Communications in Mathematics and Applications

Volume 3 (2012), Number 3, pp. 223–242 © RGN Publications

Periodic Wavelets in Walsh Analysis

Yu. A. Farkov

Abstract. The main aim of this paper is to present a review of periodic wavelets related to the generalized Walsh functions on the p-adic Vilenkin group G_p . In addition, we consider several examples of wavelets in the spaces of periodic complex sequences. The case p=2 corresponds to periodic wavelets associated with the classical Walsh functions.

1. Introduction

Let \mathbb{Z}_p be the discrete cyclic group of order p, i.e., the set $\{0, 1, ..., p\}$ with the discrete topology and modulo p addition. The p-adic Vilenkin group G is defined to be the subgroup of $\prod_{i\in\mathbb{Z}}\mathbb{Z}_p$ consisting of sequences

$$x = (x_i) = (\dots, x_{-2}, x_{-1}, x_0, x_1, x_2, \dots),$$

for which there exists $k = k(x) \in \mathbb{Z}$ such that $x_j = 0$ for all j < k. The group operation on G is denoted by \oplus and defined as the coordinate-wise addition modulo p:

$$(z_i) = (x_i) \oplus (y_i) \iff z_i = x_i + y_i \pmod{p}$$
 for all $j \in \mathbb{Z}$.

Let us denote the inverse operation of \oplus by \ominus (so that $x \ominus x = \theta$, where θ is the zero sequence). One can put a topology on G as the product topology inherits from $\prod_{j \in \mathbb{Z}} \mathbb{Z}_p$. The group G is a locally compact abelian group and the sets

$$U_l := \{(x_j) \in G | x_j = 0 \text{ for } j \le l\}, \quad l \in \mathbb{Z},$$

form a complete system neighbourhoods of the zero sequence. Notice also that

$$U_{l+1} \subset U_l \text{ for } l \in \mathbb{Z}, \quad \bigcap U_l = \{\theta\}, \quad \bigcup U_l = G.$$

²⁰¹⁰ Mathematics Subject Classification. 42C10, 42C40, 65T60.

One can show that *G* is self-dual. The duality pairing on *G* takes $x=(x_j)$ and $\omega=(\omega_j)$ to

$$\chi(x,\omega) = \exp\left(\frac{2\pi i}{p} \sum_{j \in \mathbb{Z}} x_j \omega_{1-j}\right).$$

Consider $U=U_0$ as a subgroup of G. This subgroup, when p=2, is isomorphic to the *Cantor group*, which is the topological Cartesian product of countably many cyclic groups of order 2 with discrete topology. It is well-known that U is a perfect nowhere-dense totally disconnected metrizable space and, therefore, U is homeomorphic to the Cantor ternary set (e.g., [6, Chapter 14]). There exists a Haar measure on G normalized so that the measure of U is 1. For simplicity, we shall denote this measure by dx.

As usual, the Lebesgue space $L^2(G)$ consists of all square integrable functions on G. For each function $f \in L^1(G) \cap L^2(G)$, its Fourier transform \widehat{f} ,

$$\widehat{f}(\omega) = \int_{G} f(x) \overline{\chi(x,\omega)} dx, \quad \omega \in G,$$

belongs to $L^2(G)$. The Fourier operator

$$\mathscr{F}: L^1(G) \cap L^2(G) \to L^2(G), \quad \mathscr{F}f = \widehat{f},$$

extends uniquely to the whole space $L^2(G)$. See [22] and [33] for further details about harmonic analysis on the group G.

Consider the mapping $\lambda: G \to \mathbb{R}_+$ defined by

$$\lambda(x) = \sum_{j \in \mathbb{Z}} x_j p^{-j}, \quad x = (x_j) \in G.$$

Take in G a discrete subgroup $H = \{(x_j) \in G | x_j = 0 \text{ for } j > 0\}$. The image of the subgroup H under λ is the set of non-negative integers: $\lambda(H) = \mathbb{Z}_+$. For each $k \in \mathbb{Z}_+$, let $h_{[k]}$ denote the element of H such that $\lambda(h_{[k]}) = k$ (clearly, $h_{[0]} = \theta$). The *generalized Walsh functions* on G can be defined by

$$w_k(x) = \chi(x, h_{\lceil k \rceil}), \quad x \in G, \ k \in \mathbb{Z}_+.$$

So, these functions are characters for G. Also, it is well-known that $\{w_k | k \in \mathbb{Z}_+\}$ is an orthonormal basis for $L^2(U)$ (when p = 2, we have the classical Walsh system).

Using the elements of H as translations, one can study wavelets in $L^2(G)$. Orthogonal wavelets and refinable functions representable as lacunary Walsh series were introduced for the first time by Lang [24] in the context of the Cantor dyadic group and, subsequently, they have been extended and studied by several authors (see, e.g., [7]-[19], [31], [32], [37], [38]). Multiresolution analysis of functions defined on the Cantor dyadic group was studied independently by Bl. Sendov ([34]-[36]). Wavelets on the p-adic Vilenkin group G by means of an iterative method giving rise to so-called wavelet sets were derived by J.J. Benedetto

and R.L. Benedetto [2]. At the same time, an approach developed in [2] can be applied to wavelets on the additive group of p-adic numbers (cf. [1], [23], [25], [39]).

This paper is a continuation of our review [18], where among the main subjects are the following:

- algorithms to construct orthogonal and biorthogonal wavelets associated with the Walsh polynomials;
- estimates of the smoothness of dyadic orthogonal wavelets of Daubechies type:
- an algorithm for constructing Parseval dyadic frames.

The aim of this paper is to present a review of periodic wavelets related to the generalized Walsh functions. In Section 2, by analogy with the periodic wavelets on the line \mathbb{R} (see, e.g., [4], [5], [20], [27]-[30], [40], [41]), we define periodic wavelets on G and consider the corresponding algorithms for decomposition and reconstruction. Similar results for the case p=2 are given in the recent papers [11] and [19]. Then, in Section 3, we use the generalized Walsh functions to define wavelets in the space \mathbb{C}_N consisting of all sequences $x=(\dots,x(-1),x(0),x(1),x(2),\dots)$, such that x(j+N)=x(j) for all $j\in\mathbb{Z}$ (cf. [3], [13], [21], [29]).

2. Periodic wavelets on the p-adic Vilenkin group

To keep our notation simple, we write $N:=p^n$ and $\varepsilon_p:=\exp(2\pi i/p)$. Define an automorphism $A\in \operatorname{Aut} G$ by the formula $(Ax)_j=x_{j+1}$ for all $x=(x_j)\in G$. Then, for $0\leq k\leq N-1$, we let $x_{n,k}:=A^{-n}h_{\lfloor k\rfloor}$ and $U_k^{(n)}:=x_{n,k}+A^{-n}(U)$. It is easily seen that the sets $U_k^{(n)}$ are cosets of the subgroup $A^{-n}(U)$ in the group U, and that

$$U_k^{(n)} \cap U_l^{(n)} = \emptyset$$
 for $k \neq l$, $\bigcup_{k=0}^{N-1} U_k^{(n)} = U$.

Moreover, it is clear that $w_l(x)$ with $0 \le l \le N-1$ is constant on $U_k^{(n)}$ for each $0 \le k \le N-1$. We shall use the notation

$$w_{l,k}^{(n)} := w_l(x_{n,k})$$
 for $0 \le l, k \le N - 1$.

Notice that

$$w_{l,k}^{(n)} = w_{k,l}^{(n)} = \varepsilon_p^{-sq} w_{pk+s,Nq+l}^{(n+1)}, \quad 0 \le s, q \le p-1,$$
 (2.1)

$$\sum_{i=0}^{N-1} w_{i,l}^{(n)} \overline{w_{i,k}^{(n)}} = \sum_{j=0}^{N-1} w_{l,j}^{(n)} \overline{w_{k,j}^{(n)}} = N \delta_{l,k}, \quad 0 \le l, k \le N-1.$$
(2.2)

A finite sum

$$D_N(x) := \sum_{j=0}^{N-1} w_j(x), \quad x \in G,$$

is called the Walsh-Dirichlet kernel of order N. It is well-known that

$$D_N(x) = \begin{cases} N, & x \in U_0^{(n)}, \\ 0, & x \in U \setminus U_0^{(n)}. \end{cases}$$

Let us introduce the following spaces

$$V_n := \text{span}\{1, w_1(x), \dots, w_{N-1}(x)\},\$$

$$W_n^{(j)} := \operatorname{span}\{w_{jN}(x), w_{jN+1}(x), \dots, w_{(j+1)N-1}(x)\},\$$

where $j=1,\ldots,p-1$. Note that the orthogonal direct sum of $V_n,W_n^{(1)},\ldots,W_n^{(p-1)}$ coincides with V_{n+1} , that is, for $W_n:=W_n^{(1)}\bigoplus\cdots\bigoplus W_n^{(p-1)}$, we have $V_n\bigoplus W_n=V_{n+1}$. The spaces V_n and $W_n^{(j)}$ will be called the *approximation spaces* and *wavelet spaces*, respectively.

