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1. Introduction
Wallace [14] investigated the Quasi Birth-Death process (QBD) in Queueing Theory using a
Markov chain with a tridiagonal generator. Numerical techniques can be used to analyze the
congestion situations when it is impossible to achieve a explicit solution for queueing problems.
The Matrix Geometric technique is ideal for this type of solutions. Neuts [10], Latouche and
Ramaswami [5] proposed the matrix geometric solution to the QBD process. Control policies are
important for managing queue levels at different epochs. Yadin and Naor [16] first propose the
N-policy.

The queueing system with attendant vacation is noteworthy, and can be refer in Tian and
Zhang [13]. Servi and Finn [11] created a modern vacation policy, termed as Working Vacation
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(WV), where the attendant delivers a lesser rate of service than during the engaged period. Wu
and Takagi [15] worked on M/G/1/MWV. Kalyanaraman and Murugan [4] have worked on the
retrial queue with vacation, Murugan and Santhi [9] have worked on WV.

Liu et al. [7] analysed the stochastic decompositions in the M/M/1/WV queue. The M/M/1/WV
queue and WV interruptions was analysed by Li and Tian [6]. Analysis for the M/M/1/MWV
queue and N-policy was studied by Zhang and Xu [19]. Ye and Liu [17] discussed the analysis
of the M/M/1 queue with two vacation policies.

Recently, retrial queues have been studied widely and it was different from normal queues.
Due to limited waiting space in the retrial queue the customers are forced to stay in the orbit.
Whenever the approaching customers finds that the attendant is engaged they join the orbit
and requests service from the orbit. An M/M/1 retrial queue with general retrial times was
studied by Choi et al. [2]. The retrial queue and WV was simultaneously considered by Do [3].
Tao et al. [12] discussed the M/M/1 retrial queue with collisions and WV interruption under
N-policy. We consider a Markovain retrial queue with WV under N-control pattern.

The following are the categories for this article. We present the model description and find
the infinitesimal generator in Section 2. The stability condition and Rate matrix (R) is computed
in Section 3. In Section 4, we use a matrix-analytic technique to derive the stationary probability
distribution. The line length’s conditional stochastic decomposition is computed in Section 5.
In Section 6, we calculate performance measures. The special cases is presented in Section 7,
and Section 8 has a firmness of the model. The conclusion is given in Section 9.

2. QBD Process Model
We examine a Markovian retrial queue with WV under N-control pattern. With the parameter λ,
the customer’s inter-arrival times are exponentially distributed. A Poisson process with rate
α governs request retrials from the infinite-sized orbit. The attendant will take a WV when
the system gets clear, which is exponentially distributed with parameter θ. The service is
exponentially distributed with parameters µ at the time of the regular busy period. When
comparing to the service offered throughout engaged period, the service provided at the time
of the WV is at a slower rate. WV service is exponentially distributed with parameters η

(η<µ). When a WV ends, if the attendant identifies not less than N customers in the orbit, the
attendant will terminates WV and return to engaged period. Otherwise, the attendant will start
another WV. Inter-arrival times, inter-retrial periods, service periods, and vacation periods are
all presumed to be independent of one another.

Let the number of customers in the orbit at time t is indicated by Q(t) and H(t) represent
attendant’s condition at time t. The single attendant might exist in four different states at
time t.

H(t)=


0 attendant is on WV and is unoccupied,
1 attendant is on WV and is engaged,
2 attendant is on engaged period and is unoccupied,
3 attendant is on engaged period and is engaged.

Evidently, {(Q(t),H(t)); t ≥ 0} is a Markov process with state space

Ω= {(m,h) : m ≥ 0,h = 0,1,2,3}.
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Figure 1. Transition between the states

The states infinitesimal generator can be described by employing lexicographical sequence
as follows:

Q̃ =



D0 F
E D1 F

E D1 F
E D1 F

...
...

...
E D1 F

E D F
E D F

...
...

...


