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Periodic Wavelets in Walsh Analysis

Yu. A. Farkov

Abstract. The main aim of this paper is to present a review of periodic wavelets
related to the generalized Walsh functions on the p-adic Vilenkin group Gp . In
addition, we consider several examples of wavelets in the spaces of periodic
complex sequences. The case p = 2 corresponds to periodic wavelets associated
with the classical Walsh functions.

1. Introduction

Let Zp be the discrete cyclic group of order p, i.e., the set {0,1, . . . , p} with the
discrete topology and modulo p addition. The p-adic Vilenkin group G is defined to
be the subgroup of

∏
j∈ZZp consisting of sequences

x = (x j) = (. . . , x−2, x−1, x0, x1, x2, . . . ),

for which there exists k = k(x) ∈ Z such that x j = 0 for all j < k. The group
operation on G is denoted by ⊕ and defined as the coordinate-wise addition
modulo p:

(z j) = (x j)⊕ (y j) ⇐⇒ z j = x j + y j(mod p) for all j ∈ Z.

Let us denote the inverse operation of ⊕ by ⊖ (so that x ⊖ x = θ , where θ is the
zero sequence). One can put a topology on G as the product topology inherits from∏

j∈ZZp. The group G is a locally compact abelian group and the sets

Ul := {(x j) ∈ G| x j = 0 for j ≤ l}, l ∈ Z,

form a complete system neighbourhoods of the zero sequence. Notice also that

Ul+1 ⊂ Ul for l ∈ Z,
∩

Ul = {θ},
∪

Ul = G.
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One can show that G is self-dual. The duality pairing on G takes x = (x j) and
ω= (ω j) to

χ(x ,ω) = exp
�

2πi

p

∑
j∈Z

x jω1− j

�
.

Consider U = U0 as a subgroup of G. This subgroup, when p = 2, is isomorphic
to the Cantor group, which is the topological Cartesian product of countably
many cyclic groups of order 2 with discrete topology. It is well-known that U is
a perfect nowhere-dense totally disconnected metrizable space and, therefore, U
is homeomorphic to the Cantor ternary set (e.g., [6, Chapter 14]). There exists a
Haar measure on G normalized so that the measure of U is 1. For simplicity, we
shall denote this measure by d x .

As usual, the Lebesgue space L2(G) consists of all square integrable functions
on G. For each function f ∈ L1(G)∩ L2(G), its Fourier transform bf ,

bf (ω) = ∫
G

f (x)χ(x ,ω)d x , ω ∈ G,

belongs to L2(G). The Fourier operator

F : L1(G)∩ L2(G)→ L2(G), F f = bf ,

extends uniquely to the whole space L2(G). See [22] and [33] for further details
about harmonic analysis on the group G.

Consider the mapping λ : G→ R+ defined by

λ(x) =
∑
j∈Z

x j p
− j , x = (x j) ∈ G.

Take in G a discrete subgroup H = {(x j) ∈ G|x j = 0 for j > 0}. The image of
the subgroup H under λ is the set of non-negative integers: λ(H) = Z+. For each
k ∈ Z+, let h[k] denote the element of H such that λ(h[k]) = k (clearly, h[0] = θ).
The generalized Walsh functions on G can be defined by

wk(x) = χ(x , h[k]), x ∈ G, k ∈ Z+.

So, these functions are characters for G. Also, it is well-known that {wk| k ∈ Z+} is
an orthonormal basis for L2(U) (when p = 2, we have the classical Walsh system).

Using the elements of H as translations, one can study wavelets in L2(G).
Orthogonal wavelets and refinable functions representable as lacunary Walsh
series were introduced for the first time by Lang [24] in the context of the Cantor
dyadic group and, subsequently, they have been extended and studied by several
authors (see, e.g., [7]-[19], [31], [32], [37], [38]). Multiresolution analysis
of functions defined on the Cantor dyadic group was studied independently by
Bl. Sendov ([34]-[36]). Wavelets on the p-adic Vilenkin group G by means of an
iterative method giving rise to so-called wavelet sets were derived by J.J. Benedetto
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and R.L. Benedetto [2]. At the same time, an approach developed in [2] can be
applied to wavelets on the additive group of p-adic numbers (cf. [1], [23], [25],
[39]).

This paper is a continuation of our review [18], where among the main subjects
are the following:

• algorithms to construct orthogonal and biorthogonal wavelets associated with
the Walsh polynomials;
• estimates of the smoothness of dyadic orthogonal wavelets of Daubechies

type;
• an algorithm for constructing Parseval dyadic frames.

The aim of this paper is to present a review of periodic wavelets related to
the generalized Walsh functions. In Section 2, by analogy with the periodic
wavelets on the line R (see, e.g., [4], [5], [20], [27]-[30], [40], [41]), we
define periodic wavelets on G and consider the corresponding algorithms for
decomposition and reconstruction. Similar results for the case p = 2 are given
in the recent papers [11] and [19]. Then, in Section 3, we use the generalized
Walsh functions to define wavelets in the space CN consisting of all sequences
x = (. . . , x(−1), x(0), x(1), x(2), . . . ), such that x( j + N) = x( j) for all j ∈ Z (cf.
[3], [13], [21], [29]).

2. Periodic wavelets on the p-adic Vilenkin group

To keep our notation simple, we write N := pn and ϵp := exp(2πi/p). Define an
automorphism A ∈ Aut G by the formula (Ax) j = x j+1 for all x = (x j) ∈ G. Then,

for 0≤ k ≤ N −1, we let xn,k := A−nh[k] and U (n)k := xn,k+A−n(U). It is easily seen

that the sets U (n)k are cosets of the subgroup A−n(U) in the group U , and that

U (n)k ∩ U (n)l = ; for k ̸= l,
N−1∪
k=0

U (n)k = U .

