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1. Introduction

Fuzzy sets are very useful in various branches of natural sciences as well as in engineering
where exact solution of the problem is not necessary to exist. The effectiveness of fuzzy sets
is seen in complex physical systems where the precise mathematical structure, fast solution
or initial estimate fails to exists. Zadeh [22] brought this novel theory and later on numerous
admirable research outcomes came across in the literature based on the conception of fuzzy
sets ([2,,3,/10,11,|/16[]). Park [18]] has given the framework of intuitionistic fuzzy metric spaces
and afterward Saadati and Park [19] explored a useful concept as an Intuitionistic Fuzzy
Normed space (IFN space) in the modified form by working on certain conditions like separation
condition using f-norm and continuous ¢-norm. IFN space with its analytic properties and
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various generalizations becomes a key area of research for providing mathematical structure
for real-life situations.

Definition 1.1 ([19]). An IFN space is 5-tuple (X, ¢, 9, ®,®) with a vector space X, a continuous
t-norm ® on [0, 1], a continuous ¢-conorm © on [0,1], and two fuzzy sets ¢ and 9 on X x (0,00)
in which for x,y € X and s,¢ >0, we have
(1) @x,t)+9(x,t) <1,
(i) ¢(x,t)>0 and I(x,t) <1,
(ii1) @(x,t)=1 and I(x,t)=0iff x =0,
1v) o(ux,t)=¢ (x, th) and I(ux,t) =19 (x, ﬁ) for u#0,
v) @(x,8)®@p(y,t) <p(x+y,s+t) and Ix,s) 0 Iy, t)=Nx+y,s+1),
(vi) ¢(x,0):(0,00) —[0,1] and 9(x,0):(0,00) — [0, 1] are continuous,
(vii) tlim p(x,t)=1and 1in(}(p(x, t)=0,
(viii) lim 9(x,t) =0 and lim9(x,¢) = 1.
t—oo t—0

Here (¢,?) is termed an intuitionistic fuzzy norm.

Example 1.1 ([19]). Let (X, | - ||) be a normed space. Define
(1) p1®pg = pipg and gy © pg = min{uy + ug, 1} for all py, ug €10, 1],

llxll

] for xe X and t>0.

(i) @x,8) = g, 9,0 =
Then (X, ¢,9,®,0) is an IFN space.

The convergence of sequences is also defined by Saadati and Park in [19] on IFN space as:

Definition 1.2 ([19]). Let (X,¢,9,®,0) be any IFN space. Then, sequence x = {x;} can be
recognized as convergent to xg € X corresponding to norm (¢, ) provided with any ¢ >0 and
every € > 0 there exists kg € N satisfying ¢(xp —x9,t) > 1 —€ and 9(xp — xo,t) <€ for all & = k.
Symbolically, (¢, ) —limx = xg.

Karakus et al. [13] extended the concept of sequence convergence statistically on IFN space.
The term statistical convergence [9] rely on natural density’s perception. The expression of
natural density for any set A, where A c N, has given by 6(A) = nh—»nolo %I{a <n:ac€ A}| where
|- | indicates order of the enclosed set. Any sequence x = {x;} converges statistically to some xg,
provided that the set A(e) ={a <n:|x; —x¢| > €} has zero natural density.

Definition 1.3 ([13]). Let (X,¢,9,®,0) be any IFN space. Then, sequence x = {x;} can be
recognized as statistically convergent to x¢ € X corresponding to norm (¢, ) provided with any
t >0 and every € > 0 satisfying

0({k € N : p(xp, —x0,t) < 1—¢€ or Ixp —x0,t) =€}) =0.

Symbolically, S? —limx = x.
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One of the generalized type of sequence convergence is A-statistical convergence, which has
been presented by Mursaleen [17]] using a non-decreasing sequence A = {1,,} which tends to co
with 1,41 <A, +1 and A; = 1. Also, generalized de La Vallée-Poussin mean has been described
as

1

tn(x) = Z xp, Wwhere I,,=[n—-A,+1,nl.

An kel,
Throughout the article, we use I, for [n — 1, +1,n].

