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Shift Invariant Spaces and Shift Generated
Dual Frames for Local Fields

A. Ahmadi and A. Askari Hemmat

Abstract. Let G be a locally compact Abelian group with a compact open
subgroup H and X be a shift invariant subspace of L2(G) which forms a frame
for a closed subspace of L2(G), then the dual frame of X which is a shift invariant
space, is called shift generated dual frame.

In the present paper, we first define shift generated dual frame of type I and
type II for a locally compact Abelian group with a compact open subgroup. Next,
we present a characterization of shift generated dual frame in terms of fibers H⊥.

1. Introduction

In this paper we define shift generated dual frame for shift invariant spaces
which form a frame for L2(G), where G is a locally compact Abelian group with a
compact open subgroup.

The theory of shift invariant spaces play an important role in image processing,
signal processing and sampling theory. The shift invariant subspaces of L2(R)
introduced by Helson in [11]. Bownik in [6] presented a characterization of shift
invariant subspaces of L2(Rn). Kamyabi Gol and Raisi Tousi defined shift invariant
subspaces of L2(G) where G is a locally compact Abelian group with a uniform
lattice (a discrete and cocompact subgroup of G) [12]. Finally, in [1] the authors
introduced shift invariant subspaces for local fields.

Dual frames are useful tools for expansion of a signal into its frame components.
Frames introduced by Duffin and Schaefer [8]. Askari Hemmat and Gabardo in
[3] presented a characterization of shift generated dual frames for shift invariant
spaces of L2(Rn) which form a frame for L2(Rn).

In this paper we characterize shift generated dual frames for L2(G) where G is
a locally compact Abelian group with a compact open subgroup.
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The present paper has been organized as follows. In section 2, we recall some
definition and theorems which we need them. In section 3, we recall the definition
of shift invariant spaces for local fields. Finally, in section 4, we define shift
generated dual frames of type I and type II and present our main result theorem.

2. Preliminaries

In this section we fix the terminology which we require from frame theory,
locally compact Abelian groups.

For definitions and theorems of locally compact Abelian groups we refer to [9].
Throughout this paper we assume that G be a locally compact Abelian (LCA)

group with a compact open subgroup H with Haar measure µ which is normalized
on H, i.e., µ(H) = 1. We denote the dual group G by bG and annihilator of H by
H⊥, that is H⊥ = {γ ∈ bG : (x ,γ) = 1 for all x ∈ H}, where (x ,γ) denotes the action
of the duality between G and bG, with Haar measure ν such that ν(H⊥) = 1. Since
H is a compact open subgroup of G then H⊥ is a compact open subgroup bG, also
G/H and bG/H⊥ are discrete.

The Fourier transform ∧ : L1(G)→C0(bG), is defined by

∧( f )(γ) = bf (γ) = ∫
G

f (x)(x ,γ)dµ(x).

The Weil’s Formula is the identity∫
G

f (x)dµ(x) =

∫
G/H

∫
H

f (x y)dµ(y)dµG/H(xH), for f ∈ L1(G).

A local field is an algebraic field and a topological properties of locally compact
non discrete, complete and totally disconnected. Now, we present two examples
of local fields:

Example 2.1 ([4]). A good example for local fields is Qp, where p is a prime
number. That is the completion of Q with respect to a certain natural metric
topology. One of the most important application of these groups is in quantum
physics ([10]).

Another example for local fields is called cantor dyadic group which is the
field F2((t)) of formal Laurent series consists of all infinite formal sums cn0

tn0 +
cn0+1 tn0+1 + cn0+2 tn0+2 + . . . , where n0 ∈ Z, each cn ∈ F2 where F2 is the field of
elements {0, 1}.

Here, we recall definition of frame and Riesz family for a Hilbert space H . For
more details the authors refer to [7].