,

where

D0 =


−λ λ 0 0
η −η−λ 0 0
0 0 0 0
µ 0 0 −µ−λ

 ,

F =


0 0 0 0
0 λ 0 0
0 0 0 0
0 0 0 λ

 ,

D1 =


−α−λ λ 0 0

η −η−λ 0 0
0 0 −α−λ λ

0 0 µ −µ−λ

 ,

E =


0 α 0 0
0 0 0 0
0 0 0 α

0 0 0 0

 ,
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D =


−α−λ−θ λ θ 0

η −λ−η−θ 0 θ

0 0 −α−λ λ

0 0 µ −µ−λ

 .

Due to the block structure of matrix Q̃, {(Q(t),H(t)); t ≥ 0} is called a QBD process. Pr{that the
attendant is engaged and does not offer a service to a customer while there is no customer in
the orbit}= 0.

3. The Model’s Stability Condition and R
Theorem 3.1. The QBD process {(Q(t),H(t)); t ≥ 0} is (+)ve recurrent ⇔α(µ−λ)>λ2.

Proof. Consider

Sm = E+D+F =


−α−λ−θ α+λ θ 0

η −θ−η 0 θ

0 0 −α−λ α+λ

0 0 µ −µ

 .

In [5, Theorem 7.3.1] offers requirement for (+)ve recurrence of the QBD process, because matrix
Sm is reducible. After permutation of rows and columns and hence the QBD is (+)ve recurrent

⇔ π

[
0 α

0 0

]
e >π

[
0 0
0 λ

]
e.

Here all the elements of the column vector e = 1 and π is the unique solution of the system

π

[−α−λ α+λ

µ −µ
]
= 0, πe = 1. The QBD process is (+)ve recurrent ⇔ α(µ−λ)>λ2 after some

algebraic manipulations.

Theorem 3.2. If α(µ−λ)>λ2, the matrix quadratic equation R2E+RD+F = 0 has the minimal
non-negative solution

R =


0 0 0 0
r1 r2 r3 r4
0 0 0 0
0 0 r5 r6

 ,

where

r1 = r2η

(λ+α+θ)
,

r2 = t−
√

t2 −4αλη(λ+α+θ)
2αη

and

t = [(λ+α+θ)(λ+θ+η)−ηλ],

r3 = r1θ+ r4µ

(λ+α)
,

r4 = αr2r1θ+ r1θλ+ r2θ(λ+α)
(λ+µ)(λ+α)−αr2µ−αr5(λ+α)−µλ

,
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r5 = λ

α
,

r6 = λ(λ+α)
µα

.

Proof. We can consider R =
[
R11 R12
0 R22

]
, from the matrices E,D,F where R11, R12 and R22 are

all 2×2 matrices. Substituting R into R2E+RD+F = 0, we get

R2
11

[
0 α

0 0

]
+R11

[
(−α−λ−θ) λ

η (−λ−η−θ)

]
+

[
0 0
0 λ

]
=

[
0 0
0 0

]
,

(R11R12 +R12R22)
[
0 α

0 0

]
+R11

[
θ 0
0 θ

]
+R12

[
(−α−λ) λ

µ (−µ−λ)

]
=

[
0 0
0 0

]
,

R2
22

[
0 α

0 0

]
+R22

[
(−α−λ) λ

µ (−µ−λ)

]
+

[
0 0
0 λ

]
=

[
0 0
0 0

]
.

From the above set of equations with some computations, we get R11, R22 and R12, respectively,

as R11 =
[

0 0
r1 r2

]
, R22 =

[
0 0
r5 r6

]
and R12 =

[
0 0
r3 r4

]
.

4. Stationary Probability Distribution
If α(µ−λ)>λ2, assign (Q,H) be the stationary probability distribution of the process
{(Q(t),H(t)); t ≥ 0}. Represent,

πm = (πm,0,πm,1,πm,2,πm,3), m ≥ 0;

πm,h = P{Q = m,H = h}= lim
t→∞P{Q(t)= m, H(t)= h}, (m,h) ∈Ω.

