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1. Introduction
The complex systems with memory are modeled using fractional calculus. In 1823, Abel solved
an integral equation associated with Tautochrone problem via fractional calculus (Podlubny [8]).
Many physical phenomenon in engineering and science are modeled as fractional integro-
differential equations (FIDEs). Recently researchers paid a great deal of attention towards
the development of analytical and numerical approaches for the system of fractional integro-
differential equations [2, 3, 9]. Mahdy and Mohamed [3], and Mahdy [4] studied numerical
solution of fractional integro-differential equation using Hermite polynomials and method of
Least squares. Chebyshev spectral method was implemented by Zedan et al. [10] to find the
solution of system of fractional integro-differential equations and Abel’s integral equations.
Analytical method based on homotopy analysis method is proposed by Zurigat et al. [11] to find
the solution of system of linear and nonlinear fractional integro-differential equations. Authors
have implemented several methods to obtain analytical as well as approximate solution of linear
and nonlinear fractional integro-differential equations [6,7]. Momani and Qaralleh et al. [5]
developed an efficient tool to obtain solution of system of fractional integro-differential equations
by Adomian polynomials. Saeed and Sdeq [9] introduced homotopy perturbation method to solve
system of fractional integro-differential equations. Aforementioned work motivates us to study
approximate method for the solution of system of linear Fredholm fractional integro-differential
equations. In this paper we develop approximate method to obtain the solution of system of
linear fractional integro-differential equations using Least square and Lauguerre polynomial
method.

Consider the following system of linear fractional Fredholm integro-differential equation in
Caputo sense:

cDξvi(x)= Fi(x)+
∫ 1

0
K i(x, t)

[
n∑

k=1
δikvk(t)

]
dt, 0≤ x, t ≤ 1 , (1.1)

v( j)
i (x0)= vi j, i = j = 1,2, . . . ,n , (1.2)

where Fi(x) and K i(x, t) are provided functions, and real variables x and t have a range of [0,1].
cDξvi(x) denotes the ξth Caputo fractional derivative of vi(x). The rest of the paper is arranged
as follows:

In Section 2, we explore the basic definitions and properties of fractional calculus. In
Section 3, approximate method is developed for the problem under investigation. In Section 4,
proposed method is illustrated and approximate solution is obtained. In the last section
conclusion of the work is given.

2. Basic Definitions
In this section we explore the definitions and basic properties of fractional calculus.

Definition 2.1 ([5]). Define the classes:

Cµ = {v(x) | v(x)= xqv1(x), x > 0, q >µ, v1(x) ∈ C[o,∞)},

Cn
µ = {v(x) | vn(x) ∈ Cµ, x > 0, n ∈ N}.
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Definition 2.2 ([8]). The Riemann-Liouville fractional integral operator of order ξ≥ 0 is defined
as:

Jξv(x)= 1
Γ(ξ)

∫ x

0
(x− t)(ξ−1)v(t)dt, x > 0.

Definition 2.3 ([8]). The fractional derivative of v(x) in the Caputo sense of order ξ is defined
as:

cDξv(x)= 1
Γ(n−ξ)

∫ x

0

v(n)(t)
(x− t)ξ+1−n dt,

where n−1< ξ≤ n, n ∈ N , x > 0.

Properties of Caputo fractional derivative and fractional integrals are given below:

• cDξC = 0, C is a constant,

• JξJνv(x)= Jξ+νv(x), ξ,ν> 0, ν ∈ Cµ, µ> 0,

• Jξ cDξv(x)= v(x)−
m−1∑
k=0

vk(0+) xk

k , x > 0, m−1< ξ≤ m,

• Jξxβ = Γ(β+1)
Γ(β+1+ξ) xβ+ξ, ξ> 0, β>−1, x > 0,

• cDξJξv(x)= v(x), x > 0, m−1< ξ≤ m,

• cDξxβ =−
{

0, β ∈ N0, β< ⌈ξ⌉,
Γ(β+1)
Γ(β−ξ+1) xβ−ξ, β ∈ N0and β≥ ⌈ξ⌉,

where ⌈ξ⌉ denote the smallest integer greater than or equal to ξ and N0 = {0,1,2, . . .}.