We can use the discrete Vilenkin-Chrestenson transform to recover $v \in V_n$ from the values $v(x_{n,l})$, $0 \le l \le N-1$. Indeed, if

$$v(x) = \sum_{k=0}^{N-1} c_k w_k(x), \quad x \in U,$$
(2.3)

then

$$c_k = \frac{1}{N} \sum_{l=0}^{N-1} v(x_{n,l}) \overline{w_{l,k}^{(n)}}, \quad 0 \le k \le N-1;$$
(2.4)

see, e.g., [22, Section 11.2], where the corresponding fast algorithm is given.

Suppose that $a = (a_0, a_1, \dots, a_{N-1})$, where $a_k \neq 0$, $0 \leq k \leq N-1$. Then we set

$$\Phi_N^a(x) := \frac{1}{N} \sum_{k=0}^{N-1} a_k w_k(x), \quad \varphi_{n,k}(x) := \Phi_N^a(x \ominus x_{n,k}), \quad 0 \le k \le N-1, \ x \in G.$$

Proposition 2.1. Let $v \in V_n$. Assume that

$$\alpha_{n,k} = \alpha_{n,k}(\nu) := \sum_{l=0}^{N-1} a_l^{-1} c_l w_{l,k}^{(n)}, \quad 0 \le k \le N-1,$$
(2.5)

where c_1 are defined as in (2.4). Then

$$v(x) = \sum_{k=0}^{N-1} \alpha_{n,k} \, \varphi_{n,k}(x). \tag{2.6}$$

Proof. According to (2.2), for any $v \in V_n$ we get

$$\sum_{k=0}^{N-1} w_{l,k}^{(n)} \, \varphi_{n,k}(x) = a_l w_l(x), \quad 0 \le l \le N-1,$$

and, in view of (2.3), (2.4) and (2.5),

$$v(x) = \sum_{l=0}^{N-1} \sum_{i=0}^{N-1} a_l^{-1} c_l w_{l,j}^{(n)} \varphi_{n,j}(x) = \sum_{k=0}^{N-1} \alpha_{n,k} \varphi_{n,k}(x).$$

Therefore, the expansion in (2.6) is valid for all $v \in V_n$.

Remark 2.1 (cf. [40, Proposition 9]). Suppose that $\widetilde{\varphi}_{n,k}$ are defined by

$$\widetilde{\varphi}_{n,0}(x) = \sum_{j=0}^{N-1} \overline{a}_j^{-1} w_j(x), \ \widetilde{\varphi}_{n,k}(x) = \widetilde{\varphi}_{n,0}(x \ominus x_{n,k}), \quad k = 1, \dots, N-1.$$

Then $\{\widetilde{\varphi}_{n,k}\}_{k=0}^{N-1}$ is a dual shift basis for $\{\varphi_{n,k}\}_{k=0}^{N-1}$. Indeed, using (2.3) and (2.5), for any $v \in V_n$ we have

$$(v, \widetilde{\varphi}_{n,k}) := \int_{U} v(x), \overline{\widetilde{\varphi}_{n,k}(x)} dx$$

$$= \int_{U} \left(\sum_{l} c_{l} w_{l}(x) \right) \overline{\widetilde{\varphi}_{n,0}(x \ominus x_{n,k})} dx$$

$$= \int_{U} \left(\sum_{l} c_{l} w_{l}(x) \right) \left(\overline{\sum_{l} \overline{a_{l}^{-1} w_{l,k}^{(n)}} w_{l}(x)} \right) dx$$

$$= \alpha_{n,k}(v),$$

where the last equality follows from the orthogonality of the system $\{w_k \mid k \in \mathbb{Z}_+\}$.

Let $b=(b_0,b_1,\ldots,b_{pN-1})$, where $b_k\neq 0$ for all $0\leq k\leq pN-1$. In particular, we can choose

$$b_k = \begin{cases} a_{k/p} & \text{if k is divisible by p,} \\ 1 & \text{if k is not divisible by p} \end{cases} \quad \text{or} \quad b_k = \begin{cases} a_k & \text{if $k \leq N-1$,} \\ 1 & \text{if $0 \leq k \leq pN-1$.} \end{cases}$$

We set

$$\varphi_{n+1,k}(x):=\Phi^b_{pN}(x\ominus x_{n+1,k}),\quad 0\leq k\leq pN-1,$$

where

$$\Phi_{pN}^b(x) := \frac{1}{pN} \sum_{k=0}^{pN-1} b_k w_k(x), \quad x \in G.$$

Then we define

$$\psi_{n,k}^{(j)}(x) := \sum_{s=0}^{p-1} \varepsilon_p^{js} \, \varphi_{n+1,pk+s}(x), \quad 0 \le k \le N-1, \ 1 \le j \le p-1.$$

Let us show that, for each j, the system $\{\psi_{n,k}^{(j)}\}_{k=0}^{N-1}$ is a bases for the corresponding wavelet space $W_n^{(j)}$.

Proposition 2.2. Suppose that $w \in W_n^{(j)}$ for some $j \in \{1, ..., p-1\}$. Then

$$w(x) = \sum_{k=0}^{N-1} \beta_{n,k}^{(j)} \psi_{n,k}^{(j)}(x), \tag{2.7}$$

where, with the notation as in (2.4),

$$\beta_{n,k}^{(j)} = \beta_{n,k}^{(j)}(w) = \sum_{l=0}^{N-1} b_{jN+l}^{-1} c_{jN+l} w_{jN+l,pk}^{(n+1)}, \quad 0 \le k \le N-1.$$
 (2.8)

Proof. Let $w \in W_n^{(j)}$ where $j \in \{1, ..., p-1\}$. Then, since $W_n^{(j)} \subset V_{n+1}$, as in Proposition 2.1 we have

$$w(x) = \sum_{l=jN}^{(j+1)N-1} c_l w_l(x)$$

$$= \sum_{k=0}^{pN-1} \alpha_{n+1,k}(w) \varphi_{n+1,k}(x)$$

$$= \sum_{s=0}^{p-1} \sum_{k=0}^{N-1} \alpha_{n+1,pk+s}(w) \varphi_{n+1,pk+s}(x),$$
(2.9)

where

$$\alpha_{n+1,pk+s}(w) = \sum_{l=0}^{N-1} b_{jN+l}^{-1} c_{jN+l} w_{jN+l,pk+s}^{(n+1)},$$

$$c_{jN+l} = \frac{1}{pN} \sum_{l=0}^{pN-1} w(x_{n+1,l}) \overline{w_{l,jN+l}^{(n+1)}}.$$

Here, in view of (2.1), $w_{jN+l,pk+s}^{(n+1)}=\varepsilon_p^{js}w_{jN+l,pk}^{(n+1)},$ and hence

$$\alpha_{n+1,pk+s}(w) = \varepsilon_p^{js} \alpha_{n+1,pk}(w), \quad 0 \le k \le N-1, \ 0 \le s \le p-1,$$

which by (2.8) and (2.9) yields (2.7).

Let $\alpha \neq 0$. Propositions 2.1 and 2.2 for the case where

$$a_k = \begin{cases} \alpha & \text{if } k = 0 \text{ or } k = N - 1, \\ 1 & \text{otherwise} \end{cases}$$
 (2.10)

can be found in [15]. In this case, we set

$$b_k = \begin{cases} \alpha & \text{if } k = 0 \text{ or } k = pN - 1, \\ 1 & \text{otherwise} \end{cases}$$

Note that the value $\alpha=1$ corresponds to the Haar wavelets (so, we use $\alpha\neq 1$ in the sequel).