It is worth noting that π0,2 = 0 from states we discussed earlier.

Theorem 4.1. If (µ−λ)α>λ2, the stationary probability distribution of (Q,H) is indicated by

πm,0 =πN−1,1r1rm−N
2 , m ≥ N, (4.1)

πm,1 =πN−1,1rm+1−N
2 , m ≥ N, (4.2)

πm,2 =πN−1,1

[
r3rm−N

2 + r4r5

r6 − r2

(
rm−N

6 − rm−N
2

)]
+πN−1,3r5rm−N

6 , m ≥ N, (4.3)

πm,3 =πN−1,1
r4

r6 − r2
(rm+1−N

6 − rm+1−N
2 )+πN−1,3rm+1−N

6 , m ≥ N, (4.4)

πm,0 = η

λ+α
π0,1 + η

λ+α
(π1,1 −π0,1)

1− qm
1

1− q1
, 2≤ m ≤ N −2, (4.5)

πm,1 =π0,1 + (π1,1 −π01)
1− qm

1

1− q1
, 2≤ m ≤ N −2, (4.6)

πm,2 = µ

λ+α
π0,3 + µ

λ+α
(π1,3 −π0,3)

1− qm
2

1− q2
, 2≤ m ≤ N −2, (4.7)

πm,3 =π0,3 + (π1,3 −π0,3)
1− qm

2

1− q2
, 2≤ m ≤ N −2, (4.8)
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πN−1,0 = −λη
[λη+ (r1α−λ−η)(λ+α)]

πN−2,1, (4.9)

πN−1,1 = λ+α

η
πN−1,0, (4.10)

πN−1,2 = r3πN−1,1 + λ

α
πN−2,3, (4.11)

πN−1,3 = λ+α

µ
πN−1,2, (4.12)

π1,1 =−K−1
[
λ(λ+α+η)

λ+α
+∆−K

]
π0,1, (4.13)

π1,0 = η

λ+α
π1,1, (4.14)

π0,0 = λ+η

λ
π0,1 − α

λ
π1,0, (4.15)

π0,3 = λ

µ
π0,0 − η

µ
π0,1, (4.16)

π1,2 = λ+µ

α
π0,3, (4.17)

π1,3 = λ+α

µ
π1,2, (4.18)

where

q1 = λ(λ+α)
αη

,

q2 = λ(λ+α)
αµ

,

∆= −λαη
[λη+ (r1α−λ−η)(λ+α)]

−λ−η,

K =
[
λ

1− qN−3
1

1− q1
+

(
∆+ λη

λ+α

)1− qN−2
1

1− q1

]
.

The normalization condition can finally be used to determine π0,1.

Proof. Using the technique from [10], we have

πm = (πm,0,πm,1,πm,2,πm,3)=πN−1Rm+1−N

= (πN−1,0,πN−1,1,πN−1,2,πN−1,3)Rm+1−N , m ≥ N.

For m ≥ N ,

Rm+1−N =


0 0 0 0

r1rm−N
2 rm+1−N

2 r3rm−N
2 + r4r5

r6−r2
(rm−N

6 − rm−N
2 ) r4

r6−r2
(rm+1−N

6 − rm+1−N
2 )

0 0 0 0
0 0 r5rm−N

6 rm+1−N
6

 .

Substituting Rm+1−N into the above equation, we get (4.1)-(4.4).
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However, π0,π1, . . . ,πN−1 satisfies the equation (π0,π1, . . . ,πN−1)B[R]= 0, where

B[R]=



D0 F
E D1 F

E D1 F
...

...
...

E D1 F
E RE+D1


and

RE+D1 =


−(λ+α) λ 0 0

η r1α−λ−η 0 r3α

0 0 −(λ+α) λ

0 0 µ r5α−λ−µ

 .