Definition 1.4 ([17]). A sequence x = {x;} can be recognized as A-statistically convergent to xg
provided with every € > 0 satisfying

1
lim —|{kel,:|xp—x9l=1—€}|=0
n—oo A,

or
S,k eI, |xp—x9l=1—€})=0.

Symbolically, S — ,}l_,m Xp = Xg.

Kizmaz [14] has discovered the difference sequence spaces conception by considering the
set Z(A) ={x ={xp} : {Axp} € Z} for Z = [, (spaces of all the bounded sequences) ¢y (spaces of
all the convergent sequences) and c( (spaces of all the null sequences), where Ax = {Ax;} =
{xr —xp41}, and x = {x} is a real sequence for all £ € N. In particular, /,,(A), c(A) and co(A)
are also recognized as Banach spaces, due to the norm endowed by |[|x|a = |x1|+ sup|Axyg]|.

Moreover, the generalized difference sequence spaces were defined by Et and Qolal]: [6] by
Z(A™) = {x = {xp} : {A"xp} € Z}, where m be any fixed positive integer, for Z = [, ¢, co
and A™x = {A™xz} = (A" 1xp — A™ 1xz. 1) so that A™xy, = f (=1)(")xp+r. The A™-statistical
convergence concept was studied and considered by Et and lr\?l(;ray [7] with the help of statistical

convergence.

Definition 1.5 ([7]]). A sequence x = {x3} can be recognized as A™-statistically convergent to xg
provided with every € > 0, we have

5({k <n:|A"xp—xo| = e}) =0.
Symbolically, St —lim A™x;, = xy.
A lot of work is done by various researchers related to convergence of difference

sequences in extended way with different structures, some connected results can be seen
in [[1,/41/5,/8],/ 12} 15L/20}21].

2. Main Results

In this section, we are introducing the idea of A-statistical convergence for generalized difference
sequences on IFN space, i.e., 1-A™-statistical convergence on IFN space and further establish

some important results on this convergence structure.
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Definition 2.1. Let (X, ¢,9,®,0) be any IFN space. Then, sequence x = {x;} can be recognized
as A-A™-statistically convergent to x¢ € X corresponding to norm (¢, ) provided with any ¢ >0

and every € > 0 satisfies
S (k€I : (A" xp —x0,t) <1—€ or I(A™xp, —x0,t) = €}) =0.
Symbolically, S ;‘p’ﬂ) —limA™x = x.
Definition 2.2. Let (X, ¢,9,®,0) be any IFN space. Then, sequence x = {x;} can be recognized

as A-A™-statistically Cauchy corresponding to norm (¢, ) provided with any ¢ > 0 and every
€ >0 there exists kg € N satisfying

Sk el, : p(A™x, — A" xgs,t)<1—€cor A" xp — A"xs,t)=€}) =0, forall k= k.
The next results can be easily obtained using Definition 2.1 and Definition

Theorem 2.1. Let x = {x;,} be any sequence in an IFN space (X,¢,9,®,0). IfSE{p’ﬁ) —lim A" x = xg,

then limit ¢ is unique.

Proof. Assume that, SE{p’ﬁ) —lim A™x = x¢ and Sﬁ{p’ﬁ) —limA™x = x1 and &1 # &s.
For t >0 and ¢ >0, take x >0 with (1-x)®(1-x)>1—-¢ and xk ©k <e¢. Define

t
Aqp(k,t) = {keln :(p(Amxk —xo,é) < ].—K},

t
Ag (k1) = {k el, :Am(p(xk —xl,g) < 1—1<},

t
A1k, t) = {k el, :Q(Amxk - X0, 5) = K},
t
Ag p(k,t) = {k el, :ﬁ(Amxk - X0, 5) > K}.

Since S ;‘p’ﬁ) —lim A™x = x¢, then due to Definition we get
BA(A1,4(k, 1)) = 5A(A1,9(k,1) = 0.

Further S g{p’ﬁ) —1lim A™x = x1, due to Definition we get
O2(Ag y(x,1)) = 61 (Asg 9(k,1)) = 0.