Definition 2.4 ([1]). The Lauguerre polynomials of order m is defined by,

Lm(x)=
m∑

p=0
(−1)p m!

(m− p)!(p!)2 xp .

Recurrence relation of Lauguerre polynomials is given by,

(m+1)Lm+1(x)= (2m+1− x)Lm(x)−mLm−1(x), (m ≥ 1).

The Lauguerre polynomials are,

• L0(x)= 1,
• L1(x)= 1− x,

• L2(x)= x2

2 −2x+1,

• L3(x)= −x3

6 + 3x2

2 −3x+1.
The Lauguerre number, is the value of the Lauguerre polynomials at zero argument. Thus,

Lm(0)= 1 . (2.1)

3. Analysis of Approximate Method
In this section, we develop approximate method to obtain the approximate solution of system of
linear fractional integro-differential equations using Least square and Lauguerre polynomials.

We define the unknown function vi(x) as

vi(x)=
m∑

j=0
βi

jL j(x), 0≤ x ≤ 1, (3.1)
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where L j(x) is Lauguerre polynomial and βi
j are constants, i = 1,2, . . . ,n and j = 0,1, . . . ,m.

Putting equation (3.1) into equation (1.1), we obtain

cDξ

[
m∑

j=0
βi

jL j(x)

]
= Fi(x)+

∫ 1

0
K ix, t)

[
n∑

k=1
δik

(
m∑

j=0
βi

jL j(t)

)]
dt.

The residual equation obtained is as follows:

Ri(x,βi
0,βi

1, . . . ,βi
m)=

m∑
j=0

βi
j

cDξL j(x)−
∫ 1

0
K i(x, t)

[
n∑

k=1
δik

(
m∑

j=0
βi

jL j(t)

)]
dt−Fi(x).

Let

S(βi
0,βi

1, . . . ,βi
m)=

∫ 1

0
[Ri(x,βi

0,βi
1, . . . ,βi

m)]2W(x)dx,

where W(x) is positive weight function defined on [0,1]. Assume that W(x)= 1. Thus

S(βi
0,βi

1, . . . ,βi
m)=

∫ 1

0

{
m∑

j=0
βi

j
cDξL j(x)−

∫ 1

0
K ix, t)

[
n∑

k=1
δik

(
m∑

j=0
βi

jL j(t)

)]
dt−Fi(x)

}2

dx. (3.2)

We obtain the value of βi
j , by finding the minimum value of Si as:

∂Si

∂βi
j

= 0, j = 0,1, . . . ,m . (3.3)

Applying (3.3) on (3.2) we obtain,∫ 1

0

{
m∑

j=0
βi

j
cDξL j(x)−

∫ 1

0
K i(x, t)

[
n∑

k=1
δik

(
m∑

j=0
βi

jL j(t)

)]
dt−Fi(x)

}

∗
{

cDξL j(x)−
∫ 1

0
K i(x, t)

[
n∑

k=1
δik

(
m∑

j=0
L j(t)

)]
dt

}
dx = 0 , (3.4)

∫ 1

0
{[Ri(x,βi

j)−Fi(x)]∗H i
j}dx = 0, (3.5)

where

Ri(x,βi
j)=

m∑
j=0

βi
j

cDξL j(x)−
∫ 1

0
K i(x, t)

[
n∑

k=1
δik

m∑
j=0

βi
jL j(t)

]
dt,

H i
j = cDξL j(x)−

∫ 1

0
K i(x, t)

[
n∑

k=1
δik

(
m∑

j=0
L j(t)

)]
dt.