For each $l \in \{0, 1, ..., N-1\}$ with *p*-ary expansion

$$l = \sum_{j=0}^{n-1} v_j p^j, \quad v_j \in \{0, 1, \dots, p-1\},$$

we let $\gamma(l) := \sum_{j=0}^{n-1} v_j$. According to [15], in the case (2.10) we have the following equalities

$$\varphi_{n,k}(x) = \sum_{s=0}^{p-1} \varphi_{n+1,pk+s}(x) - \frac{(1-\alpha)}{N} \varepsilon_p^{-\gamma(k)} w_{N-1}(x), \tag{2.11}$$

$$\varphi_{n+1,pk+s}(x) = \frac{1}{p} \left(\varphi_{n,k}(x) + \frac{1-\alpha}{\alpha N} \sum_{v=0}^{N-1} \varepsilon_p^{\gamma(v)-\gamma(k)} \varphi_{n,v}(x) \right) + \frac{1}{p} \sum_{j=1}^{p-1} \varepsilon_p^{-js} \psi_{n,k}^{(j)}(x),$$
(2.12)

where $1 \le k \le N-1$, $0 \le s \le p-1$. Note also, that $w_{N-1}(x)$ can be expressed as

$$w_{N-1}(x) = \frac{1}{\alpha} \sum_{s=0}^{N-1} \varepsilon_p^{\gamma(s)} \varphi_{n,s}(x) = \sum_{k=0}^{N-1} \sum_{s=0}^{p-1} \gamma_{n+1,pk+s} \varphi_{n+1,pk+s}(x), \qquad (2.13)$$

where $\gamma_{n+1,pk+s} := w_{N-1,pk+s}^{(n+1)}$.

For any functions $f_n \in V_n$ and $g_n \in W_n$ we write

$$f_n(x) = \sum_{k=0}^{N-1} C_{n,k} \,\varphi_{n,k}(x), \quad g_n(x) = \sum_{i=0}^{p-1} g_n^{(i)}(x), \tag{2.14}$$

where

$$g_n^{(j)}(x) = \sum_{k=0}^{N-1} D_{n,k}^{(j)} \psi_{n,k}(x),$$

and the coefficient sequences

$$\mathbf{C}_n = \{C_{n,k}\}, \ \mathbf{D}_n^{(j)} = \{D_{n,k}^{(j)}\}, \ 1 \le j \le p-1,$$
 (2.15)

uniquely determine f_n and g_n , respectively. Let us describe the algorithms, in terms of the coefficient sequences (2.15), for decomposing $f_{n+1} \in V_{n+1}$ as the orthogonal sum of $f_n \in V_n$ and $g_n^{(j)} \in W_n^{(j)}$, and for reconstructing f_{n+1} from f_n and $g_n^{(j)}$.

As a consequence of (2.12) we observe that

$$\varphi_{n+1,pk+s}(x) = \sum_{v=0}^{N-1} A_{pk+s,v}^{(n)} \, \varphi_{n,v}(x) + \sum_{i=1}^{p-1} B_{pk+s,j}^{(n)} \psi_{n,k}^{(j)}(x), \tag{2.16}$$

where

$$A_{pk+s,v}^{(n)} = \begin{cases} 1/p + (1-\alpha)/(\alpha pN), & v = k, \\ \varepsilon_p^{\gamma(v)-\gamma(k)}(1-\alpha)/(\alpha pN), & v \neq k \end{cases} \quad \text{and} \quad B_{pk+s,j}^{(n)} = p^{-1}\varepsilon_p^{-js}.$$

Since $f_n + g_n = f_{n+1}$, it follows from (2.14) and (2.16) that

$$\begin{split} &\sum_{v=0}^{N-1} C_{n,v} \, \varphi_{n,v}(x) + \sum_{j=1}^{p-1} \sum_{v=0}^{N-1} D_{n,v}^{(j)} \psi_{n,v}^{(j)}(x) \\ &= \sum_{s=0}^{p-1} \sum_{k=0}^{N-1} C_{n+1,pk+s} \, \varphi_{n+1,pk+s}(x) \\ &= \sum_{s,k} C_{n+1,pk+s} \left\{ \sum_{v=0}^{N-1} A_{pk+s,v}^{(n)} \, \varphi_{n,v}(x) + \sum_{j=1}^{p-1} B_{pk+s,j}^{(n)} \psi_{n,k}^{(j)}(x) \right\} \\ &= \sum_{s} \left\{ \sum_{s,k} C_{n+1,pk+s} A_{pk+s,v}^{(n)} \right\} \varphi_{n,v}(x) + \sum_{j=1}^{p-1} \left\{ \sum_{s,k} C_{n+1,pk+s} B_{pk+s,j}^{(n)} \right\} \psi_{n,k}^{(j)}(x). \end{split}$$

This implies that

$$C_{n,v} = \sum_{s,k} A_{pk+s,v}^{(n)} C_{n+1,pk+s}, \quad D_{n,v}^{(j)} = \sum_{s=0}^{p-1} B_{pv+s,j}^{(n)} C_{n+1,pv+s}.$$
 (2.17)

Now, using (2.11) and (2.13), we obtain

$$\varphi_{n,v}(x) = \sum_{k=0}^{N-1} \sum_{s=0}^{p-1} Q_{pk+s,v}^{(n)} \, \varphi_{n+1,pk+s}(x),$$

where

$$Q_{pk+s,v}^{(n)} = \begin{cases} 1 - \varepsilon_p^{\gamma(k)} (1-\alpha) \gamma_{n+1,pk+s}/N, & k=v, \\ -\varepsilon_p^{\gamma(k)} (1-\alpha) \gamma_{n+1,pk+s}/N, & k \neq v. \end{cases}$$

Therefore, we have

$$\begin{split} \sum_{k,s} C_{n+1,pk+s} \, \varphi_{n+1,pk+s}(x) \\ &= \sum_{v} C_{n,v} \bigg\{ \sum_{k,s} Q_{pk+s,v}^{(n)} \, \varphi_{n+1,pk+s}(x) \bigg\} + \sum_{j=1}^{p-1} \sum_{k=0}^{N-1} D_{n,k}^{(j)} \bigg\{ \sum_{s=0}^{p-1} \varepsilon_p^{js} \, \varphi_{n+1,pk+s}(x) \bigg\} \\ &= \sum_{k,s} \bigg\{ \sum_{v} Q_{pk+s,v}^{(n)} \, C_{n,v} + \sum_{j} \varepsilon_p^{js} D_{n,k}^{(j)} \bigg\} \, \varphi_{n+1,pk+s}(x) \end{split}$$

and so

$$C_{n+1,pk+s} = \sum_{\nu} Q_{pk+s,\nu}^{(n)} C_{n,\nu} + \sum_{j} \varepsilon_{p}^{js} D_{n,k}^{(j)}.$$
(2.18)

We remark that the decomposition and reconstruction algorithms based on formulas (2.17) and (2.18) have more simply structure than the similar algorithms constructed in [5] for the case of trigonometric wavelets.

To conclude this section, let us consider the case where p = 2, $N = 2^n$, and

$$b_k = \begin{cases} a_k, & 0 \le k \le N - 1, \\ a_{N-k}, & N \le k \le 2N - 1; \end{cases}$$
 (2.19)

with any $a_k \neq 0$. Then, for all $k \in \{0, 1, ..., N-1\}$,

$$\varphi_{n,k}(x) = \varphi_{n+1,2k}(x) + \varphi_{n+1,2k+1}(x), \quad \psi_{n,k}(x) = \varphi_{n+1,2k}(x) - \varphi_{n+1,2k+1}(x),$$

and thus

$$\varphi_{n+1,2k}(x) = \frac{1}{2} [\varphi_{n,k}(x) + \psi_{n,k}(x)], \quad \varphi_{n+1,2k+1}(x) = \frac{1}{2} [\varphi_{n,k}(x) - \psi_{n,k}(x)].$$

Hence, under the condition (2.19), instead of (2.17) and (2.18) we obtain the classical Haar discrete transforms.

3. Periodic discrete p-adic wavelets

Let us denote by $\langle k \rangle_p$ the remainder from the division of the integer k by the natural number p, and let [a] be the integer part of a number a. For any $a \in \mathbb{R}_+$, the digits of the p-adic expansion

$$a = \sum_{\nu=1}^{\infty} a_{-\nu} p^{\nu-1} + \sum_{\nu=1}^{\infty} a_{\nu} p^{-\nu}$$
(3.1)

are defined by $a_{-v} = \langle [p^{1-v}a] \rangle_p$, $a_v = \langle [p^va] \rangle_p$ (so, the finite representation for a p-adic rational a is taken). We can easily see that, for each $a \in \mathbb{R}_+$ there exists a natural number μ such that $a_{-v} = 0$ for all $v > \mu$ as well as that the first sum in (3.1) is equal to [a]. The representation (3.1) induces the operation of addition modulo p (or p-adic addition) on \mathbb{R}_+ as follows

$$a \oplus_p b := \sum_{\nu=1}^{\infty} \langle a_{-\nu} + b_{-\nu} \rangle_p p^{\nu-1} + \sum_{\nu=1}^{\infty} \langle a_{\nu} + b_{\nu} \rangle_p p^{-\nu}, \quad a, b \in \mathbb{R}_+.$$

As usual, the equality $c = a \ominus_p b$ means that $c \oplus_p b = a$.

