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1. Introduction

In 1965, Zadeh [9]] introduced the notion of a fuzzy subset of a universal set. Zhang [10,|11]]
introduced an extension of fuzzy sets named bipolar valued fuzzy sets in 1994 and bipolar valued
fuzzy set was developed by Lee [3,4]. Bipolar valued fuzzy sets and intuitionistic fuzzy sets look
similar each other. However, they are different each other [4]. Anitha et al. [1,]2] introduced the
bipolar valued fuzzy subgroup. Shyamala and Shanthi [[7] have introduced the bipolar valued
multi fuzzy subgroups of a group. Yasodara and Sathappan [8] defined the bipolar valued multi
fuzzy subsemirings of a semiring. Bipolar valued multi fuzzy subnear-ring of a near-ring has
been introduced by Muthukumaran and Anandh [5]]. In this paper, the concept of bipolar valued
multi fuzzy normal subnear-ring of a near-ring is introduced and established some results.
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2. Preliminaries

Definition 2.1 ([10]]). A bipolar valued fuzzy set (BVFS) B in X is defined as an object of
the form B = {{(x,B*(u),B~(u))/x € X}, where B* : X —[0,1] and B~ : X — [-1,0]. The positive
membership degree B*(u) denotes the satisfaction degree of an element x to the property
corresponding to a bipolar valued fuzzy set B and the negative membership degree B (u)
denotes the satisfaction degree of an element x to some implicit counter-property corresponding
to a bipolar valued fuzzy set B.

Definition 2.2 ([8]). A bipolar valued multi fuzzy set (BVMFS) A in X is defined as an object
of the form B = {(x,B] (u),B; (w),...,B, (u),B](u),B;(u),...,B, (u))/x € X}, where B : X —[0,1]
and B; : X —[-1,0], for all i. The positive membership degrees B;(u) denote the satisfaction
degree of an element x to the property corresponding to a bipolar valued multi fuzzy set B and
the negative membership degrees B (u) denote the satisfaction degree of an element x to some
implicit counter-property corresponding to a bipolar valued multi fuzzy set B.

Definition 2.3. Let (V,+,-) be a near-ring. A BVMFS B of N is said to be a bipolar valued
multi fuzzy subnear-ring of N (BVMFSNR) if the following conditions are satisfied, for all i,
(i) B/ (u-v)=2min{B(u),B] )},

(ii) B (uv)=min{B}(u),Bf ()},
(iii) B; (u-v)=max{B; (u),B; (v)},
(iv) B; (uv) =max{B; (u),B; (v)}, for all u,v € N.

Definition 2.4. Let R be a near-ring. A bipolar valued multi fuzzy subnear-ring A of R is said to
be a bipolar valued multi fuzzy normal subnear-ring (BVMFNSNR) of R if AT (x+y) = AT (y +x),
AT (x+y)=A (y+x), Al (xy)=A(yx) and A; (xy) = A (yx), for all x,y in R and for all i.

Definition 2.5 ([8]). Let A=(A],AZ,...,A},AT,A;,...,A,) and B=(B],Bj],...,B,,B],B,,...,
B;)) be any two bipolar valued multi fuzzy subsets of sets R and H, respectively. The product of
A and B, denoted by A x B, is defined as A x B = {{(x,¥),(A1xB1)*(x,y),(A2 xB2) " (x,y),...,(A, x
B,)*(x,y),(A1 xB1) (x,y),(Ag x Bo) (x,y),...,(A, x B,) (x,y)), for all x € R and y € H}, where
(A; x Bj)"(x,y) = min{A] (x),B] (y)} and (A; x B;)"(x,y) = max{A (x),B; (y)}, for all i.

Definition 2.6 ([8]). Let A =(A7,AJ,...,A;,A],A;,...,A}) be a bipolar valued multi fuzzy
subset in a set S, the strongest bipolar valued multi fuzzy relation on S, that is a bipolar valued
multi fuzzy relation on A is

V = {<(x,y)7V]_+(x7y)7V2+(x7y), e ,V;:-(xay)ﬂvl_(x7y)7V2_(x7y)7 e >Vn_(x7y)>/x7y € S}7

where V. (x,y) = min{A(x),A (y)} and V. (x,y) = max{A; (x),A; (y)}, for all x,y € S, and for
all 7.