Moreover, it is clear that wl(x) with 0 ≤ l ≤ N − 1 is constant on U (n)k for each
0≤ k ≤ N − 1. We shall use the notation

w(n)l,k := wl(xn,k) for 0≤ l, k ≤ N − 1.

Notice that

w(n)l,k = w(n)k,l = ϵ
−sq
p w(n+1)

pk+s,Nq+l , 0≤ s, q ≤ p− 1, (2.1)

N−1∑
i=0

w(n)i,l w(n)i,k =
N−1∑
j=0

w(n)l, j w(n)k, j = Nδl,k, 0≤ l, k ≤ N − 1. (2.2)
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A finite sum

DN (x) :=
N−1∑
j=0

w j(x), x ∈ G,

is called the Walsh-Dirichlet kernel of order N . It is well-known that

DN (x) =

(
N , x ∈ U (n)0 ,

0, x ∈ U \ U (n)0 .

Let us introduce the following spaces

Vn := span{1, w1(x), . . . , wN−1(x)},
W ( j)

n := span{w jN (x), w jN+1(x), . . . , w( j+1)N−1(x)},
where j = 1, . . . , p−1. Note that the orthogonal direct sum of Vn, W (1)

n , . . . , W (p−1)
n

coincides with Vn+1, that is, for Wn := W (1)
n

⊕ · · ·⊕W (p−1)
n , we have Vn

⊕
Wn =

Vn+1. The spaces Vn and W ( j)
n will be called the approximation spaces and wavelet

spaces, respectively.

We can use the discrete Vilenkin-Chrestenson transform to recover v ∈ Vn from
the values v(xn,l), 0≤ l ≤ N − 1. Indeed, if

v(x) =
N−1∑
k=0

ckwk(x), x ∈ U , (2.3)

then

ck =
1

N

N−1∑
l=0

v(xn,l)w
(n)
l,k , 0≤ k ≤ N − 1; (2.4)

see, e.g., [22, Section 11.2], where the corresponding fast algorithm is given.

Suppose that a = (a0, a1, . . . , aN−1), where ak ̸= 0, 0≤ k ≤ N − 1. Then we set

Φa
N (x) :=

1

N

N−1∑
k=0

akwk(x), φn,k(x) := Φa
N (x ⊖ xn,k), 0≤ k ≤ N −1, x ∈ G.

Proposition 2.1. Let v ∈ Vn. Assume that

αn,k = αn,k(v) :=
N−1∑
l=0

a−1
l cl w

(n)
l,k , 0≤ k ≤ N − 1, (2.5)

where cl are defined as in (2.4). Then

v(x) =
N−1∑
k=0

αn,kφn,k(x). (2.6)

Proof. According to (2.2), for any v ∈ Vn we get
N−1∑
k=0

w(n)l,k
φn,k(x) = al wl(x), 0≤ l ≤ N − 1,
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and, in view of (2.3), (2.4) and (2.5),

v(x) =
N−1∑
l=0

N−1∑
j=0

a−1
l cl w

(n)
l, j
φn, j(x) =

N−1∑
k=0

αn,kφn,k(x).

Therefore, the expansion in (2.6) is valid for all v ∈ Vn. �

Remark 2.1 (cf. [40, Proposition 9]). Suppose that eφn,k are defined by

eφn,0(x) =
N−1∑
j=0

a−1
j w j(x), eφn,k(x) = eφn,0(x ⊖ xn,k), k = 1, . . . , N − 1.

Then {eφn,k}N−1
k=0 is a dual shift basis for {φn,k}N−1

k=0 . Indeed, using (2.3) and (2.5),
for any v ∈ Vn we have

(v, eφn,k) :=

∫
U

v(x), eφn,k(x)d x

=

∫
U

�∑
l

cl wl(x)
�eφn,0(x ⊖ xn,k)d x

=

∫
U

�∑
l

cl wl(x)
��∑

l

a−1
l w(n)l,k wl(x)
�

d x

= αn,k(v),

where the last equality follows from the orthogonality of the system {wk | k ∈ Z+}.
Let b = (b0, b1, . . . , bpN−1), where bk ̸= 0 for all 0 ≤ k ≤ pN − 1. In particular,

we can choose

bk =

(
ak/p if k is divisible by p,

1 if k is not divisible by p
or bk =

(
ak if k ≤ N − 1,

1 if 0≤ k ≤ pN − 1.

We set

φn+1,k(x) := Φb
pN (x ⊖ xn+1,k), 0≤ k ≤ pN − 1,

where

Φb
pN (x) :=

1

pN

pN−1∑
k=0

bkwk(x), x ∈ G.

Then we define

ψ
( j)
n,k(x) :=

p−1∑
s=0

ϵ js
p
φn+1,pk+s(x), 0≤ k ≤ N − 1, 1≤ j ≤ p− 1.