By evaluating the aforementioned equation, we can construct an algebraic system Aβi
j = B with

unknown coefficients βi
j , where

A =



∫ 1
0 Ri(x,βi

0)H i
0dx

∫ 1
0 Ri(x,βi

1)H i
0dx · · · ∫ 1

0 Ri(x,βi
m)H i

0dx∫ 1
0 Ri(x,βi

0)H i
1dx

∫ 1
0 Ri(x,βi

1)H i
1dx · · · ∫ 1

0 Ri(x,βi
m)H i

1dx
...

... . . . ...∫ 1
0 Ri(x,βi

0)H i
ndx

∫ 1
0 Ri(x,βi

1)H i
ndx · · · ∫ 1

0 Ri(x,βi
m)H i

ndx

 , B =



∫ 1
0 Fi(x)H i

0dx∫ 1
0 Fi(x)H i

1dx
...∫ 1

0 Fi(x)H i
ndx

 .

We find the unknown coefficients and an approximate solution of equation (1.1) by solving
the system of equations mentioned above.
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The absolute error is given by,

Absolute error= |vi(x)−vim(x)|, 0≤ x ≤ 1,

where vi(x) is the exact solution and vim(x) is the approximate solution.

4. Illustrations
For the sake of demonstrating the developed method, we consider the following examples.

Example 4.1. Consider the system of Fredholm fractional integro-differential equations,

D
2
3 v1(x)= 3x

1
3
p

(3)Γ(2/3)
2π

− x
6
+

∫ 1

0
2xt[v1(t)+v2(t)]dt,

D
2
3 v2(x)= 9x

4
3
p

(3)Γ(2/3)
4π

+ 5x3

6
+

∫ 1

0
x3[v1(t)−v2(t)]dt

 (4.1)

subject to v1(0)=−1, v2(0)= 0.
Firstly, by taking the approximation of the solution vi(x) with m = 3 as,

v1(x)=
3∑

j=0
β1

j L j(x), v1(t)=
3∑

j=0
β1

j L j(t),

v2(x)=
3∑

j=0
β2

j L j(x), v2(t)=
3∑

j=0
β2

j L j(t),

 (4.2)

where L j(x) is the Lauguerre polynomials and β1
j , β

2
j are unknown constants.

By substituting equation (4.2) into equation (4.1) we obtain,

D
2
3

[
3∑

j=0
β1

j L j(x)

]
= 3x

1
3
p

(3)Γ(2/3)
2π

− x
6
+

∫ 1

0
2xt

[
3∑

i=0
β1

j L j(t)+
3∑

j=0
β2

j L j(t)

]
dt,

D
2
3

[
3∑

j=0
β2

j L j(x)

]
= 9x

4
3
p

(3)Γ(2/3)
4π

+ 5x3

6
+

∫ 1

0
x3

[
3∑

j=0
β1

j L j(t)−
3∑

j=0
β2

j L j(t)

]
dt.

Solving the above equations we get,

β1
0[−x]+β1

1

[
− x1/3

Γ(4/3)
− x

3

]
+β1

2

[
x4/3

Γ(7/3)
− 2x1/3

Γ(4/3)
+ x

12

]
+β1

3

[
− x7/3

Γ(10/3)
+ 3x4/3

Γ(7/3)
− 3x1/3

Γ(4/3)
+ 19x

60

]
+β2

0[−x]+β2
1

[−x
3

]
+β2

2

[ x
12

]
+β2

3

[
19x
60

]
− 3x

1
3
p

(3)Γ(2/3)
2π

+ x
6
= 0,

β1
0[−x3]+β1

1

[−x3

2

]
+β1

2

[
− x3

6

]
+β1

3

[
x3

24

]
+β2

0[x3]+β2
1

[
− x1/3

Γ(4/3)
+ x3

2

]
+β2

2

[
x4/3

Γ(7/3)
− 2x1/3

Γ(4/3)
+ x3

6

]
+β2

3

[
− x7/3

Γ(10/3)
+ 3x4/3

Γ(7/3)
− 3x1/3

Γ(4/3)
− x3

24

]
− 9x

4
3
p

(3)Γ(2/3)
4π

− 5x3

6
= 0.

