Communications in Mathematics and Applications

Vol. 14, No. 1, pp. 5966 2023 RGN

ISSN 0975-8607 (online); 0976-5905 (print)

Published by RGN Publications http://www.rgnpublications.com
DOI:110.26713/cma.v14i1.2079

| Research Article |

Some ldentities on Sums of Finite Products of
Chebyshev Polynomials of the Third and Fourth
Kinds

Jugal Kishore*' ™ Vipin Verma2™ and Ajay Kumar Sharma3

1.2 Department of Mathematics, School of Chemical Engineering and Physical Sciences,
Lovely Professional University, Phagwara 144411, Punjab, India

8 Department of Mathematics, Government Degree College, Udhampur 182101,
Jammu & Kashmir, India

*Corresponding author: jkish11111@gmail.com

Received: October 3, 2022 Accepted: April 21, 2023

Abstract. In this paper, we will introduce some identities involving sums of the finite products of
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1. Introduction
For all integers, a =2 and |¢| < 1, the Fibonacci numbers (¥,), Lucas numbers (£ ,), Fibonacci
polynomials (F,(&)), Pell polynomials (P, (&), Vieta-Fibonacci polynomials (54(¢)), Vieta-Pell
polynomials (R,(¢)), Chebyshev polynomials of the first (T, (¢)), second (Uy(£)), third (V4(&)),
and fourth (Wgy(¢)) kinds, Gegenbauer polynomials (C(a : u)(¢)), and Jacobi polynomials
(Pla: u, 1)) [1,4,5,7] are defined recursively as follows:

Fa=Fa1+Fa2, Fo=0, F1=1, (1.1)
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Log=Lg1+Lg9, Lo=2,L1=1, (1.2)
Fal§) =¢Fq-1(8) + Fg-2(5), Fo($) =0, F1() =1, (1.3)
Pa(&) =28P-1(8) + Po-2(8), Po(§) =0, P1() =1, (1.4)
8al§) = ¢84-1(8) = 84-2(8), S0($) =0, 81(H) =1, (1.5)
Ra(§) = 26Rq-1() — Ra—2(8), Ro($) =0, R1($) =1, (1.6)
Tal§) = 28T a-1(8) = Ta-2(8), To(§) =1, T1(5) =, (1.7)
Ua($) = 28Ug-1(8) — Ua—2(8), Uop(s) =1, Us($) = 24, (1.8)
V() =2¢Vq-1(8) = Va-2(8), Vo(§) =1, V1(§) =2{ -1, (1.9)
Wq(8) =26Wq-1(8) = Wa-2(8), Wo(&) =1, W1i($) =2 +1, (1.10)

1
Cla: u)(&) = E[2€(a +u—1C(a—1:w()—(a+2u—2)Cla—2: u)é)]l,

CO: @) =1, C(1: p)(E) = 2ué, ,u>—%, (1.11)
20+ D)(u+A+a+D(p+A+2a0)P(a+1:u,A)E)

=(u+A+2a+ DI - AD) + (u+ A+ 2a)(u+ A+ 2a + 2)1P(a : p, AXE),
—2u+a)A+a)u+A+2a+2)P(a—1:u, 1)),

1
PO ) =1, PA D@ = Slu=A+ (et A+2)E, pA>-1. (1.12)

Many authors have studied the elementary properties of the Chebyshev polynomials and
obtained many interesting results. For instance, Zhang [7] has studied the finite sums of
the products of Chebyshev polynomials, Fibonacci numbers, and Lucas numbers and derived
interesting results, particularly
2 Ua, () Uay (O Ugg©). ... Ua,,, ()= u;+,<f>
ai+ag+ag+-+ari1=a

where U[,(¢) denotes the rtt derivative of U, (&) with respect to { and the summation runs
over all the r + 1-dimension non-negative integer coordinates (ai,asg,...,a,+1) such that
a1+ag+-+a,1=a

In the same line, this paper will attempt to introduce some more identities involving sums of
the finite products of Chebyshev polynomials of third and fourth kind, Fibonacci numbers, and
Lucas numbers in terms of pell, Fibonacci, Jacobi, Gegenbauer, Vieta-Fibonacci, and Vieta-Pell

polynomials and second-kind Chebyshev polynomials. The main results of this paper are:

Theorem 1.1. For a,r =0, we have

> Va1 (06). Vs (i6). Vg (i0). ... Ve, (i6)

ai1taz+tag+--+ari1=a

1
=5 ,Z( 1>f(r+ ) atpr (@) (1.13)
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1
:_Z( 1)t(r+ ) “ t?r —t+r+1(26)

> Wa, (i8). W, (i)W, (i6). ... W, (&) (1.14)
aijtagtag+-+ari1=a
1 8 +1
= oryl t;)(r ¢ )ia_t?(rx—twﬂ(f) (1.15)
1& 1
—r—!t_o(r; ) T e tere1(29), (1.16)

where i = vV~1 and P~(&) and F7(&) are the r' derivatives of the Pell polynomial and Fibonacci

polynomials.