Let us show that, for each j, the system {ψ( j)n,k}N−1
k=0 is a bases for the corresponding

wavelet space W ( j)
n .
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Proposition 2.2. Suppose that w ∈W ( j)
n for some j ∈ {1, . . . , p− 1}. Then

w(x) =
N−1∑
k=0

β
( j)
n,kψ

( j)
n,k(x), (2.7)

where, with the notation as in (2.4),

β
( j)
n,k = β

( j)
n,k(w) =

N−1∑
l=0

b−1
jN+l c jN+l w

(n+1)
jN+l,pk, 0≤ k ≤ N − 1. (2.8)

Proof. Let w ∈ W ( j)
n where j ∈ {1, . . . , p − 1}. Then, since W ( j)

n ⊂ Vn+1, as in
Proposition 2.1 we have

w(x) =
( j+1)N−1∑

l= jN

cl wl(x)

=
pN−1∑
k=0

αn+1,k(w)φn+1,k(x)

=
p−1∑
s=0

N−1∑
k=0

αn+1,pk+s(w)φn+1,pk+s(x), (2.9)

where

αn+1,pk+s(w) =
N−1∑
l=0

b−1
jN+l c jN+l w

(n+1)
jN+l,pk+s,

c jN+l =
1

pN

pN−1∑
l=0

w(xn+1,l)w
(n+1)
l, jN+l .

Here, in view of (2.1), w(n+1)
jN+l,pk+s = ϵ

js
p w(n+1)

jN+l,pk, and hence

αn+1,pk+s(w) = ϵ
js
p αn+1,pk(w), 0≤ k ≤ N − 1, 0≤ s ≤ p− 1,

which by (2.8) and (2.9) yields (2.7). �

Let α ̸= 0. Propositions 2.1 and 2.2 for the case where

ak =

(
α if k = 0 or k = N − 1,

1 otherwise
(2.10)

can be found in [15]. In this case, we set

bk =

(
α if k = 0 or k = pN − 1,

1 otherwise

Note that the value α = 1 corresponds to the Haar wavelets (so, we use α ̸= 1 in
the sequel).
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For each l ∈ {0,1, . . . , N − 1} with p-ary expansion

l =
n−1∑
j=0

ν j p
j , ν j ∈ {0, 1, . . . , p− 1},

we let γ(l) :=
n−1∑
j=0
ν j . According to [15], in the case (2.10) we have the following

equalities

φn,k(x) =
p−1∑
s=0

φn+1,pk+s(x)− (1−α)N
ϵ−γ(k)p wN−1(x), (2.11)

φn+1,pk+s(x) =
1

p

�
φn,k(x) +

1−α
αN

N−1∑
ν=0

ϵγ(ν)−γ(k)p
φn,ν(x)
�
+

1

p

p−1∑
j=1

ϵ− js
p ψ

( j)
n,k(x),

(2.12)

where 1≤ k ≤ N − 1, 0≤ s ≤ p− 1. Note also, that wN−1(x) can be expressed as

wN−1(x) =
1

α

N−1∑
s=0

ϵγ(s)p
φn,s(x) =

N−1∑
k=0

p−1∑
s=0

γn+1,pk+sφn+1,pk+s(x), (2.13)

where γn+1,pk+s := w(n+1)
N−1,pk+s.

For any functions fn ∈ Vn and gn ∈Wn we write

fn(x) =
N−1∑
k=0

Cn,kφn,k(x), gn(x) =
p−1∑
j=0

g( j)n (x), (2.14)

where

g( j)n (x) =
N−1∑
k=0

D( j)n,kψn,k(x),

and the coefficient sequences

Cn = {Cn,k}, D( j)n = {D( j)n,k}, 1≤ j ≤ p− 1, (2.15)

uniquely determine fn and gn, respectively. Let us describe the algorithms, in terms
of the coefficient sequences (2.15), for decomposing fn+1 ∈ Vn+1 as the orthogonal
sum of fn ∈ Vn and g( j)n ∈W ( j)

n , and for reconstructing fn+1 from fn and g( j)n .

As a consequence of (2.12) we observe that

φn+1,pk+s(x) =
N−1∑
ν=0

A(n)pk+s,ν
φn,ν(x) +

p−1∑
j=1

B(n)pk+s, jψ
( j)
n,k(x), (2.16)

where

A(n)pk+s,ν =

(
1/p+ (1−α)/(αpN), ν = k,

ϵγ(ν)−γ(k)p (1−α)/(αpN), ν ̸= k
and B(n)pk+s, j = p−1ϵ− js

p .
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Since fn + gn = fn+1, it follows from (2.14) and (2.16) that

N−1∑
ν=0

Cn,ν φn,ν(x) +
p−1∑
j=1

N−1∑
ν=0

D( j)n,νψ
( j)
n,ν(x)

=
p−1∑
s=0

N−1∑
k=0

Cn+1,pk+sφn+1,pk+s(x)

=
∑
s,k

Cn+1,pk+s

� N−1∑
ν=0

A(n)pk+s,ν
φn,ν(x) +

p−1∑
j=1

B(n)pk+s, jψ
( j)
n,k(x)
�

=
∑
ν

�∑
s,k

Cn+1,pk+sA
(n)
pk+s,ν

�
φn,ν(x) +

p−1∑
j=1

�∑
s,k

Cn+1,pk+sB
(n)
pk+s, j

�
ψ
( j)
n,k(x).

This implies that

Cn,ν =
∑
s,k

A(n)pk+s,νCn+1,pk+s, D( j)n,ν =
p−1∑
s=0

B(n)pν+s, jCn+1,pν+s. (2.17)

Now, using (2.11) and (2.13), we obtain

φn,ν(x) =
N−1∑
k=0

p−1∑
s=0

Q(n)pk+s,ν
φn+1,pk+s(x),

where

Q(n)pk+s,ν =

(
1− ϵγ(k)p (1−α)γn+1,pk+s/N , k = ν ,

−ϵγ(k)p (1−α)γn+1,pk+s/N , k ̸= ν .