Hence, the residual equation is obtained as,

R1(x,β1
0,β1

1,β1
2,β1

3)=β1
0[−x]+β1

1

[
− x1/3

Γ(4/3)
− x

3

]
+β1

2

[
x4/3

Γ(7/3)
− 2x1/3

Γ(4/3)
+ x

12

]
+β1

3

[
− x7/3

Γ(10/3)
+ 3x4/3

Γ(7/3)
− 3x1/3

Γ(4/3)
+ 19x

60

]
+β2

0[−x]+β2
1

[−x
3

]
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+β2
2

[ x
12

]
+β2

3

[
19x
60

]
− 3x

1
3
p

(3)Γ(2/3)
2π

+ x
6
= 0,

R2(x,β2
0,β2

1,β2
2,β2

3)=β1
0[−x3]+β1

1

[−x3

2

]
+β1

2

[
− x3

6

]
+β1

3

[
x3

24

]
+β2

0
[
x3]+β2

1

[
− x1/3

Γ(4/3)
+ x3

2

]
+β2

2

[
x4/3

Γ(7/3)
− 2x1/3

Γ(4/3)
+ x3

6

]
+β2

3

[
− x7/3

Γ(10/3)
+ 3x4/3

Γ(7/3)
− 3x1/3

Γ(4/3)
− x3

24

]
− 9x

4
3
p

(3)Γ(2/3)
4π

− 5x3

6
= 0.

Let

S(x,β1
0,β1

1,β1
2,β1

3)=
∫ 1

0
[R1(x,β1

0,β1
1,β1

2,β1
3)]2dx,

S(x,β2
0,β2

1,β2
2,β2

3)=
∫ 1

0
[R2(x,β2

0,β2
1,β2

2,β2
3)]2dx.

 . (4.3)

In order to minimize the value of S, we set it
∂S
∂β1

j
= 0,

∂S
∂β2

j
= 0, j = 0,1,2. (4.4)

By solving the equation (4.4) we get system of equations having the unknown constants
β1

0,β1
1,β1

2,β1
3 and β2

0,β2
1,β2

2,β2
3.

β1
0(0.3333333)+β1

1(0.5910453)+β1
2(0.6801252)+β1

3(0.6614163)

+β2
0(0.3333333)+β2

1(0.1111111)+β2
2(−0.0277778)+β2

3(−0.1055556)

=−0.4243787,

β1
0(0.5910453)+β1

1(1.1094269)+β1
2(1.338878)+β1

3(1.3776177)

+β2
0(0.5910453)+β2

1(0.1970151)+β2
2(−0.0492538)+β2

3(−0.1871644)

=−0.8139043,

β1
0(0.6801252)+β1

1(1.338878)+β1
2(1.6756363)+β1

3(1.7932209)

+β2
0(0.68012521)+β2

1(0.2267084)+β2
2(−0.0566771)+β2

3(−0.215373)

=−0.9988154,

β1
0(−0.1428571)+β1

1(−0.0714286)+β1
2(−0.0238095)+β1

3(0.0059524)

+β2
0(0.1428571)+β2

1(−0.1869975)+β2
2(−0.3355643)+β2

3(−0.3656298)

= 0.4340045,

β1
0(0.1869975)+β1

1(0.0934988)+β1
2(0.0311663)+β1

3(−0.0077916)

+β2
0(−0.1869975)+β2

1(0.5297219)+β2
2(0.941311)+β2

3(1.1370776)

=−0.7037595,

β1
0(0.3355643)+β1

1(0.1677821)+β1
2(0.0559274)+β1

3(−0.0139818)

+β2
0(−0.3355643)+β2

1(0.941311)+β2
2(1.6754823)+β2

3(2.0265438)

=−1.2531901.
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Using initial conditions v1(0)= 0, and v2(0)= 0 we obtain,

β1
0 +β1

1 +β1
2 +β1

3 =−1,

β2
0 +β2

1 +β2
2 +β2

3 = 0.

