)]

⊕H(A,B)(un)}⊕R
H(A,B)
ρ1,M1(·,ζ){ρ1[N1((g1 − p1)(xn−1),G1(yn−1))⊕F1(un−1, xn−1, yn−1)]

⊕H(A,B)(un−1)}
]∥∥∥

≤λN(1−α)∥un ⊕un−1∥+αλN

∥∥∥RH(A,B)
ρ1,M1(·,ζ){ρ1[N1((g1 − p1)(xn),G1(yn))⊕F1(un, xn, yn)]

⊕H(A,B)(un)
}⊕R

H(A,B)
ρ1,M1(·,ζ){ρ1[N1((g1 − p1)(xn−1),G1(yn−1))⊕F1(un−1, xn−1, yn−1)]

⊕H(A,B)(un−1)}
∥∥∥

≤λN(1−α)∥un ⊕un−1∥+αλNΘ|ρ1|∥N1((g1 − p1)(xn),G1(yn)

⊕N1((g1 − p1)(xn−1),G1(yn−1)∥+αλNΘ|ρ1|∥F1(un, xn, yn)⊕F1(un−1, xn−1, yn−1)∥
+αλNΘ∥H(A,B)(un)⊕H(A,B)(un−1)∥. (4.2)

Since, XOR operator is associative, N1 : Hp ×Hp →Hp is τ1-Lipschitz-type continuous with
respect to (g1 − p1) in first argument and σ1-Lipschitz-type continuous with respect to G1 in
second argument, respectively, and S,T are γ1,γ2-D-Lipschitz-type continuous,respectively,
therefore in view of Algorithm 4.1, we have

∥N1((g1 − p1)(xn),G1(yn)⊕N1((g1 − p1)(xn−1),G1(yn−1)∥
≤ ∥N1((g1 − p1)(xn),G1(yn)⊕N1((g1 − p1)(xn−1),G1(yn)∥
+∥N1((g1 − p1)(xn−1),G1(yn)⊕N1((g1 − p1)(xn−1),G1(yn−1)∥

≤ τ1∥xn ⊕ xn−1∥+σ1∥yn ⊕ yn−1∥
≤ τ1(1+n−1)D(S(un),S(un−1))+σ1(1+n−1)D(T(un),T(un−1))

≤ τ1γ1(1+n−1)∥un −un−1∥+σ1γ2(1+n−1)∥un −un−1∥
= [(τ1γ1 +σ1γ2)(1+n−1)]∥un −un−1∥. (4.3)
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Since F1 :Hp×Hp×Hp →Hp is (l1,m1,n1)-Lipschitz-type continuous in first, second and third
arguments, respectively, and using Algorithm 4.1, we have

∥F1(un, xn, yn)⊕F1(un−1, xn−1, yn−1)∥
≤ ∥F1(un, xn, yn)⊕F1(un−1, xn, yn)∥+∥F1(un−1, xn, yn)⊕F1(un−1, xn−1, yn)∥
+∥F1(un−1, xn−1, yn)⊕F1(un−1, xn−1, yn−1)∥

≤ l1∥un ⊕un−1∥+m1∥xn ⊕ xn−1∥+n1∥yn ⊕ yn−1∥
≤ l1∥un −un−1∥+m1γ1(1+n−1)∥un −un−1∥+n1γ2(1+n−1)∥un −un−1∥
= [l1 + (m1γ1 +n1γ2)(1+n−1)]∥un −un−1∥. (4.4)

Since H(·, ·) is k1-ordered compression mapping with respect to A and k2-ordered compression
mapping with respect to B, we have

∥H(A,B)(un)⊕H(A,B)(un−1)∥ = ∥H(A(un),B(un))⊕H(A(un−1),B(un−1))∥
≤ ∥H(A(un),B(un))⊕H(A(un−1),B(un))∥
+∥H(A(un−1),B(un))⊕H(A(un−1),B(un−1))∥

≤ k1∥un ⊕un−1∥+k2∥un ⊕un−1∥
≤ (k1 +k2)∥un −un−1∥. (4.5)

Using (4.3)-(4.5) in (4.2), we have

∥un+1 ⊕un∥ ≤ {λN(1−α)+αλNΘ|ρ1|[(τ1γ1 +σ1γ2)(1+n−1)]

+αλNΘ|ρ1|[l1 + (m1γ1 +n1γ2)(1+n−1)]+αλNΘ(k1 +k2)}∥un −un−1∥
= {λN(1−α)+αλNΘ(k1 +k2)

+αλN |ρ1|Θ[(γ1(τ1 +m1)+γ2(σ1 +n1))(1+n−1)+ l1]}∥un −un−1∥.