The following equations are computed from B[R]

−λπ0,0 +ηπ0,1 +µπ0,3 = 0, (4.19)

λπ0,0 − (λ+η)π0,1 +απ1,0 = 0, (4.20)

− (λ+µ)π0,3 +απ1,2 = 0, (4.21)

− (λ+α)πm,0 +ηπm,1 = 0, 1≤ m ≤ N −2, (4.22)

λπm−1,1 +λπm,0 − (λ+η)πm,1 +απm+1,0 = 0, 1≤ m ≤ N −2, (4.23)

− (λ+α)πm,2 +µπm,3 = 0, 1≤ m ≤ N −2, (4.24)

λπm−1,3 +λπm,2 − (λ+µ)πm,3 +απm+1,2 = 0, 1≤ m ≤ N −2, (4.25)

− (λ+α)πN−1,0 +ηπN−1,1 = 0, (4.26)

λπN−2,1 +λπN−1,0 + (r1α−λ−η)πN−1,1 = 0, (4.27)

− (λ+α)πN−1,2 +µπN−1,3 = 0, (4.28)

λπN−2,3 + r3απN−1,1 +λπN−1,2 + (r5α−λ−µ)πN−1,3 = 0 . (4.29)

From (4.19) to (4.29), we get (4.5) to (4.18), where
3∑

h=0

∞∑
m=0

πm,h = 1, finally we can get π0,1.

5. Conditional Stochastic Decomposition
Lemma 5.1. If α(µ−λ)>λ2, let Q0 be the conditional line length of an M/M/1 retrial queue in
the orbit where the attendant is engaged, then Q0 has a PGF

GQ0(z)= 1− r6

1− r6z
.

Proof. Consider a Markovian retrial queue. Two inter-valued random variables are used to
explain the system at time t. Let Q•(t) be the number of customers in the orbit at time t,

H•(t)=
{

0 attendant is unoccupied,
1 attendant is engaged.

Then {(Q•(t),H•(t)); t ≥ 0} is a Markov process with state space {(m,h) : m ≥ 0,h = 0,1}.
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The infinitesimal generator can be expressed as

Q̃•


D0 F
E D F

E D F
...

...
...

 ,

where

D0 =
[−λ λ

µ −µ−λ

]
, F =

[
0 0
0 λ

]
, E =

[
0 α

0 0

]
, D =

[−α−λ λ

µ −µ−λ

]
.

The QBD process {(Q•(t),H•(t)); t ≥ 0} is (+)ve recurrent ⇔ (µ−λ)α>λ2. Express

πm,h = P{Q• = m,H• = h}= lim
t→∞P{Q•(t)= m,H•(t)= h} .

The stationary probability distribution is

π̃m,0 = π̃0,1r5rm−1
6 , m ≥ 1,

π̃m,1 = π̃0,1rm
6 , m ≥ 0,

π̃0,0 =
(
1+ 1+ r5

1− r6

λ

µ

)−1

,

π̃0,1 = λ

µ
π̃0,0 .

The normalization condition is used to determine the value of π0,0.
Therefore,

GQ0(z)=
∞∑

m=0
zmP{Q0 = m}=

∞∑
m=0

π̃0,1rm
6 zm

∞∑
m=1

π̃0,1rm−1
6

= 1− r6

1− r6z
.

Establishing QN = {difference of Q and N such that the state of the attendant is either 1 or
3 and Q ≥ N} and QN is the line length which depends on the condition that the attendant is
engaged and there are not less than N customers in the orbit.
Let P•

b denotes that Pr{the server is engaged given that atleast N customers present in the
orbit}.

P•
b = P{Q ≥ N,H = 1 or 3}

=
∞∑

m=N
πm,1 +

∞∑
m=N

πm,3

=
∞∑

m=N
πN−1,1rm+1−N

2 +
∞∑

m=N

r4

r6 − r2
(rm+1−N

6 − rm+1−N
2 )πN−1,1

+
∞∑

m=N
rm+1−N

6 πN−1,3

= r4 + r2(1− r6)
(1− r2)(1− r6)

πN−1,1 + r6

(1− r6)
πN−1,3.
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Theorem 5.1. If α(µ−λ)>λ2, then we can disintegrate QN =Q0+Qc, where Q0 go along with
a geometric distribution with specification 1− r6. Subsidiary line length Qc has a distribution

P{Qc = 0}= 1
P•

b

(r2 + r4)πN−1,1 + r6πN−1,3

1− r6
,

P{Qc = m}= πN−1,1

P•
b

r2(r2 + r4 − r6)
1− r6

rm−1
2 , m ≥ 1.