Therefore, we have∑
k,s

Cn+1,pk+sφn+1,pk+s(x)

=
∑
ν

Cn,ν

�∑
k,s

Q(n)pk+s,ν
φn+1,pk+s(x)
�
+

p−1∑
j=1

N−1∑
k=0

D( j)n,k

� p−1∑
s=0

ϵ js
p
φn+1,pk+s(x)
�

=
∑
k,s

�∑
ν

Q(n)pk+s,νCn,ν +
∑

j

ϵ js
p D( j)n,k

�
φn+1,pk+s(x)

and so

Cn+1,pk+s =
∑
ν

Q(n)pk+s,νCn,ν +
∑

j

ϵ js
p D( j)n,k. (2.18)

We remark that the decomposition and reconstruction algorithms based on
formulas (2.17) and (2.18) have more simply structure than the similar algorithms
constructed in [5] for the case of trigonometric wavelets.
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To conclude this section, let us consider the case where p = 2, N = 2n, and

bk =

(
ak, 0≤ k ≤ N − 1,

aN−k, N ≤ k ≤ 2N − 1;
(2.19)

with any ak ̸= 0. Then, for all k ∈ {0,1, . . . , N − 1},
φn,k(x) = φn+1,2k(x)+φn+1,2k+1(x), ψn,k(x) = φn+1,2k(x)−φn+1,2k+1(x),

and thus

φn+1,2k(x) =
1

2
[φn,k(x)+ψn,k(x)], φn+1,2k+1(x) =

1

2
[φn,k(x)−ψn,k(x)].

Hence, under the condition (2.19), instead of (2.17) and (2.18) we obtain the
classical Haar discrete transforms.

3. Periodic discrete p-adic wavelets

Let us denote by 〈k〉p the remainder from the division of the integer k by the
natural number p, and let [a] be the integer part of a number a. For any a ∈ R+,
the digits of the p-adic expansion

a =
∞∑
ν=1

a−ν pν−1 +
∞∑
ν=1

aν p−ν (3.1)

are defined by a−ν = 〈[p1−νa]〉p, aν = 〈[pνa]〉p (so, the finite representation for a
p-adic rational a is taken). We can easily see that, for each a ∈ R+ there exists a
natural number µ such that a−ν = 0 for all ν > µ as well as that the first sum in
(3.1) is equal to [a]. The representation (3.1) induces the operation of addition
modulo p (or p-adic addition) on R+ as follows

a⊕p b :=
∞∑
ν=1

〈a−ν + b−ν〉p pν−1 +
∞∑
ν=1

〈aν + bν〉p p−ν , a, b ∈ R+.

As usual, the equality c = a⊖p b means that c ⊕p b = a.
For N = pn, we set ZN = {0,1, . . . , N − 1}. Suppose that the space CN

consists of complex sequences x = (. . . , x(−1), x(0), x(1), x(2), . . . ), such that
x( j + N) = x( j) for all j ∈ Z. An arbitrary sequence x from CN is given if the
values of x( j) are given for j ∈ ZN ; therefore, the element x is often identified with
the vector (x(0), x(1), . . . , x(N −1)). The space CN is equipped with the following
natural inner product:

〈x , y〉 :=
N−1∑
j=0

x( j)y( j).

For an arbitrary j ∈ ZN , let j∗ denote the nonnegative integer defined by the
condition j ⊕p j∗ = 0. For p = 2, we have j∗ = j, and, for p > 2, the number j∗ is
p-adic opposite to j. For each x ∈ CN we denote by ex the vector from CN such that
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ex( j) = x( j∗) for all j ∈ ZN . Further, for k, j ∈ ZN , we set {k, j}p :=
n∑
ν=1

kν−n−1 j−ν ,
where

k =
n∑
ν=1

k−ν pν−1, j =
n∑
ν=1

j−ν pν−1, k−ν , j−ν ∈ {0,1, . . . , p− 1}.

The Vilenkin-Chrestenson functions w(N)0 , w(N)1 , . . . , w(N)N−1 for the space CN are

defined by the equalities w(N)k ( j) = ϵ
{k, j}p
p and w(N)k (l) = w(N)k (l + N), where

k, j ∈ ZN , l ∈ Z. For n ≥ 2 and p = 2, the Vilenkin-Chrestenson functions coincide
with the Walsh functions and, in the case n = 1 and p ≥ 2, they are exponential
functions: w(p)k ( j) = ϵ

k j
p , k, j ∈ {0,1, . . . , p− 1} .

The functions w(N)0 , w(N)1 , . . . , w(N)N−1 constitute an orthogonal basis in CN and

∥w(N)k ∥2 = N for all k ∈ ZN . To an arbitrary vector x from CN the Vilenkin-
Chrestenson transform assigns the sequence bx of the Fourier coefficients of x in
the system w(N)0 , w(N)1 , . . . , w(N)N−1:

bx(k) :=
1

N

N−1∑
j=0

x( j)w(N)k ( j), k ∈ ZN .

For all x , y ∈ CN , we define the p-convolution x ∗ y by the formula

(x ∗ y)(k) :=
N−1∑
j=0

x(k⊖p j)y( j), k ∈ ZN .

By a unit N-periodic impulse we mean the vector δN from CN defined by the
equality

δN ( j) :=

(
1, if j is divisible by N ,

0, if j is not divisible by N .

The system of shifts {δN (· ⊖p k)| k ∈ ZN} is an orthonormal basis in CN and

x( j) = (x ∗δN )( j) =
N−1∑
k=0

x(k)δN ( j⊖p k), j ∈ ZN ,

for all x ∈ CN . For each k ∈ ZN the p-adic shift operator Tk : CN → CN is defined
as

(Tk x)( j) := x( j⊖p k), x ∈ CN , j ∈ ZN .