Since un+1 ∝ un, n = 0,1,2, . . ., we have

∥un+1 −un∥ ≤ϕn∥un −un−1∥,

where

ϕn = {λN(1−α)+αλNΘ(k1 +k2)+αλN |ρ1|Θ[(γ1(τ1 +m1)+γ2(σ1 +n1))(1+n−1)+ l1]}.

Let

ϕ= {λN(1−α)+αλNΘ(k1 +k2)+αλN |ρ1|Θ[γ1(τ1 +m1)+γ2(σ1 +n1)+ l1]}.

We know that ϕn →ϕ as n →∞. It follows from condition (4.1) that 0<ϕ< 1, and consequently
{un} is a Cauchy sequence in Hp and since Hp is complete, there exists u ∈Hp such that un → u
as n →∞. Proceeding the same way, we arrive at

∥vn+1 ⊕vn∥ ≤αλN |ρ2|Θ′{[γ1(σ2 +m2)+γ2(τ2 +n2)](1+n−1)}∥un −un−1∥
+ {λN(1−α)+αλNΘ

′+αλNΘ
′(k1 +k2)}∥vn −vn−1∥.

As vn+1 ∝ vn, n = 0,1,2, . . ., we have

∥vn+1 −vn∥ ≤αλN |ρ2|Θ′{[γ1(σ2 +m2)+γ2(τ2 +n2)](1+n−1)}∥un −un−1∥+ϑ∥vn −vn−1∥,
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where

ϑ= {λN(1−α)+αλNΘ
′+αλNΘ

′(k1 +k2)}.

Using the fact that {un} is a Cauchy sequence and 0<ϑ< 1, by condition (4.1), it follows that
{vn} is a Cauchy sequence in Hp and since Hp is complete, there exists v ∈Hp such that vn → v,
as n →∞.

By Algorithm 4.1 and the D-Lipschitz-type continuity of S and T , we have
∥xn+1 ⊕ xn∥ ≤ ∥xn+1 − xn∥ ≤ (1+ (1+n)−1)γ1∥un+1 −un∥,

∥yn+1 ⊕ yn∥ ≤ ∥yn+1 − yn∥ ≤ (1+ (1+n)−1)γ2∥vn+1 −vn∥.

}
(4.6)

Sequences {un} and {vn} being Cauchy in Hp, (4.6) implies that {xn} and {yn} are also Cauchy
sequence in Hp . Thus, there exist x, y in Hp such that xn → x, yn → y as n →∞.
Now, we show that x ∈ S(u) and y ∈ T(u). Since xn ∈ S(un), we have

d(x,S(u))≤ ∥x− xn∥+d(xn,S(u))

≤ ∥x− xn∥+D
(
S(un),S(u)

)
≤ ∥x− xn∥+γ1∥un −u∥→ 0 as n →∞.

Since S(u) is closed, it follows that x ∈ S(u). Similarly, we can show that y ∈ T(u). Thus, in view
of Lemma 3.1, we conclude that (u,v, x, y) is a solution of GSSVIP (3.1). This completes the
proof.

5. Conclusion
The problems considered in this paper are more general than previously studied problems
in ordered spaces. The problem considered in [1] can be deduced from our problem by taking
N1 ≡ N2 ≡ N , (g1 − p1) ≡ (g2 − p2) ≡ I , G1 ≡ G2 ≡ I , F1 ≡ F2 ≡ 0 and M1(u,ζ) = M2(v,ζ) = M(u)
and that considered in [3] can be obtained by taking N1 ≡ N2 ≡ 0, F1 ≡ F2 ≡ F and M1(u,ζ) =
M2(v,ζ)= M(u). It is pertinent to mention that the solution of variational inclusions involving
⊕ operator is of recent origin and can be exploited to solve various classes of known and new
variational inclusions.
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