A family Ω is called a frame for a separable Hilbert space H if there exists
constants 0< A≤ B <∞ which satisfies in the following inequality

A


 f 

2 ≤∑

η∈Ω
|〈 f ,η〉|2 ≤ B∥ f ∥2, for all f ∈H . (2.1)
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The family Ω is called a Bessel family if the right hand inequality 2.1 holds.
A family X is called a Riesz family for a Hilbert space H if there exist two

constants 0< A≤ B <∞ such that the following inequality holds.

A
∑
η∈X
|hη|2 ≤
∑
η∈X
∥hηη∥2 ≤ B
∑
η∈X
|hη|2,

for all finitely supported {hη}η∈X ⊆ C.
For Bessel collection F = { fn}n∈N, we recall the definitions of analysis operator

TF : H → l2(N) by TF ( f ) = {〈 f , fn〉}n∈N, f ∈ H . The synthesis operator
T ∗F : l2(N)→H is defined

T ∗X ({cn}n∈N) =
∑
n∈N

cn fn, {cn}n∈N ∈ l2(N).

The operator S = T ∗F TF :H →H is called frame operator. If F is a frame then S
is a bounded and invertible operator from H onto H . The collection {S−1 fn}n∈N
is called the standard dual frame of the frame F .

3. Review on shift invariant spaces

The authors in [1] defined shift invariant spaces for an LCA group G with a
compact open subgroup.

For the definition of shift invariant spaces we need to recall the definitions of
the translation operator on L2(G). It has been defined in [4] and [5]. We recall it
in the following

Definition 3.1. The maps θ = θD : bG → D, η = ηD : bG → H⊥ are defined by
θ(γ) = the unique σγ ∈ D and ηD(γ) = γ− θ (γ), where D ⊆ bG is the set of coset
representatives in bG for the quotient bG/H⊥. Also for any fixed [s] ∈ G/H and for
any f ∈ L2(G), the translation operator τ[s] f is defined by τ[s] f = f ∗ ω̌[s], where

ω[s](γ) = (s,ηD(γ)) and ω̌[s] is the inverse Fourier transform of ω[s].

Now we are ready to recall the definition of shift invariant spaces.

Definition 3.2. A closed subspace V ⊆ L2(G) is called shift invariant space with
respect to G/H, if f ∈ V implies τ[s] f ∈ V for all [s] ∈ G/H, where τ[s] is the
translation operator defined in Definition 3.1. For countable subset Φ ⊂ L2(G) we
define principal shift invariant space by VΦ = span{τ[s]ϕ : [s] ∈ G/H,ϕ ∈ Φ}.

We consider l2⊥ := l2(bG/H⊥) and define the Hilbert space

L2∗ := L2(H⊥, l2⊥) =
�
Φ : H⊥→ l2⊥;

∫
H⊥
∥Φ(γ)∥2l2⊥

dν(γ)<∞
�

.

With inner product 〈 f , g〉 = ∫
H⊥〈 f (ξ), g(ξ)〉l2⊥dν(ξ), and norm ∥ f ∥L2∗ =∫

H⊥ ∥ f (ξ)∥2l2⊥
dν(ξ). Also, the mapping b : L2(G) → L2∗ defined by (bg)(γ) =

{bg(γ+ η)}[η]∈bG/H⊥ is an isometric isomorphism between L2(G) and L2∗ (for more
details see [2, 13]).
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Definition 3.3. A range function is a mapping

J : H⊥→ {closed subspaces of l2⊥}
J is called measurable if the orthogonal projections P(ξ) : l2⊥ → J(ξ) for a.e.
ξ ∈ H⊥ are measurable i.e. ξ→ 〈P(ξ)a, b〉 is measurable for all a, b ∈ l2⊥.

In [2] we used the ideas proof of Theorems 3.1 of [13] and 2.3 of [6] to prove
the following theorem.