Proof. The PGF of QN is given below:

GQN (z)=
∞∑

m=0
zmP{QN = m}

= 1
p•

b

( ∞∑
m=0

zmπN+m,1 +
∞∑

m=0
zmπN+m,3

)

= 1
p•

b

[
πN−1,1

r2

1− r2z
+πN−1,1

r4

(1− r2z)(1− r6z)
+πN−1,3

r6

1− r6z

]

= 1
p•

b

1− r6

1− r6z

[
πN−1,1

r2(1− r6z)
(1− r2z)(1− r6)

+πN−1,1
r4

(1− r2z)(1− r6)
+πN−1,3

r6

1− r6

]

= 1
p•

b

1− r6

1− r6z

[
(r2 + r4)πN−1,1 + r6πN−1,3

1− r6
+πN−1,1

r2(r2 + r4 − r6)z
(1− r2z)(1− r6)

]

= 1− r6

1− r6z

[
1
p•

b

(r2 + r4)πN−1,1 + r6πN−1,3

1− r6
+πN−1,1

1
p•

b

r2(r2 + r4 − r6)z
(1− r2z)(1− r6)

]
=GQ0(z)GQc (z) .

6. Performance Measures
From Theorem 4.1, we have

Pr{that the attendant is engaged}= Pb

=
∞∑

m=0
πm,1 +

∞∑
m=0

πm,3

= (N −1)
(
π1,1

1− q1
− q1π0,1

1− q1

)
− π1,1 −π0,1

(1− q1)2 (1− qN−1
1 )

+ (N −1)
(
π1,3

1− q2
− q2π0,3

1− q2

)
− π1,3 −π0,3

(1− q2)2 (1− qN−1
2 )

+ 1− r6 + r4

(1− r2)(1− r6)
πN−1,1 + 1

(1− r6)
πN−1,3 ,

Pr{that the attendant is unoccupied}= P f

=
∞∑

m=0
πm,0 +

∞∑
m=1

πm,2 = 1−Pb .
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Assume that L denotes the number of customers in the orbit, subsequently

E[L]=
∞∑

m=1
m(πm,0 +πm,1 +πm,2 +πm,3)

=
N−1∑
m=1

m(πm,0 +πm,2)+
N−2∑
m=1

m(πm,1 +πm,3)

+ (N −1)πN−1,1
(1+ r1 + r3)(1− r6)+ r4(1+ r5)

(1− r2)(1− r6)

+ (N −1)πN−1,3
1+ r5

1− r6
+πN−1,3

r5 + r6

(1− r6)2

+πN−1,1
(r1 + r2 + r3)(1− r6)2 + r4r5(2− r2 − r6)+ r4(1− r2r6)

(1− r6)2(1− r2)2 .

Let Ls be the number of customers in the system, subsequently

E[Ls]=
∞∑

m=1
m(πm,0 +πm,2)+

∞∑
m=0

(m+1)(πm,1 +πm,3) .

We have the following assumptions and results.
Let

W — orbit customer’s waiting time
E[Ws] — expected stopover time of orbit customer in the system
T — engaged period

Then, E[W]= E[L]
λ

, E[Ws]= E[Ls]
λ

and π0,0 = E[T0,0]
E[T]+1/λ , where E[T0,0] is the absolute time in the

idle state throughout a regenerative cycle.

Also E[T0,0]= 1
λ

, E[T]= (π−1
0,0 −1)λ−1.

7. Special Cases
(a) If α→∞ this model is remodeled as “Analysis for the M/M/1 queue with multiple working

vacations and N-policy”.

(b) If α→∞, η= 0 this model is remodeled as “An M/M/1 queue with multiple vacation under
N-policy”.