Consider A g(x,t) = (A1,,(k, 1) UAg (x,1)) N (A1 9(x,t) UAg 9(k,1)).
Clearly,

Or(Apo(k, 1) =00, — Ay ok, 1) =1
Ifkel,—A,9(x,t) then either

kel,—(A1yp(k,t)UAgy(x,t) or kel,—(Aq9(x,t)UAgg(k,1)).
Ifkel,—(Ayy(x,t)UAg,(x,t)), then

Qxo—x1,8) = (A" xp, — x0,t/2) ® (A" xp, —x1,t/2) >(1-x)®(1—x) > 1 —€.

As €>0, so we get ¢(xg—x1,t)=1 for all £> 0, then xg = x7.
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On other hand if 2 € I, — (A1 9(k,2) UAg 5(k,t)), then
xg —x1,8) < A xp —x0,t/2) © A" xp, —x1,t/2) <Kk Ok <E€.
As >0, so we get ¢(xg—x1,t) =0 for all £ >0, then xo = x1. Hence, limit is unique. O
Theorem 2.2. Let (X,¢,9,®,0) be any IFN space. If (¢, 9)1~lim A™x = xo, then S\*” ~lim A =
xo. But counter part does not hold.
Proof. Assume (¢,9)) —lim A™x = x¢. For given € >0 and ¢ > 0 we get kg € N satisfying
(A" xp, —x0,t)>1—€¢ and IA"xp —x9,t) <€
for all £ = k. This provides the set
{kel,:p(A"xp—x0,t)<1—¢€or NA"x}, —x0,t) =€},
with finite members. As per rule A density of every finite set becomes zero. Thus,
Sk eI, : (A™xp —x0,t) <1—€ or HA™xp, —x0,8) =€} =0,
i.e.,
Sgtp’ﬁ) —limA™x = xo. O

However, counter part of the above mentioned result fails to exist, this can be explained

using next example:

Example 2.1. Let (R, |-]) be any normed space. Define
(1) p1®pg = pipz and pq © po = minf{uq + pe, 1} for all pq,use €[0,1],

(1) @(x,t) = #le’ INx,t) = Hl-xllxl for any £ >0 and every x € R.
Then (R, ¢,9,®,0) is an IFN space.
Consider a sequence x = {x3} such that
1, n—\/A,+1<k=n
Am — ’ n ’
Yk {0, otherwise.

For ¢t > 0 and € > 0, we have
Ae,t)={kel, : (A" xp —x0,t) <1—¢€ or A x}, —x0,t) = €} (x9=0)
t |A™xp,|
=3kel,:———<l-cor ——— =>¢
m €t
=<kel,:|IN"xp|=2——>0
1-¢
={kel,:|A"x;| =1}
={kel,:keln—\VA,+1<k<nl.

Now,

iIA(e,z‘f)I < Vi

. i —0 as n— o0

1
= lim A—|A(€,t| =0.

n—oo n
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Thus, SE{p’ﬁ) —limA™x =0, i.e. x = {xp} is A-A™-statistical convergent on (R, ¢, 9, ®,0).

Moreover, using above defined sequence, we get

t
’ 1,  otherwise,

ie.. (A"xp,t)<1, VEk

and

1
O(A™ . ) = =1 - \/)LTL +1<k=<n,
0, otherwise,
ie. 9(A™xp,t)=0, VEk.
This implies (¢@,9)p —lim A™x # 0.
Next, we will discuss some algebraic features of A-A™-statistical sequences in IFN space as
follows:

Theorem 2.3. Let (X,¢,9,®8,0) be an IFN space. Let x = {x3} and y ={yp} be sequences from X.
Then
G If S;‘p’ﬁ) —1lim A™x = x¢ then Sgp’ﬁ) —limA™ax =axy, a €R,

i) If 8P —lim A™x = xg and S —limA™y = yq then 8'? —lim A™(x + y) = xo + 0.