Theorem 3.4. Assume that G is an LCA group with compact open subgroup H and J
is a measurable range function. A closed subspace V ⊆ L2(G) is shift invariant, with
respect to the lattice induced by G/H, if and only if

V = { f ∈ L2(G) b f (ξ) ∈ J(ξ) for a.e. ξ ∈ H⊥}, (3.1)

Also, if VΦ is a shift invariant subspace of L2(G) generated by countable set Φ ⊂
L2(G), then J(ξ) = span{bϕ(ξ);ϕ ∈ Φ}.
4. Shift generated dual frames

Our main goal in this section is to generalize a characterization of shift
generated dual frame for shift invariant subspaces of L2(G) in terms of fibers of
H⊥. For this, we need to define shift generated dual frames of type I and type II.
If the shift invariant system X is a frame for closed subspace M of L2(G) but is
not a Riesz family, then there exists a dual frame except standard dual frame for
X , which is shift invariant. We recall definition of three types of dual frame for a
Hilbert spaceH .

Definition 4.1. If F = { fn}n∈N is a frame for the closed subspaceM of the Hilbert
spaceH with inner product denoted by 〈·, ·〉.

(i) A dual frame for the frame F is a Bessel collection K = {kn}n∈N ⊆ H
satisfying
∑
n∈N
〈 f , kn〉 fn = f , f ∈M .

(ii) A dual frame of type I for frame F is a frame {kn}n∈N such that kn ∈M , for
each n ∈ N.

(iii) A dual frame of type II for the frame F is a frame K = {kn}n∈N with the
property Range(TK) ⊂ Range(TF ), where TF and TK denotes the analysis
operators associated with F and K , respectively.

Now, we are ready to define three types of shift generated dual frames, for shift
invariant subspace X of L2(G) which form frame for span X .

Definition 4.2. Let X = {τ[s]ϕ; [s] ∈ G/H, ϕ ∈ Φ} be a frame for closed subspace
VΦ ⊂ L2(G). Let R : Φ→ L2(G) be a mapping and Y = {τ[s]Rϕ; [s] ∈ G/H,ϕ ∈ Φ}.

(i) We say that Y is shift generated (SG)-dual frame for X if it is a dual frame
for X as in Definition 4.1(i).
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(ii) We say that Y is shift generated (SG)-dual frame of type I (resp. type II) for
X , if it is a dual frame for X as in Definition 4.1(ii)(resp. (iii)).

To prove Theorem 4.5 we must to establish two following lemmas. The function
h ∈ L2(G) is called D-periodic function whenever f (ξ+η) = f (ξ), η ∈ D and for
a.e. ξ ∈ H⊥.
Lemma 4.3. If mϕ is a measurable D-periodic function for ϕ ∈ Φ, such that∫

H⊥
∑
ϕ∈Φ
|mϕ(ξ)|2dν(ξ) < ∞. Then for X = {τ[s]ϕ;ϕ ∈ Φ, [s] ∈ G/H} with the

Bessel property, the following are equivalent

(a)
∑
ϕ∈Φ
∫

H⊥〈b f (ξ),bϕ(ξ)〉mϕ(ξ)dν(ξ) = 0, for all f ∈ VΦ.

(b) For a.e. ξ ∈ H⊥, we have
∑
ϕ∈Φ
〈b f (ξ),bϕ(ξ)〉mϕ(ξ)dν(ξ) = 0, for all f ∈ VΦ.

Proof. Let (a) holds. If {e[η]}[η]∈bG/H⊥ is the standard orthonormal basis for l2⊥ then
b f (ξ) =
∑

[η]∈bG/H⊥ P(ξ)e[η], where P(ξ) : l2⊥ → J(ξ) is a orthogonal projection

projection and J(ξ) is range function. Thus∑
ϕ∈Φ

� ∑
[η]∈bG/H⊥ P(ξ)e[η],bϕ(ξ)

�
=
∑
ϕ∈Φ
〈b f (ξ),bϕ(ξ)〉= 0.