Solving the above simultaneous equations we obtain,
β1

0 =−0.000004, β2
0 = 1.9999013,

β1
1 =−1, β2

1 =−3.9996441,

β1
2 = 0.000001, β2

2 = 1.9995636,

β1
3 =−0.0000007, β2

3 = 0.0001792.
Substituting in equation (4.2) we get the approximate solution:

v1(x)=−0.000004− (1− x)+0.000001
(

x2

2
−2x+1

)
−0.0000007

(−x3

6
+ 3x2

2
−3x+1

)
,

v2(x)= 1.9999013−3.9996441(1− x)+1.9995636
(

x2

2
−2x+1

)
+0.0001792

(−x3

6
+ 3x2

2
−3x+1

)
.

Table 1 compares the approximate solution to the exact solution and also displays the absolute
error. Figure 1 and Figure 2 shows the comparison between the exact and approximate solutions
to the system of FIDEs (4.1).

Table 1. Numerical results of Example 4.1

x
Exact
solution
v1(x)= x−1

Approximate
solution v1(x)

Exact
solution
v2(x)= x2

Approximate
solution v2(x)

Absolute
error v1(x)

Absolute
error v2(x)

0.1 −0.9 −0.9000037 0.01 0.0099984 0.0000037 0.0000016

0.2 −0.8 −0.8000037 0.04 0.0399976 0.0000037 0.0000024

0.3 −0.7 −0.7000037 0.09 0.0899975 0.0000037 0.0000025

0.4 −0.6 −0.6000037 0.16 0.1599979 0.0000037 0.0000021

0.5 −0.5 −0.5000038 0.25 0.2499986 0.0000038 0.0000014

0.6 −0.4 −0.4000038 0.36 0.3599993 0.0000038 0.0000007

0.7 −0.3 −0.3000039 0.49 0.4900001 0.0000039 0.0000001

0.8 −0.2 −0.2000039 0.64 0.6400005 0.0000039 0.0000005

0.9 −0.1 −0.100004 0.81 0.8100006 0.00004 0.0000006
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Figure 1. Comparison of Exact and approximate
solution of v1(x)

Figure 2. Comparison of Exact and approximate
solution of v2(x)

Example 4.2. Consider the system of Fredholm fractional integro-differential equations

D
3
4 v1(x)= 4x

1
4

Γ(1/4)
− 128x

9
4

15Γ(1/4)
− 1

20
− x

12
+

∫ 1

0
(x+ t)[v1(t)+v2(t)]dt,

D
3
4 v2(x)=− 4x

1
4

Γ(1/4)
+ 32x

5
4

5Γ(1/4)
− 2

p
(x)

15
+

∫ 1

0

√
(x)t2[v1(t)−v2(t)]dt

 (4.5)

subject to v1(0)= 0, v2(0)= 0.
Solving the above the equations we get the approximate solution

v1(x)=−4.9986906+16.995394(1−x)−17.994508
(

x2

2
−2x+1

)
+5.9978042

(−x3

6
+3x2

2
−3x+1

)
,

v2(x)= 1.0033553−3.0118758(1−x)+2.0141378
(

x2

2
−2x+1

)
−0.0056173

(−x3

6
+3x2

2
−3x+1

)
.

Table 2 compares the approximate solution to the exact solution and also displays the absolute
error. Figure 3 and Figure 4 shows the comparison between the exact and approximate solutions
to the system of FIDEs (4.5).