For $N=p^n$, we set $\mathbb{Z}_N=\{0,1,\ldots,N-1\}$. Suppose that the space \mathbb{C}_N consists of complex sequences $x=(\ldots,x(-1),x(0),x(1),x(2),\ldots)$, such that x(j+N)=x(j) for all $j\in\mathbb{Z}$. An arbitrary sequence x from \mathbb{C}_N is given if the values of x(j) are given for $j\in\mathbb{Z}_N$; therefore, the element x is often identified with the vector $(x(0),x(1),\ldots,x(N-1))$. The space \mathbb{C}_N is equipped with the following natural inner product:

$$\langle x, y \rangle := \sum_{j=0}^{N-1} x(j) \overline{y(j)}.$$

For an arbitrary $j \in \mathbb{Z}_N$, let j^* denote the nonnegative integer defined by the condition $j \oplus_p j^* = 0$. For p = 2, we have $j^* = j$, and, for p > 2, the number j^* is p-adic opposite to j. For each $x \in \mathbb{C}_N$ we denote by \widetilde{x} the vector from \mathbb{C}_N such that

 $\widetilde{x}(j) = \overline{x(j^*)}$ for all $j \in \mathbb{Z}_N$. Further, for $k, j \in \mathbb{Z}_N$, we set $\{k, j\}_p := \sum_{\nu=1}^n k_{\nu-n-1} j_{-\nu}$, where

$$k = \sum_{\nu=1}^{n} k_{-\nu} p^{\nu-1}, \quad j = \sum_{\nu=1}^{n} j_{-\nu} p^{\nu-1}, \quad k_{-\nu}, j_{-\nu} \in \{0, 1, \dots, p-1\}.$$

The Vilenkin-Chrestenson functions $w_0^{(N)}, w_1^{(N)}, \ldots, w_{N-1}^{(N)}$ for the space \mathbb{C}_N are defined by the equalities $w_k^{(N)}(j) = \varepsilon_p^{\{k,j\}_p}$ and $w_k^{(N)}(l) = w_k^{(N)}(l+N)$, where $k,j \in \mathbb{Z}_N$, $l \in \mathbb{Z}$. For $n \geq 2$ and p=2, the Vilenkin-Chrestenson functions coincide with the Walsh functions and, in the case n=1 and $p \geq 2$, they are exponential functions: $w_k^{(p)}(j) = \varepsilon_p^{kj}, k,j \in \{0,1,\ldots,p-1\}$.

functions: $w_k^{(p)}(j) = \varepsilon_p^{kj}, k, j \in \{0, 1, \dots, p-1\}$.

The functions $w_0^{(N)}, w_1^{(N)}, \dots, w_{N-1}^{(N)}$ constitute an orthogonal basis in \mathbb{C}_N and $\|w_k^{(N)}\|^2 = N$ for all $k \in \mathbb{Z}_N$. To an arbitrary vector x from \mathbb{C}_N the Vilenkin-Chrestenson transform assigns the sequence \widehat{x} of the Fourier coefficients of x in the system $w_0^{(N)}, w_1^{(N)}, \dots, w_{N-1}^{(N)}$:

$$\widehat{x}(k) := \frac{1}{N} \sum_{j=0}^{N-1} x(j) \overline{w_k^{(N)}(j)}, \quad k \in \mathbb{Z}_N.$$

For all $x, y \in \mathbb{C}_N$, we define the *p*-convolution x * y by the formula

$$(x*y)(k) := \sum_{j=0}^{N-1} x(k \ominus_p j) y(j), \quad k \in \mathbb{Z}_N.$$

By a *unit N-periodic impulse* we mean the vector δ_N from \mathbb{C}_N defined by the equality

$$\delta_N(j) := \begin{cases} 1, & \text{if } j \text{ is divisible by } N, \\ 0, & \text{if } j \text{ is not divisible by } N. \end{cases}$$

The system of shifts $\{\delta_N(\cdot \ominus_p k) | k \in \mathbb{Z}_N\}$ is an orthonormal basis in \mathbb{C}_N and

$$x(j) = (x * \delta_N)(j) = \sum_{k=0}^{N-1} x(k)\delta_N(j \ominus_p k), \quad j \in \mathbb{Z}_N,$$

for all $x \in \mathbb{C}_N$. For each $k \in \mathbb{Z}_N$ the p-adic shift operator $T_k : \mathbb{C}_N \to \mathbb{C}_N$ is defined as

$$(T_k x)(j) := x(j \ominus_p k), \quad x \in \mathbb{C}_N, \ j \in \mathbb{Z}_N$$

It follows from the definitions that, for all $x, y \in \mathbb{C}_N$, the following relations hold:

$$\langle x, y \rangle = N \langle \widehat{x}, \widehat{y} \rangle, \quad \widehat{x * y} = N \widehat{x} \widehat{y}, \quad \widehat{(T_k x)}(l) = \overline{w_k^{(N)}(l)} \widehat{x}(l),$$

$$\langle y, T_k x \rangle = y * \widetilde{x}(k), \quad \langle T_k x, T_l y \rangle = \langle x, T_{l \ominus_v k} y \rangle, \quad k, l \in \mathbb{Z}_N.$$

For $v=0,1,\ldots,n$, we set $N_v=N/p^v$ and $\Delta_v=p^{v-1}$. The operators $D:\mathbb{C}_N\to\mathbb{C}_{N_1}$ and $U:\mathbb{C}_{N_1}\to\mathbb{C}_N$ given by the formulas

$$(Dx)(j) := x(pj), \quad j = 0, 1, \dots, N_1 - 1,$$

and

$$(Uy)(j) := \begin{cases} y(j/p) & \text{if } j \text{ is divisible by } p, \\ 0 & \text{if } j \text{ is not divisible by } p, \end{cases}$$

where $x \in \mathbb{C}_N$ and $y \in \mathbb{C}_{N_1}$ are called the *thickening sampling operator* and the *thinning sampling operator*, respectively. Note that D(Uy) = y for all $y \in \mathbb{C}_{N_1}$. Further, suppose that $D^1 = D$, $U^1 = U$ and, for v = 2, ..., n, we define the operators $D^v : \mathbb{C}_N \to \mathbb{C}_{N_v}$ and $U^v : \mathbb{C}_{N_v} \to \mathbb{C}_N$ by the formulas

$$(D^{\nu}x)(j) := x(p^{\nu}j), \qquad (U^{\nu}y)(j) := \begin{cases} y(j/p^{\nu}) & \text{if } j \text{ is divisible by } p^{\nu}, \\ 0 & \text{if } j \text{ is not divisible by } p^{\nu}, \end{cases}$$

where $x \in \mathbb{C}_N$ and $y \in \mathbb{C}_{N_v}$. For any $y \in \mathbb{C}_{N_v}$, the following relation holds: $\widehat{U^{\nu}y}(l) = p^{-\nu}\widehat{y}(l)$, $l \in \mathbb{Z}_N$, where, on the left-hand side, the Vilenkin-Chrestenson transform is taken in \mathbb{C}_N , while, on the righthand side, it is taken in \mathbb{C}_{N_v} .

Following the approach from [21, Chapter 3], we give the following definition.

Definition 3.1. Suppose that $u_0, u_1, \dots, u_{p-1} \in \mathbb{C}_N$. If the system

$$B(u_0, u_1, \dots, u_{p-1}) = \{T_{pk}u_0\}_{k=0}^{N_1 - 1} \cup \{T_{pk}u_1\}_{k=0}^{N_1 - 1} \cup \dots \cup \{T_{pk}u_{p-1}\}_{k=0}^{N_1 - 1}$$

is an orthonormal basis in \mathbb{C}_N , then $B(u_0, u_1, \dots, u_{p-1})$ is called the *wavelet basis of* the first stage in \mathbb{C}_N generated by the collection of vectors u_0, u_1, \dots, u_{p-1} .

The following theorem characterizes all the collections of vectors generating wavelet bases of the first stage in \mathbb{C}_N .

Theorem 3.1. The collection of vectors u_0, u_1, \dots, u_{p-1} generates a wavelet basis of the first stage in \mathbb{C}_N if and only if the matrix

$$A(l) := \frac{N}{\sqrt{p}} \begin{pmatrix} \widehat{u}_0(l) & \widehat{u}_1(l) & \dots & \widehat{u}_{p-1}(l) \\ \widehat{u}_0(l+N_1) & \widehat{u}_1(l+N_1) & \dots & \widehat{u}_{p-1}(l+N_1) \\ \widehat{u}_0(l+2N_1) & \widehat{u}_1(l+2N_1) & \dots & \widehat{u}_{p-1}(l+2N_1) \\ \vdots & \vdots & \dots & \vdots \\ \widehat{u}_0(l+(p-1)N_1) & \widehat{u}_1(l+(p-1)N_1) & \dots & \widehat{u}_{p-1}(l+(p-1)N_1) \end{pmatrix}$$

is unitary for $l = 0, 1, ..., N_1 - 1$.