Proof. (i) Assume S 5{”’19) —1lim A™x = xo. Then, for the fixed ¢ >0 and any ¢ > 0, we can take
Ae,t)={kel, : p(A"xp —x0,t) < 1—€ or A x}, —x9,t) = €}.

Which provides
O(A(e,t)) =0 sothat 6,([A(e, D)) =1.

Let 2 €[A(e,t)]€ and a # 0, then
@A™ (axp) — axo,t) = p(a(A™xp, — x0),t)

t
=@ (Amxk - X0, —)
la|

> (A" xp, —x0,t)®@ @ (0, é - t)
=@p(A™xp —x0,t)® 1
>1-¢€
and
(A (axp)—axg,t) = Ha(A™xp — x0),t)

t
=9 (Amxk - Xp, —)
lal

<IA™xp —x0,t) 00

t
I

a
<9(A™xp, —x9,t) 00

<e€.
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Therefore, 6, ([A(e, 1)) =1, i.e.
Sk €I, : (A™(axp) —axg,t) >1—¢ and IHA™(axp) — kxo,t) <€} =1.

Hence, S;‘p’ﬁ) —limax =axg, a #0.
When a =0, we get

@(0A™xp,t)>1—¢ and 9(0A"xp,t) <e.
Hence, S()zp’ﬁ) —limA™ax=axp,a €R.
(i1) As Sf{p’ﬁ) —limA™x = x9 and S(l‘p’ﬁ) —limA™y = y9. Then, for ¢t >0 and € > 0, take x > 0 with

1-x)8(1-x)>1-cand koK <e.
Define sets for the given sequences x = {x3} and y = {y;} sets

Ay, t)={kel, : (A" xp —x0,t/2) < 1—x or HAx}, — x0,1/2) =}
and
Ay, t)={k €I, : (A" yp — y0,t/2) < 1—x or A"y}, — y0,t/2) = x}.

We have, §,(Ax(x,2) =06,(A,(x,t)) =0.
Consider A(x,?) = A,(x,t)NA,(x,t), then §,(A(x,t)) =0 i.e. 5([A(x,8)]°) =1.
For all & € [A(x,)]°,

P(A™ (g, + yi) = (x0 + y0), 1) = (A xp, — 20 + A™ Yo — Y0, )
> p(A™xp — x0,t/2) ® (A™ yp, — y0,t/2)
=2(1-x)e(1-x)
>1-¢
and
A (xp, + yp) — (x0 + y0),t) = HA™ xp, — x0 + Ayp — yo,1)
<A™ xp, — x0,t/2) @ WA yp, — v0,t/2)
<SKOK
<e
= S _lim A™(x + y) = xo + yo. 0
Theorem 2.4. Let (X,¢,9,8,0) be an IFN space. Then sequence x = {x;} from X is Sgp’m —
IimA™x = xo if and only if there exist set J = {j1 < jo < j3 <...} €I, with 6(J)=1 and
(p, My —limA™x; = xo.
Proof. Necessary part: Consider Sf{p’ﬁ) —limA™x = xg. For t >0 and x € N, we consider
Ak, t)={k eI, : (A" x}, —x9,t) > 1—1/x and IA™x}, — x9,t) < 1/x},
and

K, t)={kel,: p(A"x} —x0,t) <1—1/x or I(A™x}, — x0,t) = 1/x}.
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Since S1”” ~1im A™x = xo, then 8,(K (x,t)) = 0. Moreover, A(x,#) > A(k +1,¢), and
S2(Alk, 1) = 1. 2.1)

Next, for any & € A(x,t), we have (¢,9)) —lim A" x = x.
We are going to prove this part by contradiction. Assume that for any % € A(x,t) we found u >0
and kg € N satisfying