Example 4.3. Consider the system of Fredholm fractional integro-differential equations

D
4
5 v1(x)= 83x

80
− 25x

6
5

3Γ(1/5)
+ 125x

11
5

11Γ(1/5)
+

∫ 1

0
2xt[v1(t)−v2(t)]dt,

D
4
5 v2(x)= −67

160
− 13x

24
+ 125x

6
5

8Γ(1/5)
+

∫ 1

0
(x+ t)[v1(t)+v2(t)]dt

 (4.6)

subject to v1(0)= 0, v2(0)= 0.
Solving the above the equations we get the approximate solution

v1(x)= 4.0079097−14.028107(1− x)+16.033595
(

x2

2
−2x+1

)
−6.0133971

(−x3

6
+ 3x2

2
−3x+1

)
,
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v2(x)= 3.7518711−7.5066401(1− x)+3.7579394
(

x2

2
−2x+1

)
−0.0031704

(−x3

6
+ 3x2

2
−3x+1

)
.

Table 3 compares the approximate solution to the exact solution and also displays the absolute
error. Figure 5 and Figure 6 shows the comparison between the exact and approximate solutions
to the system of FIDEs (4.6).

Table 2. Numerical results of Example 4.2

x
Exact
solution
v1(x)= x−1

Approximate
solution
v1(x)

Exact
solution
v2(x)= x2

Approximate
solution
v2(x)

Absolute
error v1(x)

Absolute
error v2(x)

0.1 0.099 0.0990154 −0.09 −0.0899674 0.0000154 0.0000326

0.2 0.192 0.1920225 −0.16 −0.1599564 0.0000225 0.0000436

0.3 0.273 0.273023 −0.21 −0.2099612 0.000023 0.0000388

0.4 0.336 0.3360191 −0.24 −0.2399764 0.0000191 0.0000236

0.5 0.375 0.3750131 −0.25 −0.2499962 0.0000131 0.000038

0.6 0.384 0.3840071 −0.24 −0.2400151 0.0000071 0.0000151

0.7 0.357 0.3570033 −0.21 −0.2100274 0.0000033 0.0000274

0.8 0.288 0.288004 −0.16 −0.1600275 0.000004 0.0000275

0.9 0.171 0.1710112 −0.09 −0.0900098 0.0000112 0.0000098

Figure 3. Comparison of exact and approximate
solution of v1(x)

Figure 4. Comparison of exact and approximate
solution of v2(x)
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Table 3. Numerical results of Example 4.3

x
Exact
solution
v1(x)= x3 − x2

Approximate
solution
v1(x)

Exact
solution
v2(x)= x2

8

Approximate
solution
v2(x)

Absolute
error v1(x)

Absolute
error v2(x)

0.1 −0.009 −0.0089193 0.01875 0.0187699 0.0000807 0.0000199

0.2 −0.032 −0.0318918 0.075 0.0750273 0.0001082 0.0000273

0.3 −0.063 −0.0629035 0.16875 0.1687753 0.0000965 0.0000253

0.4 −0.096 −0.0959409 0.3 0.3000171 0.0000591 0.0000171

0.5 −0.125 −0.1249907 0.46875 0.4687558 0.0000093 0.0000058

0.6 −0.144 −0.1440395 0.675 0.6749947 0.0000395 0.0000053

0.7 −0.147 −0.1470738 0.91875 0.9187369 0.0000738 0.0000131

0.8 −0.128 −0.1280804 1.2 1.1999856 0.0000804 0.0000144

0.9 −0.081 −0.0810457 1.51875 1.5187439 0.0000457 0.0000061

Figure 5. Comparison of exact and approximate
solution of v1(x)

Figure 6. Comparison of exact and approximate
solution of v2(x)

5. Conclusion
The least square method with Lauguerre polynomials has been successfully developed to obtain
the approximate solution of the system of linear Fredholm FIDEs. The solutions for different
values of x are given in tables. The obtained solution for system of Fredholm FIDEs in the
examples are simulated using SCILAB-6.0.2 software and compared with the exact solution.
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