It follows from the definitions that, for all x , y ∈ CN , the following relations hold:

〈x , y〉= N〈bx , by〉, x̂ ∗ y = N bx by , (̂Tk x)(l) = w(N)k (l)bx(l),
〈y, Tk x〉= y ∗ ex(k), 〈Tk x , Tl y〉= 〈x , Tl⊖pk y〉, k, l ∈ ZN .

For ν = 0, 1, . . . , n, we set Nν = N/pν and ∆ν = pν−1. The operators D : CN →
CN1

and U : CN1
→ CN given by the formulas

(Dx)( j) := x(p j), j = 0,1, . . . , N1 − 1,
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and

(U y)( j) :=

¨
y( j/p) if j is divisible by p,

0 if j is not divisible by p,

where x ∈ CN and y ∈ CN1
are called the thickening sampling operator and the

thinning sampling operator, respectively. Note that D(U y) = y for all y ∈ CN1
.

Further, suppose that D1 = D, U1 = U and, for ν = 2, . . . , n, we define the
operators Dν : CN → CNν and Uν : CNν → CN by the formulas

(Dν x)( j) := x(pν j), (Uν y)( j) :=

¨
y( j/pν) if j is divisible by pν ,
0 if j is not divisible by pν ,

where x ∈ CN and y ∈ CNν . For any y ∈ CNν , the following relation holds:ÕUν y(l) = p−ν by(l), l ∈ ZN , where, on the left-hand side, the Vilenkin-Chrestenson
transform is taken in CN , while, on the righthand side, it is taken in CNν .

Following the approach from [21, Chapter 3], we give the following definition.

Definition 3.1. Suppose that u0, u1, . . . , up−1 ∈ CN . If the system

B(u0, u1, . . . , up−1) = {Tpku0}N1−1
k=0 ∪ {Tpku1}N1−1

k=0 ∪ · · · ∪ {Tpkup−1}N1−1
k=0

is an orthonormal basis in CN , then B(u0, u1, . . . , up−1) is called the wavelet basis of
the first stage in CN generated by the collection of vectors u0, u1, . . . , up−1.

The following theorem characterizes all the collections of vectors generating
wavelet bases of the first stage in CN .

Theorem 3.1. The collection of vectors u0, u1, . . . , up−1 generates a wavelet basis of
the first stage in CN if and only if the matrix

A(l) :=
Np

p


bu0(l) bu1(l) . . . bup−1(l)bu0(l + N1) bu1(l + N1) . . . bup−1(l + N1)bu0(l + 2N1) bu1(l + 2N1) . . . bup−1(l + 2N1)

...
... . . .

...bu0(l + (p− 1)N1) bu1(l + (p− 1)N1) . . . bup−1(l + (p− 1)N1)


is unitary for l = 0,1, . . . , N1 − 1.

For each 1 ≤ m ≤ n we define the following procedure for the construction of a
wavelet basis of the first stage in CN .

Step 1. Choose complex numbers bl , 0≤ l ≤ pm − 1, satisfying the condition
p−1∑
k=0

|bl+kpm−1 |2 = 1, l = 0,1, . . . , pm−1 − 1. (3.2)

Step 2. Calculate a0, . . . , apm−1 by the formulas

a j = p−m+1/2
pm−1∑
l=0

bl w
(pm)
l ( j), j = 0,1, . . . , pm − 1.



234 Yu. A. Farkov

Step 3. Define a vector u0 ∈ CN , for which

u0( j) =

¨
a j , 0≤ j ≤ pm − 1,

0, pm ≤ j ≤ pn − 1.
(3.3)

Step 4. Find vectors u1, . . . , up−1 ∈ CN such that, for all l = 0,1, . . . , N1 − 1, the
matrix A(l) is unitary.

Using Theorem 3.1, we can verify that the resulting collection of vectors
u0, u1, . . . , up−1 generates a wavelet basis of the first stage in CN . In the case p = 2,
step 4 of this procedure is carried out by the formula

u1( j) = (−1) ju0(1⊕2 j), j ∈ ZN , (3.4)

for p > 2, algorithms for the realization of this step were given in [28, Section 2.6]
(see also [14, Section 2]). One of these algorithms is based on the Hausholder
transform and can be described by the formulas

buk(l) = bu0(l + kN1)
1− bu0(l)

1− bu0(l)
, (3.5)

buk(l + jN1) = δk j − bu0(l + jN1)bu0(l + kN1)

1− bu0(l)
, (3.6)

where δk j is the Kronecker delta, k, j = 1,2, . . . , p− 1 and l = 0,1, . . . , N1 − 1.

Example 3.1. Suppose that N > p. Take m = 1 and b0 = 1, b1 = · · · = bp−1 = 0.
Then the system B(u0, u1, . . . , up−1) is generated by the vectors

uµ = p−1/2(1,ϵµp ,ϵ2µ
p , . . . ,ϵ(p−1)µ

p , 0, 0, . . . , 0), µ= 0,1, . . . , p− 1.

In particular, for p = 2, we have the Haar basis of the first stage in CN :

u0 = (1/
p

2, 1/
p

2,0,0, . . . , 0), u1 = (1/
p

2,−1/
p

2,0,0, . . . , 0).

The following example is obtained by modifying the orthogonal wavelets
constructed for the Cantor group in [24]; it corresponds to the case m = p = 2,
b0 = 1, b1 = a, b2 = 0, b3 = b in the procedure described above.