Now we assume that (b) fails. Then there exists a measurable subset E of H⊥ such
that ν(E) > 0 and h(ξ) =

∑
[η]∈bG/H⊥〈P(ξ)e[η],bϕ(ξ)〉mϕ(ξ) ̸= 0. Therefore we have

subsets

E1 = {ξ ∈ E;Reh(ξ)> 0}, E2 = {ξ ∈ E; Imh(ξ)> 0},
E3 = {ξ ∈ E;Reh(ξ)< 0}, E4 = {ξ ∈ E; Imh(ξ)< 0}.

Set b f1 = χE1
e[η] then f1 ∈ M and

∑
ϕ∈Φ
∫

H⊥〈b f1(ξ),bϕ(ξ)〉mϕ(ξ)dν(ξ) ̸= 0. That

is a contradiction and proof is completed. It is clear that (b) implies that (a). �

Lemma 4.4. Let X = {τ[s]ϕ;ϕ ∈ Φ, [s] ∈ G/H} be a frame for span X and let
R : Φ→ L2(G) be a mapping with property that Y = {τ[s]Rϕ;ϕ ∈ Φ, [s] ∈ G/H} is
Bessel. Then, the following are equivalent

(a) Range TY ⊂ Range TX

(b) The range of the analysis operator associated with collection {bRϕ(ξ)}ϕ∈Φ in
l2⊥ is contained in the range of analysis operator associated with collection
{bϕ(ξ)}ϕ∈Φ.

Proof. Define eX = {bϕ(ξ)}ϕ∈Φ and eY = {bRϕ(ξ)}ϕ∈Φ. Set I = Φ×G/H. We must
show that range(TX )⊥ ⊂ range(TY )⊥ (note that range TX and range TY are closed
subspace of l2(I ).) Let {cϕ,[s]} ∈ l2(I ) satisfies

∑
(ϕ,[s])∈I

〈 f ,τ[s]ϕ〉cϕ,[s] = 0.

We claim that
∑

(ϕ,[s])∈I
〈 f ,τ[s]Rϕ〉cϕ,[s] = 0.
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Let (b) holds, then (range TeX )⊥ ⊂ (range TeY )⊥. Thus for {dϕ} ∈ l2(Φ) and b ∈ J(ξ),
if ∑

ϕ∈Φ
〈b,bϕ(ξ)〉dϕ = 0

then, ∑
ϕ∈Φ
〈b,b(Rϕ)(ξ)〉dϕ = 0,

for a.e. ξ ∈ H⊥.
By Plancherel Theorem and Weil’s Formula we have∑

(ϕ,[s])∈I
〈 f ,τ[s]ϕ〉

=
∑

(ϕ,[s])∈I
〈bf ,ω[s] bϕ〉

=
∑

(ϕ,[s])∈I

∫
bG bf (γ) bϕ(γ)ω[s](γ)dν(γ)

=
∑

(ϕ,[s])∈I

∫
H⊥

� ∑
[η]∈bG/H⊥
bf (γ+η) ̂ϕ(γ+η)

�
ω[s](γ)dν(γ)cϕ,[s]. (4.1)

Set mϕ =
∑

[s]∈G/H
cϕ,[s]ω[s]. The function ω[s] is D-periodic so is mϕ , and since ω[s]

is a unimodular function then∫
H⊥

∑
ϕ∈Φ
|mϕ(ξ)|2dν(ξ) =

∫
H⊥

∑
(ϕ,[s])∈I

|cϕ,[s]|2dν(ξ)<∞.