For each $1 \le m \le n$ we define the following procedure for the construction of a wavelet basis of the first stage in \mathbb{C}_N .

Step 1. Choose complex numbers b_l , $0 \le l \le p^m - 1$, satisfying the condition

$$\sum_{k=0}^{p-1} |b_{l+kp^{m-1}}|^2 = 1, \quad l = 0, 1, \dots, p^{m-1} - 1.$$
(3.2)

Step 2. Calculate a_0, \ldots, a_{p^m-1} by the formulas

$$a_j = p^{-m+1/2} \sum_{l=0}^{p^m-1} b_l \overline{w_l^{(p^m)}(j)}, \quad j = 0, 1, \dots, p^m - 1.$$

Step 3. Define a vector $u_0 \in \mathbb{C}_N$, for which

$$u_0(j) = \begin{cases} a_j, & 0 \le j \le p^m - 1, \\ 0, & p^m \le j \le p^n - 1. \end{cases}$$
 (3.3)

Step 4. Find vectors $u_1, \ldots, u_{p-1} \in \mathbb{C}_N$ such that, for all $l = 0, 1, \ldots, N_1 - 1$, the matrix A(l) is unitary.

Using Theorem 3.1, we can verify that the resulting collection of vectors $u_0, u_1, \ldots, u_{p-1}$ generates a wavelet basis of the first stage in \mathbb{C}_N . In the case p=2, step 4 of this procedure is carried out by the formula

$$u_1(j) = (-1)^j \overline{u_0(1 \oplus_2 j)}, \quad j \in \mathbb{Z}_N,$$
 (3.4)

for p > 2, algorithms for the realization of this step were given in [28, Section 2.6] (see also [14, Section 2]). One of these algorithms is based on the Hausholder transform and can be described by the formulas

$$\widehat{u}_k(l) = \overline{\widehat{u}_0(l+kN_1)} \frac{1 - \widehat{u}_0(l)}{1 - \overline{\widehat{u}_0(l)}},\tag{3.5}$$

$$\widehat{u}_k(l+jN_1) = \delta_{kj} - \frac{\widehat{u}_0(l+jN_1)\overline{\widehat{u}_0(l+kN_1)}}{1 - \overline{\widehat{u}_0(l)}},$$
(3.6)

where δ_{kj} is the Kronecker delta, $k, j = 1, 2, \dots, p-1$ and $l = 0, 1, \dots, N_1-1$.

Example 3.1. Suppose that N > p. Take m = 1 and $b_0 = 1$, $b_1 = \cdots = b_{p-1} = 0$. Then the system $B(u_0, u_1, \dots, u_{p-1})$ is generated by the vectors

$$u_{\mu} = p^{-1/2}(1, \varepsilon_{p}^{\mu}, \varepsilon_{p}^{2\mu}, \dots, \varepsilon_{p}^{(p-1)\mu}, 0, 0, \dots, 0), \quad \mu = 0, 1, \dots, p-1.$$

In particular, for p = 2, we have the *Haar basis of the first stage in* \mathbb{C}_N :

$$u_0 = (1/\sqrt{2}, 1/\sqrt{2}, 0, 0, \dots, 0), \quad u_1 = (1/\sqrt{2}, -1/\sqrt{2}, 0, 0, \dots, 0).$$

The following example is obtained by modifying the orthogonal wavelets constructed for the Cantor group in [24]; it corresponds to the case m = p = 2, $b_0 = 1$, $b_1 = a$, $b_2 = 0$, $b_3 = b$ in the procedure described above.

Example 3.2. Suppose that a and b are complex numbers such that $|a|^2+|b|^2=1$. Suppose that p=2 and $N\geq 4$, , and the vectors $u_0,u_1\in\mathbb{C}_N$ are given by the equalities

$$u_0(0) = \frac{1+a+b}{2\sqrt{2}}, \quad u_0(1) = \frac{1+a-b}{2\sqrt{2}}, \qquad u_0(2) = \frac{1-a-b}{2\sqrt{2}}, \quad u_0(3) = \frac{1-a+b}{2\sqrt{2}},$$

$$u_1(0) = \frac{1+a-b}{2\sqrt{2}}, \quad u_1(1) = -\frac{1+a+b}{2\sqrt{2}}, \quad u_1(2) = \frac{1-a+b}{2\sqrt{2}}, \quad u_1(3) = -\frac{1-a-b}{2\sqrt{2}},$$

under the condition that $u_0(j) = u_1(j) = 0$ for $4 \le j \le N - 1$. Then the vectors u_0 , u_1 generate a wavelet basis of the first stage in \mathbb{C}_N . Note that, for a = 1, b = 0, the resulting wavelet basis $B(u_0, u_1)$ coincides with the Haar wavelet basis of the first stage described in Example 3.1.

The following two examples are similar to Examples 3 and 4 in [8].

Example 3.3. Suppose that p = 2, n > 3, and m = 3. We set

$$(b_0, b_1, \dots, b_7) = \frac{1}{2}(1, a, b, c, 0, \alpha, \beta, \gamma),$$

where $|a|^2 + |\alpha|^2 = |b|^2 + |\beta|^2 = |c|^2 + |\gamma|^2 = 1$. Then, by relation (3.3), we have

$$u_0(0) = \frac{1}{4\sqrt{2}}(1+a+b+c+\alpha+\beta+\gamma),$$

$$u_0(1) = \frac{1}{4\sqrt{2}}(1+a+b+c-\alpha-\beta-\gamma),$$

$$u_0(2) = \frac{1}{4\sqrt{2}}(1+a-b-c+\alpha-\beta-\gamma),$$

$$u_0(3) = \frac{1}{4\sqrt{2}}(1+a-b-c-\alpha+\beta+\gamma),$$

$$u_0(4) = \frac{1}{4\sqrt{2}}(1-a+b-c-\alpha+\beta-\gamma),$$

$$u_0(5) = \frac{1}{4\sqrt{2}}(1-a+b-c+\alpha-\beta+\gamma),$$

$$u_0(6) = \frac{1}{4\sqrt{2}}(1 - a - b + c - \alpha - \beta + \gamma),$$

$$u_0(7) = \frac{1}{4\sqrt{2}}(1 - a - b + c + \alpha + \beta - \gamma).$$

Further, we set $u_1(j) = u_0(j) = 0$ for $8 \le j \le 2^n - 1$, and we choose the other components of the vector u_1 so that relations (3.4) are valid, i.e.,

$$u_1(0) = \overline{u_0(1)}, \quad u_1(1) = -\overline{u_0(0)}, \quad u_1(2) = \overline{u_0(3)}, \quad u_1(3) = -\overline{u_0(2)},$$

 $u_1(4) = \overline{u_0(5)}, \quad u_1(5) = -\overline{u_0(4)}, \quad u_1(6) = \overline{u_0(7)}, \quad u_1(7) = -\overline{u_0(6)}.$

The resulting pair u_0 , u_1 generates a wavelet basis of the first stage in \mathbb{C}_N .