(A xp, —x0,8) <1 —p or H(A™xp, —x0,t) =, forall k= k.
This implies that
(A" xp —x0,t) >1—p and IA"xp, —x9,t) < p, forall & <ky.
Therefore,
Ok eIy, : (A" xp, —x0,t) >1—p and NA™xp —x0,t) < u} =0.
As a> %, we have 6(A(x,t)) = 0, which leads a contradiction to (2.1I). Thus, we get set A(x,¢)
with 6(A(x,#)) =1 and x = {x3} is A-A™-statistical convergent to xg.
Sufficient part: Suppose there exist a subset J ={j1 < jos<j3<...} SN so that §,(J) =1 and
(p,Mr—limA™y; =xo,i.e. 3 Nog €N for every ¢ >0 and any ¢ > 0 satisfying
(A" xp —x0,t)>1—€ and A" xp, —x0,t) <€, k=Ny.
Take
K, t)={k eI, : (A™x, —x0,t) <1—¢€ or HA™xp, —x0,t) = €}.
Then,
K(e,t) I, —{Ny+1,JNo+25-- -}
Due to §,(J) = 1 we get 51(K(e, t)) < 0. Therefore, S1*” —lim A™x = xq. 0

Theorem 2.5. Let (X,¢,0,8,0). Then SE{p’ﬁ) —1limA™x = x¢ if and only if there is a sequence
y ={yz} with (¢,9)) —lim A"y =x9 and 6,({k €, :A"x=A"y})=1.

Proof. Necessary part: Consider S E{p’ﬁ) —lim A™x = x9. By Theorem we get a set J € I,, with
Oa(J)=1and (¢,9)) —limA™x; =xo.
Consider a sequence y = {y;} such that

m AMxp, ked,
A%y = .
X0, otherwise.
Then y = {y;} serve our purpose.
Sufficient part: Consider x = {x3} and y = {y;} be the sequences from X with (¢,9);—-limA™y = xg
and 0,({k € I,, : Ax = A™y}) = 1. Then for any ¢ > 0 and every € > 0, we have

{kel,: A"y, —x0,t)<1—€or A"y, —x0,t) =€} SAUB,
where

A={kel,:p(A"xp—x0,t)<1—¢€or A" x} —x0,t) =€},
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B={kel,: Ny, #A™x).

Since (¢,9)) —lim A™x = xg then above defined set A has at most finitely many elements.
Also 6)(B)=0 as 6,(B) =1 where B¢ ={k eI, : A"y, = A™x;}. Therefore

S (k€ 1, : (A" xp — x0,t) <1—€ or H(A™xp, —x0,t) = €}) = 0.
Hence Sf{p’ﬁ) —lim A™x = xg. O
Theorem 2.6. Let x = {x} be a sequence from an IFN space (X,¢,9,8,0). Then SE{M)) —limA™x =

xo if and only if there exist two sequences y = {y;} and z ={zp} from X with A"x, = A"y, + A"z},
for all k € I,, where (¢,9)) —limA™y =x¢ and Sf{p’ﬁ) —lim A™z = xy.

Proof. Necessary part: Let Sf{p’{)) —1lim A™x = x9. By Theorem we get a set J ={k;:q =
1,2,3,...} €N with §,(J)=1 and ((p,v.‘))/l—klim A" yp, = x0.
q—>OO

Consider the sequences y = {y.} and z = {zp}

Ay, = A"z, ked,
Tk X0, otherwise

and

m 0, ked,
A"xp = Ain. L )
Yjr — X0, otherwise

which gives the required result.

Sufficient part: If two such sequences y = {y;} and z = {z;} exists in X with the required
properties, then the result follows using Theorem [2.2] and Theorem O

Theorem 2.7. Let (X,,9,®,0) be an IFN space with norm (¢,9). Then S©@9(a™) 847 (Am)
iff lim infz >0,
Proof. For given € >0 and ¢ > 0 we have
{k<n:p(A"xp —x0;t)<1—€or (A xp, —x9;t) = €}
2{kel,:p(A"xp—x0;t)<1—¢€or A" x} —x0;t) =€}
This provides

1
—{k=n:@p(A"xp —x0;t) <1—€ or I(A™xp —x0;t) =€}
n

>—Hkel,: p(A"xp —x0;t) < 1—€ or I(A™xp —x0;t) =€}

> =

1
> —”.A—l{k el p(A™xp —xg;t) < 1—¢€ or HA™xp —x0;t) = €}].
n An

Taking limit as n — oo we get S —lim A™x = x (as klim inf’ln—” >0).
—00
Hence S(A(p’ﬁ) —limA™x = xy.
An
Conversely, suppose that klim inf % = 0. We can take a sub-sequence {n;} such that —* < %

—00 i
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Consider a sequence x = {x;} such that
Ay, = {1, kel

0, otherwise.
Then take ¢ >0 and € € (0,1) such that 1 ¢ B(0,¢,%). Also, to each n € N we are able to get n; € N
such that n;j<n for j > 0.