(c) If α→∞, η= 0, θ = 0 this model is remodeled as “Standard M/M/1 queue under N-policy”.

8. Numerical Results
By fixing the values of N = 2, µ= 7.5, θ = 1, η= 0.5 and extending the value of λ from 1.0 to
2.0 incremented with 0.2 and extending the values of α from 3.2 to 4.2 insteps of 0.5 subject
to the stability condition the values of E(L) are calculated and tabulated in Table 1 and the
corresponding line graphs are drawn in Figure 2. From the graph it is inferred that as λ rises
E(L) rises as expected.
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Figure 2. E(L) with turn over of λ

λ α= 3.2 α= 3.7 α= 4.2

1.0 0.2341 0.2136 0.1997

1.2 0.3165 0.2881 0.2661

1.4 0.4135 0.3751 0.3457

1.6 0.5929 0.4779 0.4391

1.8 0.6701 0.6015 0.5501

2.0 0.8457 0.7528 0.6843

Table 1. E(L) with turn over of λ

By fixing the values of N = 2, µ= 7.7, θ = 1.7, α= 3.5 and extending the value of λ from 1.0
to 2.0 incremented with 0.5 and extending the values of η from 0.3 to 2.3 insteps of 1 subject
to the stability condition the values of E(L) are calculated and tabulated in Table 2 and the
corresponding line graphs are drawn in Figure 3. From the graph it is inferred that as λ rises
E(L) rises as expected.
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Figure 3. E(L) with turn over of λ

λ η= 0.3 η= 1.3 η= 2.3

1.0 0.2296 0.1738 0.1386

1.2 0.3061 0.2437 0.2012

1.4 0.3947 0.3272 0.2781

1.6 0.4987 0.4271 0.3722

1.8 0.6231 0.5482 0.4881

2.0 0.7750 0.6974 0.6327

Table 2. E(L) with turn over of λ

By fixing the values of N = 2, µ= 7.9, θ = 1.7, η= 2.3 and extending the value of λ from 1.0
to 2.0 incremented with 0.2 and extending the values of α from 1.5 to 3.5 insteps of 1 subject
to the stability condition the values of Pb are calculated and tabulated in Table 4 and the
corresponding line graphs are drawn in Figure 3. From the graph it is inferred that as λ rises
Pb rises as expected.

α 1.5
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0.35

λ

P
b

Figure 4. Pb with turn over of λ

λ α= 1.5 α= 2.5 α= 3.5

1.0 0.2751 0.2663 0.2704

1.2 0.2797 0.2941 0.3004

1.4 0.2975 0.3171 0.3263

1.6 0.3116 0.3367 0.3486

1.8 0.3227 0.3534 0.3682

2.0 0.3314 0.3676 0.3855

Table 3. Pb with turn over of λ
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By fixing the values of N = 2, µ= 9.1, θ = 3.6, η= 2.1 and extending the values of λ from
1.0 to 2.0 incremented with 0.2 and extending the values α from 3 to 6 insteps of 1.5 subject
to the stability condition the values of P f are calculated and tabulated in Table 4 and the
corresponding line graphs are drawn in Figure 5. From the graph it is inferred that as λ rises
P f falls as expected.
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λ
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Figure 5. P f with turn over of λ

λ α= 3 α= 4.5 α= 6

1.0 0.7266 0.7221 0.7199

1.2 0.7002 0.6932 0.6896

1.4 0.6784 0.6685 0.6633

1.6 0.6601 0.6472 0.6404

1.8 0.6447 0.6286 0.6201

2.0 0.6316 0.6123 0.6019

Table 4. P f with turn over of λ

9. Conclusion
In this article, a Markovian retrial queue and WV under N-control pattern is evaluated. We
calculate stability condition and rate matrix of the model. We went on the stationary probability
distribution by adopting the matrix-analytic methods. We also derive the conditional stochastic
decomposition and performance measures. We perform some special cases and illustrate some
numerical examples under the stability condition.
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