Example 3.4. Suppose that p = 3, n > 2, m = 2 and

$$(b_0, b_1, \dots, b_8) = \frac{1}{\sqrt{3}}(1, a, \alpha, 0, b, \beta, 0, c, \gamma),$$

where $|a|^2 + |b|^2 + |c|^2 = |\alpha|^2 + |\beta|^2 + |\gamma|^2 = 1$. Then, using (3.2) and (3.3), we obtain

$$u_0(0) = \frac{1}{3\sqrt{3}}(1+a+b+c+\alpha+\beta+\gamma),$$

$$u_0(1) = \frac{1}{3\sqrt{3}}(1+a+\alpha+(b+\beta)\varepsilon_3^2+(c+\gamma)\varepsilon_3),$$

$$u_{0}(2) = \frac{1}{3\sqrt{3}}(1+a+\alpha+(b+\beta)\varepsilon_{3}+(c+\gamma)\varepsilon_{3}^{2}),$$

$$u_{0}(3) = \frac{1}{3\sqrt{3}}(1+(a+b+c)\varepsilon_{3}^{2}+(\alpha+\beta+\gamma)\varepsilon_{3}),$$

$$u_{0}(4) = \frac{1}{3\sqrt{3}}(1+c+\beta+(a+\gamma)\varepsilon_{3}^{2}+(b+\alpha)\varepsilon_{3}),$$

$$u_{0}(5) = \frac{1}{3\sqrt{3}}(1+b+\gamma+(a+\beta)\varepsilon_{3}^{2}+(c+\alpha)\varepsilon_{3}),$$

$$u_{0}(6) = \frac{1}{3\sqrt{3}}(1+(a+b+c)\varepsilon_{3}+(\alpha+\beta+\gamma)\varepsilon_{3}^{2}),$$

$$u_{0}(7) = \frac{1}{3\sqrt{3}}(1+b+\gamma+(a+\beta)\varepsilon_{3}+(c+\alpha)\varepsilon_{3}^{2}),$$

$$u_{0}(8) = \frac{1}{3\sqrt{3}}(1+c+\beta+(a+\gamma)\varepsilon_{3}+(b+\alpha)\varepsilon_{3}^{2}),$$

where $\varepsilon_3 = \exp(2\pi i/3)$. We set $u_0(j) = u_1(j) = u_2(j) = 0$ for $9 \le j \le 3^n - 1$ and use (3.5) to define the other components of the vectors $u_1, u_2 \in \mathbb{C}_N$ so that the matrix

$$\frac{9}{\sqrt{3}} \begin{pmatrix} \widehat{u}_0(l) & \widehat{u}_1(l) & \widehat{u}_2(l) \\ \widehat{u}_0(l+3) & \widehat{u}_1(l+3) & \widehat{u}_2(l+3) \\ \widehat{u}_0(l+6) & \widehat{u}_1(l+6) & \widehat{u}_2(l+6) \end{pmatrix}$$

is unitary for l=0,1,2. The resulting collection of the vectors u_0,u_1,u_2 generates a wavelet basis of the first stage in \mathbb{C}_N .

The values of the parameters b_1 in Examples 3.2-3.4 are universal in the sense that they occur not only in the construction of wavelet bases in \mathbb{C}_N , but also in the corresponding examples for the spaces $\ell^2(\mathbb{Z}_+)$ and $L^2(\mathbb{R}_+)$. At the same time, the construction of orthogonal wavelets on the Cantor and Vilenkin groups (as well as on the half-line \mathbb{R}_+ ; see [8], [10]) requires some additional constraint related to the requirement that the masks have no blocking sets (so, in Example 2, the pair a = 0, b = 1 leads to a wavelet basis in the space \mathbb{C}_N , while, in the original example due to Lang, this pair corresponds to a linearly dependent system; see also Example 2 in [8]). The great freedom of choice of the values of the parameters in the construction of orthogonal wavelets in the space \mathbb{C}_N by the method described in this paper becomes apparent due to the fact that, according to step 1 of the procedure, for $(b_0, b_1, \dots, b_{p^m-1})$ we can choose any complex vector of dimension p^m satisfying condition (3.2) (compare with the construction of discrete Daubechies wavelets in [3] and [21]). This property is important for applications, because it extends the range of applications of the well-known adaptive signal-approximation methods (see, for example, Chapters 8-10 in Mallat's book [26]).

Definition 3.2. Suppose that $m \in \mathbb{N}$, $m \le n$. By a sequence of orthogonal wavelet filters of the mth stage we mean a sequence of vectors

$$u_0^{(1)}, u_1^{(1)}, \dots, u_{p-1}^{(1)}, \dots, u_0^{(m)}, u_1^{(m)}, \dots, u_{p-1}^{(m)},$$

such that $u_{\mu}^{(\nu)}\in\mathbb{C}_{N_{\nu-1}}$ for $\nu=1,2,\ldots,m,\,\mu=0,1,\ldots,p-1$ and the matrices

$$A^{(v)}(l) := \frac{N}{\sqrt{p}} \begin{pmatrix} \widehat{u}_{0}^{(v)}(l) & \dots & \widehat{u}_{p-1}^{(v)}(l) \\ \widehat{u}_{0}^{(v)}(l+N_{v}) & \dots & \widehat{u}_{p-1}^{(v)}(l+N_{v}) \\ \widehat{u}_{0}^{(v)}(l+2N_{v}) & \dots & \widehat{u}_{p-1}^{(v)}(l+2N_{v}) \\ \dots & \dots & \dots \\ \widehat{u}_{0}^{(v)}(l+(p-1)N_{v}) & \dots & \widehat{u}_{p-1}^{(v)}(l+(p-1)N_{v}) \end{pmatrix}$$

are unitary for $v = 1, 2, ..., m, l = 0, 1, ..., N_v - 1$

Theorem 3.2. Suppose that the collection of vectors u_0, u_1, \dots, u_{p-1} generates a wavelet basis of the first stage in \mathbb{C}_N . For a given $m \in \mathbb{N}$, $m \le n$, set

$$u_{\mu}^{(1)}(j) = u_{\mu}(j), \quad u_{\mu}^{(v)}(j) = \Delta_{\nu}^{-1} \sum_{k=0}^{\Delta_{\nu}-1} u_{\mu}^{(1)}(j+kN_{\nu-1}), \quad j \in \mathbb{Z}_{N_{\nu-1}},$$
 (3.7)

where v = 2, ..., m, $\mu = 0, 1, ..., p - 1$. Then the vectors

$$u_0^{(1)}, u_1^{(1)}, \dots, u_{p-1}^{(1)}, \dots, u_0^{(m)}, u_1^{(m)}, \dots, u_{p-1}^{(m)}$$

constitute a sequence of orthogonal wavelet filters of the mth stage.

Thus, from a given vector $u_0 \in \mathbb{C}_N$, defined by (3.2) and (3.3) we can, first, find a wavelet basis of the first stage $u_0, u_1, \ldots, u_{p-1}$, using (3.4) or (3.5), and then, using (3.6) obtain the sequence of orthogonal wavelet filters of the mth stage. Denote by \oplus the direct sum of the subspaces of the space \mathbb{C}_N . By the theorem that follows, from any sequence of orthogonal wavelet filters of the mth stage we can construct an orthonormal wavelet basis in \mathbb{C}_N .

Theorem 3.3. Suppose that a sequence of orthogonal wavelet filters of the mth stage is given in the space \mathbb{C}_N :

$$u_0^{(1)}, u_1^{(1)}, \dots, u_{p-1}^{(1)}, \dots, u_0^{(m)}, u_1^{(m)}, \dots, u_{p-1}^{(m)}.$$

Let $\varphi^{(1)}=u_0^{(1)},\ \psi_\mu^{(1)}=u_\mu^{(1)},\ \mu=1,\ldots,p-1,$ and define $\varphi^{(v)},\ \psi_\mu^{(v)}$ for $v=2,\ldots,m,$ $\mu=1,\ldots,p-1$ by the formulas

$$\varphi^{(v)} = \varphi^{(v-1)} * U^{v-1} u_0^{(v)}, \quad \psi_{\mu}^{(v)} = \varphi^{(v-1)} * U^{v-1} u_{\mu}^{(v)}.$$

Further, for $v = 1, ..., m, \mu = 1, ..., p - 1$, we set

$$\varphi_{-v,k} = T_{p^v k} \varphi^{(v)}, \quad \psi_{-v,k}^{(\mu)} = T_{p^v k} \psi_{\mu}^{(v)}, \quad k = 0, 1, \dots, N_v - 1,$$

and define the subspaces

$$\begin{split} V_{-\nu} &= \mathrm{span}\{\varphi_{-\nu,k}\}_{k=0}^{N_{\nu}-1}, \quad W_{-\nu}^{(\mu)} = \mathrm{span}\{\psi_{-\nu,k}^{(\mu)}\}_{k=0}^{N_{\nu}-1}, \\ W_{-\nu} &= W_{-\nu}^{(1)} \oplus \cdots \oplus W_{-\nu}^{(p-1)}. \end{split}$$

Then the following expansion holds:

$$\mathbb{C}_N = W_{-1} \oplus W_{-2} \oplus \cdots \oplus W_{-m} \oplus V_{-m} \tag{3.8}$$

and, for each v = 1, 2, ..., m the following properties are valid:

- $\begin{array}{ll} \text{(a)} & V_{-v} = V_{-v-1} \oplus W_{-v-1}; \\ \text{(b)} & \{\varphi_{-v,k}\}_{k=0}^{N_v-1} \text{ is an orthonormal basis in } V_{-v}; \\ \text{(c)} & \{\psi_{-v,k}^{(1)}\}_{k=0}^{N_v-1} \cup \dots \cup \{\psi_{-v,k}^{(p-1)}\}_{k=0}^{N_v-1} \text{ is an orthonormal basis in } W_{-v}. \end{array}$

This theorem justifies the method of constructing subspaces V_{-1}, \dots, V_{-n} in \mathbb{C}_N with the following properties:

- (i) $V_{-\nu-1} \subset V_{-\nu}$ for all $\nu \in \{1, 2, ... n\}$;
- (ii) for each $v \in \{1, 2, ... n\}$, there exists a vector $\varphi^{(v)} \in V_{-v}$ such that the system $\{T_{p^{\nu}k}\varphi^{(\nu)}\}_{k=0}^{N_{\nu}-1}$ is an orthonormal basis in $V_{-\nu}$;
- (iii) for each $1 \le m \le n$, relation (3.7) is valid;
- (iv) for each $v \in \{1, 2, ... n\}$ there exist vectors $\psi_1^{(v)}, ..., \psi_{p-1}^{(v)} \in W_{-v}$ such that the system $\bigcup_{\mu=1}^{p-1} \{T_{p^v k} \psi_{\mu}^{(v)}\}_{k=0}^{N_v-1}$ is an orthonormal basis in W_{-v} .