Example 3.2. Suppose that a and b are complex numbers such that |a|2+|b|2 = 1.
Suppose that p = 2 and N ≥ 4, , and the vectors u0, u1 ∈ CN are given by the
equalities

u0(0) =
1+a+b

2
p

2
, u0(1) =

1+a−b

2
p

2
, u0(2) =

1−a−b

2
p

2
, u0(3) =

1−a+b

2
p

2
,

u1(0) =
1+a−b

2
p

2
, u1(1) =−1+a+b

2
p

2
, u1(2) =

1−a+b

2
p

2
, u1(3) =−1−a−b

2
p

2
,

under the condition that u0( j) = u1( j) = 0 for 4≤ j ≤ N − 1. Then the vectors u0,
u1 generate a wavelet basis of the first stage in CN . Note that, for a = 1, b = 0, the
resulting wavelet basis B(u0, u1) coincides with the Haar wavelet basis of the first
stage described in Example 3.1.
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The following two examples are similar to Examples 3 and 4 in [8].

Example 3.3. Suppose that p = 2, n> 3, and m= 3. We set

(b0, b1, . . . , b7) =
1

2
(1, a, b, c, 0,α,β ,γ),

where |a|2 + |α|2 = |b|2 + |β |2 = |c|2 + |γ|2 = 1. Then, by relation (3.3), we have

u0(0) =
1

4
p

2
(1+ a+ b+ c +α+ β + γ),

u0(1) =
1

4
p

2
(1+ a+ b+ c −α− β − γ),

u0(2) =
1

4
p

2
(1+ a− b− c +α− β − γ),

u0(3) =
1

4
p

2
(1+ a− b− c −α+ β + γ),

u0(4) =
1

4
p

2
(1− a+ b− c −α+ β − γ),

u0(5) =
1

4
p

2
(1− a+ b− c +α− β + γ),

u0(6) =
1

4
p

2
(1− a− b+ c −α− β + γ),

u0(7) =
1

4
p

2
(1− a− b+ c +α+ β − γ).

Further, we set u1( j) = u0( j) = 0 for 8 ≤ j ≤ 2n − 1, and we choose the other
components of the vector u1 so that relations (3.4) are valid, i.e.,

u1(0) = u0(1), u1(1) =−u0(0), u1(2) = u0(3), u1(3) =−u0(2),

u1(4) = u0(5), u1(5) =−u0(4), u1(6) = u0(7), u1(7) =−u0(6).

The resulting pair u0, u1 generates a wavelet basis of the first stage in CN .

Example 3.4. Suppose that p = 3, n> 2, m= 2 and

(b0, b1, . . . , b8) =
1p
3
(1, a,α, 0, b,β , 0, c,γ),

where |a|2 + |b|2 + |c|2 = |α|2 + |β |2 + |γ|2 = 1. Then, using (3.2) and (3.3), we
obtain

u0(0) =
1

3
p

3
(1+ a+ b+ c +α+ β + γ),

u0(1) =
1

3
p

3
(1+ a+α+ (b+ β)ϵ2

3 + (c+ γ)ϵ3),
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u0(2) =
1

3
p

3
(1+ a+α+ (b+ β)ϵ3 + (c + γ)ϵ

2
3),

u0(3) =
1

3
p

3
(1+ (a+ b+ c)ϵ2

3 + (α+ β + γ)ϵ3),

u0(4) =
1

3
p

3
(1+ c+ β + (a+ γ)ϵ2

3 + (b+α)ϵ3),

u0(5) =
1

3
p

3
(1+ b+ γ+ (a+ β)ϵ2

3 + (c+α)ϵ3),

u0(6) =
1

3
p

3
(1+ (a+ b+ c)ϵ3 + (α+ β + γ)ϵ

2
3),

u0(7) =
1

3
p

3
(1+ b+ γ+ (a+ β)ϵ3 + (c +α)ϵ

2
3),

u0(8) =
1

3
p

3
(1+ c+ β + (a+ γ)ϵ3 + (b+α)ϵ

2
3),

where ϵ3 = exp(2πi/3). We set u0( j) = u1( j) = u2( j) = 0 for 9 ≤ j ≤ 3n − 1 and
use (3.5) to define the other components of the vectors u1, u2 ∈ CN so that the
matrix

9p
3

 bu0(l) bu1(l) bu2(l)bu0(l + 3) bu1(l + 3) bu2(l + 3)bu0(l + 6) bu1(l + 6) bu2(l + 6)


is unitary for l = 0,1,2. The resulting collection of the vectors u0, u1, u2 generates
a wavelet basis of the first stage in CN .

The values of the parameters bl in Examples 3.2-3.4 are universal in the sense
that they occur not only in the construction of wavelet bases in CN , but also in the
corresponding examples for the spaces ℓ2(Z+) and L2(R+). At the same time, the
construction of orthogonal wavelets on the Cantor and Vilenkin groups (as well
as on the half-line R+; see [8], [10]) requires some additional constraint related
to the requirement that the masks have no blocking sets (so, in Example 2, the
pair a = 0, b = 1 leads to a wavelet basis in the space CN , while, in the original
example due to Lang, this pair corresponds to a linearly dependent system; see also
Example 2 in [8]). The great freedom of choice of the values of the parameters in
the construction of orthogonal wavelets in the space CN by the method described
in this paper becomes apparent due to the fact that, according to step 1 of the
procedure, for (b0, b1, . . . , bpm−1) we can choose any complex vector of dimension
pm satisfying condition (3.2) (compare with the construction of discrete Daubechies
wavelets in [3] and [21]). This property is important for applications, because it
extends the range of applications of the well-known adaptive signal-approximation
methods (see, for example, Chapters 8-10 in Mallat’s book [26]).
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Definition 3.2. Suppose that m ∈ N, m ≤ n. By a sequence of orthogonal wavelet
filters of the mth stage we mean a sequence of vectors

u(1)0 , u(1)1 , . . . , u(1)p−1, . . . , u(m)0 , u(m)1 , . . . , u(m)p−1,

such that u(ν)µ ∈ CNν−1
for ν = 1,2, . . . , m, µ= 0,1, . . . , p− 1 and the matrices