Thus {mϕ(ξ)}ϕ∈Φ ∈ l2(Φ) for a.e. ξ ∈ H⊥.
For {c([s],ϕ)}([s],ϕ)∈I and for all f ∈ VΦ we have∑

(ϕ,[s])∈I
〈 f ,τ[s]ϕ〉c([s],ϕ) =

∫
H⊥

∑
ϕ∈Φ
〈b f (ξ),bϕ(ξ)〉mϕ(ξ)dν(ξ). (4.2)

∑
(ϕ,[s])∈I

〈 f ,τ[s]Rϕ〉c([s],ϕ) =
∫

H⊥

∑
ϕ∈Φ
〈b f (ξ),bRϕ(ξ)〉mϕ(ξ)dν(ξ). (4.3)

By Lemma 4.3 and (4.2) we have
∑
ϕ∈Φ
〈b f (ξ),bϕ(ξ)〉mϕ(ξ) = 0, that is

{mϕ(ξ)}ϕ∈Φ ∈ (Range TeX )⊥ and since (b) holds, then∑
ϕ∈Φ
〈b f (ξ),bRϕ(ξ)〉mϕ(ξ) = 0, for all f ∈ VΦ.

Thus the left-hand equality (4.3) is zero, which shows that (a) is true.
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Conversely, let (a) holds. If
∑
ϕ∈Φ
〈b f (ξ),bϕ(ξ)〉aϕ = 0, for {aϕ}ϕ∈Φ ∈ (range TeX )⊥.

Set mϕ = aϕ , then by (4.2), (4.3) and Lemma 4.3, we have∑
ϕ∈Φ
〈b f (ξ),bRϕ(ξ)〉aϕ(ξ) = 0, for a.e. ξ ∈ H⊥. Therefore (b) is true. �

The following theorem and corollaries present a characterization of SG-dual
frames, SG-dual of type I and SG-dual of type II for frame X = {τ[s]ϕ; [s] ∈
G/H,ϕ ∈ Φ}.
Theorem 4.5. We assume that X = {τ[s]ϕ; [s] ∈ G/H,ϕ ∈ Φ} is a frame for
closed subspace M ⊆ L2(G) and R : Φ → L2(G) is a mapping that the collection
Y = {τ[s]Rϕ; [s] ∈ G/H,ϕ ∈ Φ} is Bessel, then Y is a SG-dual for X if and only if
the collection eY = {bRϕ(ξ)}ϕ∈Φ is a SG-dual frame for eX = {bϕ(ξ)}ϕ∈Φ.

Proof. By Plancherel Theorem and Weil’s Formula we have

∥ f ∥2 = ∥bf ∥2 = ∫bG |bf (ξ)|2dν(ξ) =

∫
H⊥

∑
[η]∈bG/H⊥ |
bf (ξ+η)|2dν(ξ).

Let eY be a SG-dual frame for eX thus for a.e. ξ ∈ H⊥,∑
ϕ∈Φ
〈b f (ξ),bϕ(ξ)〉〈bg(ξ),bRϕ(ξ)〉= 〈b f (ξ),bg(ξ)〉.

We must show that∑
(ϕ,[s])∈I

〈 f ,τ[s]ϕ〉〈g,τ[s]Rϕ〉= 〈 f , g〉.

For f ∈ VΦ,∑
(ϕ,[s])∈I

〈 f ,τ[s]ϕ〉〈g,τ[s]Rϕ〉

=
∑

(ϕ,[s])∈I

�∫
bG bf (ξ)ω[s](ξ)ϕ̂(ξ)dν(ξ)

∫
bG bg(ξ)ω[s](ξ)R̂ϕ(ξ)dν(ξ)

�

=
∑

(ϕ,[s])∈I

�∫
H⊥

∑
[η]∈bG/H⊥
bf (ξ+η)ω[s](ξ) ̂ϕ(ξ+η)dν(ξ))

×
∫

H⊥

∑
[η]∈bG/H⊥ bg(ξ+η)ω[s](ξ) ̂Rϕ(ξ+η)dν(ξ)

�

=
∑
ϕ∈Φ

�∫
H⊥
〈b f (ξ),bϕ(ξ)〉ω[s](ξ)dν(ξ)

×
∫

H⊥
〈bg(ξ),bRϕ(ξ)〉ω[s](ξ)dν(ξ)

�
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=
∑
ϕ∈Φ

̂〈b f (ξ),bϕ(ξ)〉 ̂〈bg(ξ),bRϕ(ξ)〉,

the Parseval’s identity [14] implies that∑
ϕ∈Φ

̂〈b f (ξ),bϕ(ξ)〉 ̂〈bg(ξ),bRϕ(ξ)〉= 〈b f (ξ),bg(ξ)〉L2∗

=

∫
H⊥
〈b f (ξ),bg(ξ)〉l2⊥dν(ξ).