Theorems 3.1-3.3 are proved by the author in [16]. A similar construction in the space $L^2(\mathbb{R}^d)$ is well-known and is related to the notion of multiresolution analysis. According to the terminology used in the theory of multiresolution analysis, the sequence $\{\varphi^{(v)}\}_{v=1}^n$ in property (ii) it is natural to call a scaling sequence in \mathbb{C}_N .

In particular, for p = 2, n = 3, using Theorem 3.3, we obtain three orthonormal wavelet bases in \mathbb{C}_8 :

$$\begin{split} &\{\psi_{-1,k}\}_{k=0}^3 \cup \{\varphi_{-1,k}\}_{k=0}^3 \qquad (m=1), \\ &\{\psi_{-1,k}\}_{k=0}^3 \cup \{\psi_{-2,k}\}_{k=0}^1 \cup \{\varphi_{-2,k}\}_{k=0}^1 \qquad (m=2), \\ &\{\psi_{-1,k}\}_{k=0}^3 \cup \{\psi_{-2,k}\}_{k=0}^1 \cup \{\psi_{-3,0}\} \cup \{\varphi_{-3,0}\} \qquad (m=3). \end{split}$$

In the Haar case (see Example 3.1), these bases consist of the vectors

$$\begin{split} \varphi_{-1,0} &= \frac{1}{\sqrt{2}}(1,1,0,0,0,0,0,0), \quad \psi_{-1,0} = \frac{1}{\sqrt{2}}(1,-1,0,0,0,0,0,0), \\ \varphi_{-1,1} &= \frac{1}{\sqrt{2}}(0,0,1,1,0,0,0,0), \quad \psi_{-1,1} = \frac{1}{\sqrt{2}}(0,0,1,-1,0,0,0,0), \\ \varphi_{-1,2} &= \frac{1}{\sqrt{2}}(0,0,0,0,1,1,0,0), \quad \psi_{-1,2} = \frac{1}{\sqrt{2}}(0,0,0,0,1,-1,0,0), \end{split}$$

$$\begin{split} \varphi_{-1,3} &= \frac{1}{\sqrt{2}}(0,0,0,0,0,0,1,1), & \psi_{-1,3} &= \frac{1}{\sqrt{2}}(0,0,0,0,0,0,1,-1), \\ \varphi_{-2,0} &= \frac{1}{2}(1,1,1,1,0,0,0,0), & \psi_{-2,0} &= \frac{1}{2}(1,1,-1,-1,0,0,0,0), \\ \varphi_{-2,1} &= \frac{1}{2}(0,0,0,0,1,1,1,1), & \psi_{-2,1} &= \frac{1}{2}(0,0,0,0,1,1,-1,-1), \\ \varphi_{-3,0} &= \frac{1}{2\sqrt{2}}(1,1,1,1,1,1,1,1,1), & \psi_{-3,0} &= \frac{1}{2\sqrt{2}}(1,1,1,1,-1,-1,-1,-1). \end{split}$$

In the general case, the orthogonal projections $P_{-v}: \mathbb{C}_N \to V_{-v}$ and $Q_{-v}: \mathbb{C}_N \to W_{-v}$ act by the formulas

$$P_{-\nu}x = \sum_{k=0}^{N_{\nu}-1} \langle x, \varphi_{-\nu,k} \rangle \varphi_{-\nu,k}, \quad Q_{-\nu}x = \sum_{\mu=1}^{p-1} \sum_{k=0}^{N_{\nu}-1} \langle x, \psi_{-\nu,k}^{(\mu)} \rangle \psi_{-\nu,k}^{(\mu)}.$$
 (3.9)

Suppose that I is the identity operator on \mathbb{C}_N . Setting $P_0 = I$, $V_0 = \mathbb{C}_N$ and using Theorem 3.3 for any $x \in \mathbb{C}_N$, we obtain the equalities

$$x = P_{-\nu}x + \sum_{k=1}^{\nu} Q_{-k}x, \ P_{-\nu+1}x = P_{-\nu}x + Q_{-\nu}x, \ \nu = 1, 2, \dots, n.$$

An arbitrary vector x from \mathbb{C}_N can be regarded as the input signal $a_0 = x$ and, for v = 1, 2, ..., m, we can set

$$a_{\nu} = D(a_{\nu-1} * \widetilde{u}_{0}^{(\nu)}), \quad d_{\nu}^{(\mu)} = D(a_{\nu-1} * \widetilde{u}_{\mu}^{(\nu)}), \quad \mu = 1, \dots, p-1.$$
 (3.10)

We can easily see that the components of the vectors a_v and $d_v^{(\mu)}$ are the coefficients of the expansions (3.8) for a chosen x. The application of formulas (3.9) constitutes the *phase of the analysis* of the signal x and yields the collection of vectors

$$d_1^{(1)}, \dots, d_{p-1}^{(1)}, \dots, d_1^{(m)}, \dots, d_{p-1}^{(m)}, a_m.$$
 (3.11)

The inverse passage from the collection (3.10) to the original vector x constitutes the *reconstruction phase* and is defined by the formulas

$$a_{\nu-1} = u_0^{(\nu)} * Ua_{\nu} + \sum_{\nu=1}^{p-1} u_{\mu}^{(\nu)} * Ud_{\mu}^{(\nu)}, \quad \nu = m, m-1, \dots, 1.$$
 (3.12)

Formulas (3.9) and (3.11) specify the *direct and inverse discrete wavelet transforms* associated with the sequence of wavelet filters $u_0^{(1)}, u_1^{(1)}, \ldots, u_{p-1}^{(1)}, \ldots, u_{p-1}^{(m)}, u_1^{(m)}, \ldots, u_{p-1}^{(m)}$, and are realized by using fast algorithms (cf. [21, Section 3.2], [28, Section 4]).

Remark 3.1. Suppose that $m \in \mathbb{N}$, $m \le n$. For a given sequence of vectors

$$u_0^{(1)}, \dots, u_{p-1}^{(1)}, v_0^{(1)}, \dots, v_{p-1}^{(1)}, \dots, u_0^{(m)}, \dots, u_{p-1}^{(m)}, v_0^{(m)}, \dots, v_{p-1}^{(m)}, (3.13)$$

such that $u_{\mu}^{(v)}, v_{\mu}^{(v)} \in \mathbb{C}_{N_{v-1}}$ for $v=1,2,\ldots,m, \mu=0,1,\ldots,p-1$, we introduce the matrices $A^{(v)}(l)$ just as in Definition 3.2 and set

$$\overline{B}^{(v)}(l) := \frac{N}{\sqrt{p}} \begin{pmatrix} \overline{\widehat{v}_0^{(v)}(l)} & \dots & \overline{\widehat{v}_{p-1}^{(v)}(l)} \\ \overline{\widehat{v}_0^{(v)}(l+N_v)} & \dots & \overline{\widehat{v}_{p-1}^{(v)}(l+N_v)} \\ \overline{\widehat{v}_0^{(v)}(l+2N_v)} & \dots & \overline{\widehat{v}_{p-1}^{(v)}(l+2N_v)} \\ \dots & \dots & \dots \\ \overline{\widehat{v}_0^{(v)}(l+(p-1)N_v)} & \dots & \overline{\widehat{v}_{p-1}^{(v)}(l+(p-1)N_v)} \end{pmatrix}^T,$$

where *T* denotes transposition. We say that the vectors (3.12) constitute a *sequence of biorthogonal wavelet filters of the mth stage* if

$$\overline{B}^{(v)}(l)A^{(v)}(l) = E_p, \quad v = 1, 2, ..., m; \ l = 0, 1, ..., N_v - 1,$$

where E_p is the identity matrix of order p. Using this definition, we can generalize the construction given above to the biorthogonal case and, instead of Examples 3.2-3.4, obtain the discrete analogs of the corresponding examples from [12] and [14].