1 1

—H{k<n:p(A™xp;t)<1—€or A" xp;t) =€} < —.

n J
Then SE{p’ﬁ) —limA™x=0. For k ¢ I,; we get

1
lim )L_l{k €ln; (A" xp;t) < 1—€ or YA xp;t) 2 €} = 1,

—00 .
J n;j

1
lim A_l{k el,:p(A"x, —1;8)<1—€or NA"xp —1;¢) =€} = 1.
n

n—.oo

This implies that x ¢ SE{’)’{)) (A™). O

Next we establish the result related to Cauchy criterion for A-A"-statistical convergent
sequences in IFN space.

Theorem 2.8. A sequence x = {xp} from an IFN space (X, p,9,®,0) is A-A"-statistical convergent
corresponding to (¢,9) if and only if it is A-A™-statistical Cauchy corresponding to (¢, ).

Proof. Necessary part: Consider S;‘p’ﬁ) —1lim A™x = xy. Then, for any ¢ > 0 and every ¢ >0, we
take x >0 with (1-x)®(1—-«x)>1—-cand xkOk <e€.

Define A(x,t) =1{k € I,, : (A™x}, — x0,t/2) < 1 —x or IA™x}, — x0,t/2) = x}.

Therefore, 6 (A(x,t)) =0 and 6 ([A(x,?)]¢) = 1.

Consider B(e,t) ={k €I, : (A™xp, — Axs,t) <1—€ or HA"xp — A™xg,t) = €}.

Here, for the result we show that B(e,t) c A(x,t), as k € B(e,t) — A(x,t) = (A" xp, — x0,t/2) <
1-x or IA™xp —x0,t/2) =«

1-€e=@(A"xp — A" xg,t)
> p(A™xp — x0,t/2) ® (A" x5 — x0,1/2)
>1-x)®(1—-x)
>1-¢
and
e<IA"xp — AN"xg,t)
< IA™xp, —x0,t/2) © A" x5 — x¢,t/2)
<KOK
<e,

which is not possible. This implies that B(e,t) c A(x,t) and 6,(B(e,t)) =0, i.e. A-A™-statistical
Cauchy corresponding to (¢,?).
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Sufficient part: Let x = {x3} be A-A™-statistical Cauchy corresponding to (¢,9) but not 1-A"-
statistical convergent corresponding to (¢, ). Then, for any ¢ > 0 and € > 0, we have 6,(C(¢,?)) =0
where
Ce,t)y={kel,: (A" x, —A"xpy,t) < 1—€ or HA™xp, — A" xp,, 1) = €}
Take x >0 such that (1-x)®(1-«x)>1—-c and x ok <e€. Let D(x,t)={k €I, : (A x}, — x0,t/2) >
1—x or 9(A™xp, — x9,t/2) < x}.
Now for & € D(e, t) we get
(A" xp, — A" xp g, 1) = (A™ xp, — 20, 8/2) ® (A" xp, — &, 1/2)
>1-x)®(1—-x)
>1-¢
and
A" xp — A" xp ), t) < HA"xp, — &, 8/2) © A xp — &, 1/2)
<KOK
<e.
Since x = {xz} is not A-A™-statistical convergent sequence corresponding to (¢, ). Therefore,

O1([C(e,1)I¢) =0, i.e. 6)(C(e,t)) = 1, which leads to contradiction for x = {x;}, assumed to be
A-A™-statistical Cauchy. Thus, x = {x;} converges A-A™-statistically corresponding to (¢,9). O
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