By Weil’s Formula and Plancherel Theorem we have∫
H⊥
〈b f (ξ),bg(ξ)〉dν(ξ) =

∫
H⊥

∑
[η]∈bG/H⊥

̂f (ξ+η) ̂g(ξ+η)dν(ξ)

=

∫
bG f̂ (ξ) ĝ(ξ)dν(ξ)

= 〈bf , bg〉L2(bG)
= 〈 f , g〉L2(G).

Therefore, Y is a SG-dual frame for X .
For the converse, let Y be SG-dual frame for X , then∑

(ϕ,[s])∈I
〈 f ,τ[s]ϕ〉〈g,τ[s]Rϕ〉= 〈 f , g〉.

We must show that for all f , g ∈ VΦ∑
ϕ∈Φ
〈b f (ξ),bϕ(ξ)〉〈bg(ξ),bRϕ(ξ)〉= 〈b f (ξ,bg(ξ))〉, for a.e. ξ ∈ H⊥. (4.4)

Let 4.4 fails, then there exists a measurable subset E1 of H⊥ with ν(E1) > 0 and
[η1], [η2] ∈ bG/H⊥, such that for a.e. ξ ∈ E1,

F (ξ) =
�∑
ϕ∈Φ
〈P(ξ)e[η1],bϕ(ξ)〉〈P(ξ)e[η2],bRϕ(ξ)〉−〈P(ξ)e[η1], P(ξ)e[η2]〉

�
̸= 0.

Thus one of the following inequality holds

Re(F (ξ))> 0, Re(F (ξ))< 0, Im(F (ξ))> 0, Im(F (ξ))< 0, for ξ ∈ E1.

For example, we assume that Re(F (ξ))< 0. Set

P1(ξ) = χE1
P(ξ)e[η1] and P2(ξ) = χE1

(ξ)P(ξ)e[η2].

Thus there exist f , g ∈ M such that b f (ξ) = P1(ξ) and bg(ξ) = P2(ξ) for a.e.
ξ ∈ H⊥. Since∑

ϕ∈Φ

∫
H⊥

̂〈b f (ξ),bϕ(ξ)〉 ̂〈bg(ξ),bRϕ(ξ)〉dν(ξ) =
∫

H⊥
〈b f (ξ),bg(ξ)〉dν(ξ),



Shift Invariant Spaces and Shift Generated Dual Frames for Local Fields 213

then

0= Re
�∫

H⊥

�∑
ϕ∈Φ
〈P(ξ)e[η1],bϕ(ξ)〉〈P(ξ)e[η2],bRϕ(ξ)〉

− 〈P(ξ)e[η1], P(ξ)e[η2]〉
�

dν(ξ)
�

=

∫
E1

Re(F (ξ))dν(ξ),
that is a contradiction with Re(F (ξ))< 0. And the other cases are similar to it. �

By the pervious theorem and Theorem 3.4, the following corollary is true.

Corollary 4.6. Retain the assumption of Theorem 4.5 then Y is a SG-dual frame of
type I for X if and only if the collection eY = {bRϕ(ξ)}ϕ∈Φ is a SG-dual frame of type I
for eX = {bϕ(ξ)}ϕ∈Φ.

To prove the next corollary we use Theorem 4.5 and Lemma 4.4 imply that (3)

Corollary 4.7. Retain the assumption of Theorem 4.5 then Y is a SG-dual frame of
type II for X if and only if the collection eY = {bRϕ(ξ)}ϕ∈Φ is a SG-dual frame of
type II for eX = {bϕ(ξ)}ϕ∈Φ.
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