A(ν)(l) :=
Np

p


bu(ν)0 (l) . . . bu(ν)p−1(l)bu(ν)0 (l + Nν) . . . bu(ν)p−1(l + Nν)bu(ν)0 (l + 2Nν) . . . bu(ν)p−1(l + 2Nν)

. . . . . . . . .bu(ν)0 (l + (p− 1)Nν) . . . bu(ν)p−1(l + (p− 1)Nν)


are unitary for ν = 1,2, . . . , m, l = 0,1, . . . , Nν − 1.

Theorem 3.2. Suppose that the collection of vectors u0, u1, . . . , up−1 generates a
wavelet basis of the first stage in CN . For a given m ∈ N, m≤ n, set

u(1)µ ( j) = uµ( j), u(ν)µ ( j) = ∆
−1
ν

∆ν−1∑
k=0

u(1)µ ( j+ kNν−1), j ∈ ZNν−1
, (3.7)

where ν = 2, . . . , m, µ= 0,1, . . . , p− 1. Then the vectors

u(1)0 , u(1)1 , . . . , u(1)p−1, . . . , u(m)0 , u(m)1 , . . . , u(m)p−1,

constitute a sequence of orthogonal wavelet filters of the mth stage.

Thus, from a given vector u0 ∈ CN , defined by (3.2) and (3.3) we can, first, find
a wavelet basis of the first stage u0, u1, . . . , up−1, using (3.4) or (3.5), and then,
using (3.6) obtain the sequence of orthogonal wavelet filters of the mth stage.
Denote by ⊕ the direct sum of the subspaces of the space CN . By the theorem that
follows, from any sequence of orthogonal wavelet filters of the mth stage we can
construct an orthonormal wavelet basis in CN .

Theorem 3.3. Suppose that a sequence of orthogonal wavelet filters of the mth stage
is given in the space CN :

u(1)0 , u(1)1 , . . . , u(1)p−1, . . . , u(m)0 , u(m)1 , . . . , u(m)p−1.

Let φ(1) = u(1)0 , ψ(1)µ = u(1)µ , µ= 1, . . . , p− 1, and define φ(ν), ψ(ν)µ for ν = 2, . . . , m,
µ= 1, . . . , p− 1 by the formulas

φ(ν) = φ(ν−1) ∗Uν−1u(ν)0 , ψ(ν)µ = φ
(ν−1) ∗Uν−1u(ν)µ .

Further, for ν = 1, . . . , m, µ= 1, . . . , p− 1, we set

φ−ν ,k = Tpν kφ
(ν), ψ

(µ)
−ν ,k = Tpν kψ

(ν)
µ , k = 0,1, . . . , Nν − 1,
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and define the subspaces

V−ν = span{φ−ν ,k}Nν−1
k=0 , W (µ)

−ν = span{ψ(µ)−ν ,k}Nν−1
k=0 ,

W−ν =W (1)
−ν ⊕ · · · ⊕W (p−1)

−ν .

Then the following expansion holds:

CN =W−1 ⊕W−2 ⊕ · · · ⊕W−m ⊕ V−m (3.8)

and, for each ν = 1,2, . . . , m the following properties are valid:

(a) V−ν = V−ν−1 ⊕W−ν−1;
(b) {φ−ν ,k}Nν−1

k=0 is an orthonormal basis in V−ν ;
(c) {ψ(1)−ν ,k}Nν−1

k=0 ∪ · · · ∪ {ψ(p−1)
−ν ,k }Nν−1

k=0 is an orthonormal basis in W−ν .

This theorem justifies the method of constructing subspaces V−1, . . . , V−n in CN

with the following properties:

(i) V−ν−1 ⊂ V−ν for all ν ∈ {1,2, . . . n};
(ii) for each ν ∈ {1,2, . . . n}, there exists a vector φ(ν) ∈ V−ν such that the system
{Tpν kφ

(ν)}Nν−1
k=0 is an orthonormal basis in V−ν ;

(iii) for each 1≤ m≤ n, relation (3.7) is valid;
(iv) for each ν ∈ {1,2, . . . n} there exist vectors ψ(ν)1 , . . . ,ψ(ν)p−1 ∈ W−ν such that

the system
∪p−1
µ=1{Tpν kψ

(ν)
µ }Nν−1

k=0 is an orthonormal basis in W−ν .

Theorems 3.1-3.3 are proved by the author in [16]. A similar construction in the
space L2(Rd) is well-known and is related to the notion of multiresolution analysis.
According to the terminology used in the theory of multiresolution analysis, the
sequence {φ(ν)}nν=1 in property (ii) it is natural to call a scaling sequence in CN .

In particular, for p = 2, n= 3, using Theorem 3.3, we obtain three orthonormal
wavelet bases in C8:

{ψ−1,k}3k=0 ∪ {φ−1,k}3k=0 (m= 1),

{ψ−1,k}3k=0 ∪ {ψ−2,k}1k=0 ∪ {φ−2,k}1k=0 (m= 2),

{ψ−1,k}3k=0 ∪ {ψ−2,k}1k=0 ∪ {ψ−3,0} ∪ {φ−3,0} (m= 3).