Theorem 1.2. For a,r =0, we have

> Va1(8).Va5(8). Vs (). ... Vg, 1 ()
aitagtagt+-+ars1=a
1 (a+DIT( § a 1 11
= 5 a ( )2 Z )t(r+ ) ( —t+7‘I§,§)(E) 1.17)
=5 ,Z( 1>t(r ) "a—t+r:1))

> Wiy (). Wy (). Wy (8. ... W, () (1.18)

ai1taz+tag+--+ari1=a

DIr(2) @
_ L @r DT (re1 iP( —t+r: 11)(5) (1.19)
2! T(a+3) 5 2’2
1 & (r+1),, .
:2’r!§o( t )e(a—t+r.1)(6), (1.20)

where P (a : u, A)(&) and € (a : u)(&) are the r'® derivative of Jacobi polynomials and Gagenbauer

polynomials, respectively.

Theorem 1.3. For a,r =0, we have

S ¢ S S
a1+a2+a3;-+ar+1=ava1 (5) .’Va2 (5) 'VGS (5) o .Var+1 (5)

12 1
L ren| o 120

R A R R BTN

ailtagtagt-tari1=a
1 (r +1

; ) a—t+r(§); (1.22)

%o

where 87/(¢) is rt derivative of Vieta-Fibonacci polynomial.
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Theorem 1.4. For a,r =0, we have

> Va1(6).Vay(§)- Vs (©). ... Ve, ,(8)
ajtagz+agt+--t+ar1=a
1 r+1 -
= orp! t;()( )( 1) jz t+r+1(6)
Wa,y (). We, (§). Weg(E). ... W, ,,(§)
aitag+ag+t-t+ar1=a
1 r+1
= 27l I;)( t ) t+r+1(€)

where R (&) is rt derivative of Vieta-Pell polynomials.

Corollary 1.1. For a,r =0, we have

Fay FayFag. ... T,

Ar+1
ai1taz+tag+--+ari1=a

r+1\ ., i 3.
2rryz( 1)t( ) tj)a t+r+1( 51)
1
:_Z( l)t(r+ )a tgjr —ter1(=30)

1 @+ o fren ( I 1)(§)
_2rr!{]>a( 2,2)(1);( )( t) i)z

(r+1yor . (%)
2r YZ( 1)( )G(a t+r:1) 2

1
:_Z( l)t(r+ ) a—t+r(3)

1 r+1 3
= 2"7”!,;)( )( 1) :Ra t+r+1(2)

1 & r+1 3
= 1) ur .
2rr! t;)( )( ) - ”’(2)
Corollary 1.2. For a,r =0, we have
Z Lo, Lay-Lag- - La,y

aijtagtagt-+ars1=a

1 & (r+1 . 3.
:2rr!2( ¢ )a t?a t+r+1( 51)

t=0

1 “(r+1

¢ ) “ t3~r t+r+1( 31)

r!' 5

1 @+ &fr+1) (. 11}(3
T2 Py (a: 1)(1);)( t )T (“ Hr'z’z)(z)
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(1.23)

(1.24)

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)

(1.31)

(1.32)

(1.33)

(1.34)
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1 & (r+1), (3
:2"r!2( ; )G (a—t+r.1)(2)

t=0

1 & (r+1
=7 (rt )82—t+r(3)

1 & (r+1 3
:21‘,.!2( ¢ )Rg’—t+r+1(§)

2. Proof of Theorems and Corollaries

(1.35)

(1.36)

(1.37)

(1.38)

In this section, we will discuss the proof of theorems. Utilizing the above-discussed recurrence
relations from (1.1)-(1.12), for any positive integer a, it is not difficult to deduce the following

identities ([11,2, 5471,

3

U, (5) ~ Fours,

Va($) = Ua($) — Ug-1(S),
Wa(é) = ua(é) + ua—l(é),
Wa(f) = (_]—)ava(_é),

3
Va (5) =Foa+1,

3
Wa (5) = L2a+1,

’:Pa(f) = gja(2€),

1 1 .
Par1(d) = Wua(\/—_lf) = Ualid),

1
Sa(6)=ua(§€),
ua(f) = :Ra+1(€)y
Uq(§) = Cla : 1)),
T (3
(a+1).1"(2)?(a:}’1
T(a+3) 2°2

Also, from [3]], it can be seen that

ua(f) = )(’f)

> Va1(6).Vay(8)-Vay(8).... Va, () =

aitag+tag+-+tari1=a

Wa, (). Way (). Wy (6)..... W, (£)

ai1tagz+tag+-+ari1=a
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1

2'r! =

1 & (r+1

2’7‘! t=0

2

r+1
t

t

)u;—Hr(f)?