Remark 3.2. Suppose that $\{w_k\}_{k=0}^{\infty}$ is the generalized Walsh system determined from the given number $p\geq 2$ and generating an orthonormal basis in the L^2 -space on the interval $\Delta=[0,1)$ (the case p=2 corresponds to the classical Walsh system; see, for example, [1]). To each sequence $x=(x_0,x_1,\ldots)$ from $\ell^2(\mathbb{Z}_+)$ we assign the function $\widehat{x}:=\sum_{k=0}^{\infty}x_kw_k$ in $L^2(\Delta)$. Using this mapping instead of the Vilenkin-Chrestenson transform, we can prove analogs of Theorems 3.1-3.3 for the space $\ell^2(\mathbb{Z}_+)$ (compare [21, Chapter 4]) and obtain the discrete nonperiodic analogs of the wavelet bases from [8] and [14].

Further discussions and possible applications of periodic wavelets considered in this paper can be found in the works [13] and [19].

Acknowledgment

I would like to express my gratitude to Prof. M. Skopina for reading and making valuable comments to Section 2 of the paper.

References

- [1] S. Albeverio, S. Evdokimov, and M. Skopina, *p*-adic multiresolution analysis and wavelet frames, *J. Fourier Anal. Appl.* **16**(5)(2010), 693–714.
- [2] J.J. Benedetto and R.L. Benedetto, A wavelet theory for local fields and related groups, *J. Geom. Anal.* **14**(3)(2004), 423–456.
- [3] S.A. Broughton and K.M. Bryan, *Discrete Fourier Analysis and Wavelets. Applications to Signal and Image Processing*, John Wiley & Sons, Hoboken, NJ, 2009.
- [4] H.L. Chen and S.L. Peng, Localization of dual periodic scaling and wavelet functions, *Adv. Comput. Math.* **19**(2003), 195–210.

- [5] C.K. Chui and H.N. Mhaskar, On trigonometric wavelets, Constr. Approx. 9(1993), 167–190.
- [6] R.E. Edwards, Fourier Series. A Modern Introduction, Vol. 2, Springer Verlag, Berlin, 1982.
- [7] Yu.A. Farkov, Orthogonal wavelets with compact support on locally compact abelian group, *Izvestiya: Mathematics* **69**(3)(2005), 623–650.
- [8] Yu.A. Farkov, Orthogonal wavelets on direct products of cyclic groups, Math. Notes 82(6)(2007), 843–859.
- [9] Yu.A. Farkov and E.A. Rodionov, Estimates of the smoothness of dyadic orthogonal wavelets of Daubechies type, *Math. Notes* **86**(3)(2009), 392–406.
- [10] Yu.A. Farkov, On wavelets related to the Walsh series, J. Approx. Theory 161(1) (2009), 259–279.
- [11] Yu.A. Farkov, Wavelets and frames based on Walsh-Dirichlet type kernels, *Communic. Math. Appl.* 1(2010), 27–46.
- [12] Yu.A. Farkov, A.Yu. Maksimov and S.A. Stroganov, On biorthogonal wavelets related to the Walsh functions, Int. J. Wavelets Multiresolut. Inf. Process. 9(3)(2011), 485–499.
- [13] Yu.A. Farkov and S.A. Stroganov, The use of discrete dyadic wavelets in image processing, *Russian Math.* (*Iz. VUZ*), **55**(7)(2011), 47–55.
- [14] Yu.A. Farkov and E.A. Rodionov, Algorithms for wavelet construction on Vilenkin groups, p-Adic Numb. Ultr. Anal. Appl. 3(3)(2011), 181–195.
- [15] Yu.A. Farkov, Periodic wavelets on the p-adic Vilenkin group, p-Adic Numb. Ultr. Anal. Appl. 3(4)(2011), 281–287.
- [16] Yu.A. Farkov, Discrete wavelets and the Vilenkin-Chrestenson transform, Math. Notes 89(6)(2011), 871–884.
- [17] Yu.A. Farkov, U. Goginava and T. Kopaliani, Unconditional convergence of wavelet expansion on the Cantor dyadic group, *Jaen J. Approx.* **3**(1)(2011), 117–133.
- [18] Yu.A. Farkov, Wavelets and frames in Walsh Analysis, in Wavelets: Classification, Theory and Applications, Chapter 11, edited by Manel del Valle et al, Nova Science Publishers, New York, 267–304 (2012).
- [19] Yu.A. Farkov and M.E. Borisov, Periodic dyadic wavelets and coding of fractal functions, *Russian Math. (Iz. VUZ)* (2012), in press.
- [20] B. Fisher and J. Prestin, Wavelets based on orthogonal polynomials, *Math. Computation* **66**(220)(1997), 1593–1618.
- [21] M.W. Frazer, An Introduction to Wavelets Through Linear Algebra, Springer-Verlag, New York, Inc., 1999.
- [22] B.I. Golubov, A.V. Efimov and V.A. Skvortsov, Walsh Series and Transforms: Theory and Applications, LKI, Moscow (2008); Klumer, Dordrecht (1991).
- [23] S.V. Kozyrev, Wavelet theory as *p*-adic spectral analysis, *Izvestiya: Mathematics* **66**(2)(2002), 149–158.
- [24] W.C. Lang, Orthogonal wavelets on the Cantor dyadic group, SIAM J. Math. Anal. **27**(1)(1996), 305–312.
- [25] S.F. Lukomskii, Multiresolution analysis on zero-dimensional abelian groups and wavelets bases, Sbornik: Mathematics, 201(5) (2010), 669–691.
- [26] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, New York London, 1999.
- [27] I.E. Maksimenko and M.A. Skopina, Multivariate periodic wavelets, *St. Petersburg Math. J.* **15**(2)(2004), 165–190.

- [28] I.Ya. Novikov, V.Yu. Protassov and M.A. Skopina, *Wavelet Theory*, Translations of Mathematical Monographs 239. Providence, RI: American Mathematical Society (AMS), 2011.
- [29] A.P. Petukhov, Periodic discrete wavelets, St. Petersburg Math. J. 8(3)(1996), 481-503.
- [30] A.P. Petukhov, Periodic wavelets, Shornik: Mathematics 188(10)(1997), 1481-1506.
- [31] VYu. Protasov and Yu.A. Farkov, Dyadic wavelets and refinable functions on a half-line, Sbornik: Mathematics 197(10)(2006), 1529–1558.
- [32] VYu. Protasov, Approximation by dyadic wavelets, Sbornik: Mathematics 198(11)(2007), 1665–1681
- [33] F. Schipp, W.R. Wade and P. Simon, Walsh Series: An Introduction to Dyadic Harmonic Analysis, Adam Hilger, New York, 1990.
- [34] Bl. Sendov, Multiresolution analysis of functions defined on the dyadic topological group, *East J. Approx.* **3**(2)(1997), 225–239.
- [35] Bl. Sendov, Walsh-similar functions, East J. Approx. 5(1)(1999), 1–65.
- [36] Bl. Sendov, Adapted multiresolution analysis and wavelets, in: Proceedings of Alexits Memorial Conference "Functions, Series, Operators" (August 9-14, 1999), L. Leindler, F. Schipp and J. Szabados (editors), Budapest (2002), 23–38.
- [37] F.A. Shah, Construction of wavelet packets on the *p*-adic field, *Int. J. Wavelets Multiresolut. Inf. Process.* **7**(5) (2009), 553–565.
- [38] F.A. Shah and L. Debnath, Dyadic wavelet frames on a half-line using the Walsh-Fourier transform, *Integ. Transf. Spec. Funct.* **22**(7) (2011), 477–486.
- [39] V.M. Shelkovich and M. Skopina, *p*-adic Haar multiresolution analysis and pseudo-differential operators, *J. Fourier Anal. Appl.* **15** (3) (2009), 366–393.
- [40] M.A. Skopina, Multiresolution analysis of periodic functions, *East J. Approx.* **3**(2)(1997), 203–224.
- [41] M.A. Skopina, Orthogonal polynomial Schauder bases in C[-1,1] with optimal growth of degrees, *Sbornik: Mathematics* **192**(3)(2001), 433–454.

Yu. A. Farkov, Russian State Geological Prospecting University, 23, Ulitsa Miklukho - Maklaya, Moscow 117997, Russia.

E-mail: farkov@list.ru