In the Haar case (see Example 3.1), these bases consist of the vectors

φ−1,0 =
1p
2
(1,1,0, 0,0, 0,0, 0), ψ−1,0 =

1p
2
(1,−1,0,0, 0,0, 0,0),

φ−1,1 =
1p
2
(0,0,1, 1,0, 0,0, 0), ψ−1,1 =

1p
2
(0,0,1,−1,0,0, 0,0),

φ−1,2 =
1p
2
(0,0,0, 0,1, 1,0, 0), ψ−1,2 =

1p
2
(0,0,0, 0,1,−1,0,0),
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φ−1,3 =
1p
2
(0,0,0, 0,0, 0,1, 1), ψ−1,3 =

1p
2
(0,0,0, 0,0, 0,1,−1),

φ−2,0 =
1

2
(1,1,1, 1,0, 0,0, 0), ψ−2,0 =

1

2
(1,1,−1,−1,0, 0,0, 0),

φ−2,1 =
1

2
(0,0,0, 0,1, 1,1, 1), ψ−2,1 =

1

2
(0,0, 0,0, 1,1,−1,−1),

φ−3,0 =
1

2
p

2
(1,1,1, 1,1, 1,1, 1), ψ−3,0 =

1

2
p

2
(1,1, 1,1,−1,−1,−1,−1).

In the general case, the orthogonal projections P−ν : CN → V−ν and Q−ν : CN →
W−ν act by the formulas

P−ν x =
Nν−1∑
k=0

〈x ,φ−ν ,k〉φ−ν ,k, Q−ν x =
p−1∑
µ=1

Nν−1∑
k=0

〈x ,ψ(µ)−ν ,k〉ψ(µ)−ν ,k. (3.9)

Suppose that I is the identity operator on CN . Setting P0 = I , V0 = CN and using
Theorem 3.3 for any x ∈ CN , we obtain the equalities

x = P−ν x +
ν∑

k=1

Q−k x , P−ν+1 x = P−ν x +Q−ν x , ν = 1,2, . . . , n.

An arbitrary vector x from CN can be regarded as the input signal a0 = x and,
for ν = 1,2, . . . , m, we can set

aν = D(aν−1 ∗ eu(ν)0 ), d(µ)ν = D(aν−1 ∗ eu(ν)µ ), µ= 1, . . . , p− 1. (3.10)

We can easily see that the components of the vectors aν and d(µ)ν are the
coefficients of the expansions (3.8) for a chosen x . The application of formulas
(3.9) constitutes the phase of the analysis of the signal x and yields the collection
of vectors

d(1)1 , . . . , d(1)p−1, . . . , d(m)1 , . . . , d(m)p−1, am. (3.11)

The inverse passage from the collection (3.10) to the original vector x constitutes
the reconstruction phase and is defined by the formulas

aν−1 = u(ν)0 ∗ Uaν +
p−1∑
µ=1

u(ν)µ ∗ Ud(ν)µ , ν = m, m− 1, . . . , 1. (3.12)

Formulas (3.9) and (3.11) specify the direct and inverse discrete wavelet
transforms associated with the sequence of wavelet filters u(1)0 , u(1)1 , . . . , u(1)p−1, . . . ,

u(m)0 , u(m)1 , . . . , u(m)p−1, and are realized by using fast algorithms (cf. [21, Section 3.2],
[28, Section 4]).

Remark 3.1. Suppose that m ∈ N, m≤ n. For a given sequence of vectors

u(1)0 , . . . , u(1)p−1, v(1)0 , . . . , v(1)p−1, . . . , u(m)0 , . . . , u(m)p−1, v(m)0 , . . . , v(m)p−1, (3.13)
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such that u(ν)µ , v(ν)µ ∈ CNν−1
for ν = 1,2, . . . , m, µ= 0,1, . . . , p−1, we introduce the

matrices A(ν)(l) just as in Definition 3.2 and set

B
(ν)
(l) :=

Np
p



bv(ν)0 (l) . . . bv(ν)p−1(l)bv(ν)0 (l + Nν) . . . bv(ν)p−1(l + Nν)bv(ν)0 (l + 2Nν) . . . bv(ν)p−1(l + 2Nν)
. . . . . . . . .bv(ν)0 (l + (p− 1)Nν) . . . bv(ν)p−1(l + (p− 1)Nν)



T

,

where T denotes transposition. We say that the vectors (3.12) constitute a sequence
of biorthogonal wavelet filters of the mth stage if

B
(ν)
(l)A(ν)(l) = Ep, ν = 1,2, . . . , m; l = 0, 1, . . . , Nν − 1,

where Ep is the identity matrix of order p. Using this definition, we can generalize
the construction given above to the biorthogonal case and, instead of Examples
3.2-3.4, obtain the discrete analogs of the corresponding examples from [12] and
[14].

Remark 3.2. Suppose that {wk}∞k=0 is the generalized Walsh system determined
from the given number p ≥ 2 and generating an orthonormal basis in the L2-
space on the interval ∆= [0,1) (the case p = 2 corresponds to the classical Walsh
system; see, for example, [1]). To each sequence x = (x0, x1, . . . ) from ℓ2(Z+)

we assign the function bx :=
∞∑

k=0
xkwk in L2(∆). Using this mapping instead of

the Vilenkin-Chrestenson transform, we can prove analogs of Theorems 3.1-3.3 for
the space ℓ2(Z+) (compare [21, Chapter 4]) and obtain the discrete nonperiodic
analogs of the wavelet bases from [8] and [14].

Further discussions and possible applications of periodic wavelets considered in
this paper can be found in the works [13] and [19].
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