)UZ-W(E),

(2.1)

(2.2)
(2.3)
(2.4)

(2.5)

(2.6)
(2.7

(2.8)

(2.9)

(2.10)
(2.11)

(2.12)

(2.13)

(2.14)
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where all the sums in (2.13) and (2.14) runs over all non-negative integers a1,as,...,

r+1) Ofort>r+1.

aijt+ags+-t+arp1=a Wlth(

Proof of Theorem Replacing ¢ by i¢ in (2.13) and (2.14)), we have
Z val(lf)-vag(lé)vag(lf)- oo 'Var+1(i€)

ailtagtagt-t+ars1=a

1 & 1
=Y (- 1>t(’“+ ) s

2rr! =

> Wa, (06). Wa,y (i6). Wey(i6). ... Wq,,(i8)

ajtagz+agt+--t+ar1=a

1 &(r+1 .
= 27".7 ZO( t )ugt—t+r(l5)'
L

Differentiating and (2.8), r-times with respect to ¢, we get
P = 2"F(20),
Up @) =i"" riPr+1(<f)
Using (2.17) and (2.18) in (2.15) and (2.16), we have
) Va,(08)Vay(06).V, (i€). ... Va,,, (i)

ailtagtagt-t+ari1=0a

1
Z( 1)t(r; )i“_tTZ_t+r+1(5)

2’r'

1 & 1
- TZ(_l)t r+ . t?r —t+r+1(26)
r 20 t

Z Wal(if)-wag(ig)-wag,(ié)- e -Wa”l(if)

ai1taztag+--+ari1=a

1 & (r+1). 4 tir
:2rrz2( : ) Ptere1(©)

t=0

1 & (r+1
r_!tzo( ¢ ) “ t?r t+r+1(2§)

Hence Theorem [1.1]is established.

Proof of Theorem Differentiating (2.11) and (2.12) r-times, we have

U, () =C (a: 1)(¢),

(a+DIT(3) ( 1 1)
WE)=——=Pla:=,=
Using (2.19) and (2.20) in (2.13) and (2.14), we have
> Va1 () Vay (). Va5 (6). ... Va, ()

aijtagtagt+--+ari1=a
1 (a+DIT'(3)

Tl T(a+d) S
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(2.15)

(2.16)
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=5 ,Z( 1>t(': )er(a t+r: 1)

> Wy () Wy (). Wy (8. ... W, ()

aijtagtagt--+ari1=a

! (“”)!r(%)f(r”)?( Cter: )(5)

:2rr! F(a+%) —o\ ¢t

1 i(rl_l)er(a—t+r:1)({)

2yl =0
Hence Theorem is established. O

Proof of Theorem Replacing ¢ by % in (2.13) and (2.14), we have

ol §) - o

aijtagtagt-+ari1=a

¢ ¢ ¢ ¢ 1 & (r+1), . &
a1+a2+a3§.+a,+lzawm(él-Waz(§)~Wa3(5)--~-War+l(§):zr_rzt;o( t )”“ W(z)- (2.22)

Differentiating r-times,we have
1 1
8 (&)= —u; (—f) . (2.23)
Using (2.23) in (2.21) and (2.22)), we get
12 1
Va, (g) Vay (g) Vas (g) woe Vg (g) A > (= 1)t(r+ ) a—t+r(8), (2.24)

t=0

aitag+ag+-+ari1=a

SRR ) BN Y RO ] ORI [ = of g EAI R

aj+agtag+t+ari1=a rl i3

Hence Theorem [1.3]is established. O

Proof of Theorem [1.4] Differentiating (2.10) r-times, we have

U,()= er+1(E) (2.26)
Using (2.26) in (2.13) and (2.14)), we have,
2 (r+1 -
a1+a2+a3;+ar+1:aVal(.s).vaz(f).va3(5). o Vo, @)= 5 ;0( t )( DIRE 1 (O),
1 r+ 1
Z Wa,(§)-Wa,y(§)- Wey(O). ... Wa, ,(8) = — ' e tirs1(O.
aj+ag+ag+-tari1=a 2rr! 4
Hence Theorem is established. O

Proof of Corollary[1.1] By putting ¢ = % in (1.13),(1.14); ¢ = % in (1.17),(1.18); ¢ = 3 in (1.21);

= % in (1.23),(2.13); and using (2.5) establishes the Corollary O
Proof of Corollary - Similarly, by putting ¢ = 5> in ( ); & = 1n (1.19),(1.20); ¢ =3 in
(T:22); ¢ = 2 in (T29),@.19); and using 2.6) estabhshes the Corollary O
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3. Conclusion

In this paper, we attempt to study some basic properties of the Chebyshev polynomials of
third and fourth kind and establish some identities of the sums of finite products involving
these polynomials in terms of Fibonacci polynomials, Pell polynomials, Vieta-Fibonacci
polynomials,Vieta-Pell polynomials, Gegenbauer polynomials, and Jacobi polynomials. Similar
identities for the sums of finite products of Fibonacci numbers and Lucas numbers are deduced.
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