Definition 2.7 ([5]). Let A = (A],A],...,A;,AT,A;,...,A) be a bipolar valued multi
fuzzy subnear-ring of a near-ring R and a € R. Then the pseudo bipolar valued multi
fuzzy coset (@A)’ = (@ATIPT,(aAL)P,...,(@A)Pn (aA])P1,(@AZ)P2,... (aA,)Pn) is defined by
(aA;r)p;(x) = p/(@)A](x) and (aAi_)pi_(x) = —p; (@)A; (x), for all i, for every x € R and p € P,
where P is a collection of bipolar valued multi fuzzy subsets of R.
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Definition 2.8. Let B=(B7,B;,...,B;,B],B;,...,B,) be a bipolar valued multi fuzzy normal
subnear-ring of a near-ring R. For any u,v € R, define a binary relation ~on R by u ~v &
Bf(u—-v)=B(0) and B; (u—v) = B; (0), for all i, where o is the identity element of R. The
equivalence class containing u is denoted by B, . G/B denotes the corresponding quotient set.

3. Properties

Theorem 3.1.If B=(B7,B;,...,B;,B],B;,...,B,) and C =(C{,C;,...,C;,C],C;,...,C}) are
two BVMFSNRs with degree n of a near-ring (N ,+,-), then their intersection BNC isa BVMFSNR
of N.

Theorem 3.2. If B=(B7,B;,...,B;,B],B;,...,B,) and C =(C{,C;,...,C;,C],C;,...,C}) are
two BVMFNSNRs with degree n of a near-ring (N,+,-), then their intersection BNC is a
BVMFNSNR of N.

Proof. Let D = BnC. By Theorem D is a BVMFSNR of the near-ring N. Let u,v € N.
For all i, D/ (u+v) = min{B(u +v),C/(u +v)} = min{B (v +u),C/(v+u)} = D (v+u), ¥V
u,v € N, and D (uv) = min{B (uv),C (uv)} = min{B; (vu),C; (vu)} = D/ (vu), V u,v € N. Also,
D (u+v) =max{B; (u+v),C; (u+v)} =max{B; (v+u),C; v+w}=D;(v+u), ¥ u,veN, and
D; (uv) = max{B; (uv),C; (uv)} = max{B; (vu),C; (vu)} = D; (vu), ¥ u,v € N. Hence BNC is a
BVMFNSNR of the near-ring N. O

Theorem 3.3. The intersection of a family of BVMFNSNRs with degree n of a near-ring (N,+,-)
isa BVMFNSNR of N.

Proof. The proof follows from Theorem O

Theorem 3.4 ((5)). If B=(B],B;,...,B,,B{,B;,...,B,) and C =(C7],C5,...,C},C{,C;,...,C))
are any two BVMFSNRs with degree n of the near-rings R1 and Rq respectively, then B x C is a
BVMFSNR of R1 x Ros.

Theorem 3.5. If B=(B7,B;,...,B};,B],B;,...,B,) and C =(C],C3,...,C;,C],C5,...,C.) are
any two BVMFNSNRs with degree n of the near-rings R1 and Ry respectively, then BxC is a
BVMFNSNR of R1 x Ro.

Proof. Let uj,ug € Ry and vi,vg € Rg. That is (u1,v1),(ug,v2) € R1 x Re. By Theorem 3.4, B x C
is a BVMFSNR of the near-ring R x Ro. For all i, (B; x C;)" [(u1,v1) + (ug,v2)l = (B; x C;)*(u1 +
u2,01+02) = min{B;(u1+u2),C;(v1+vz)} = min{B;(u2+u1),C;(02+v1)} = (Bi X Ci)+(u2+u1,vz+
v1) = (BixC;) [(ug,ve)+(u1,v1)], for all (u1,v1),(ug,v2) € R1xRg, and (B; xC;) [(u1,v1)(ug,v2)] =
(B x C)"(u1ug,v1v2) = min{B; (u1u2),C; (v1v2)} = min{B] (ugu1),C; (v2v1)} = (B; x C;)*(ugu1,
vov1) = (B; x C;)"[(ug,v2)(w1,v1)], for all (uq,v1),(ug,v2) € R1 x Ry, also (B; x C;) [(u1,v1) +
(u2,v2)1=(B; x C;) (u1+ug,v1+v2) =max{B; (u1 +uz),C; (v1 +v2)} = max{B; (ug +u1),C; (va +
vt =(B;xC;) (ug+u,ve+vy) = (B; xC;) [(ug,v2)+(u1,v1)], for all (u1,v1),(ug,v2) € R1xRg2, and
(B; x Ci) [(u1,v1)(ugz,v2)] = (B; x C;) (u1ug,v1v2) = max{B; (u1ug),C; (v1v2)} = max{B; (ugu1),
C: (vav)} = (B; x C;) (ugu1,vav1) = (B; x C;) " [(ug,ve)(u1,v1)], for all (u1,v1),(ug,ve) € Ry x Ro.
Hence B x C is a BVMFNSNR of the near-ring R x Rs. O
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Theorem 3.6 ([5]). Let B = (B,B;,...,B],B],B;,...,B;) be a BVMFS of a near-ring R and
M=(M{,M;,....M,M{,M,,...,M;) be the strongest bipolar valued multi fuzzy relation of R.
Then B is a BVMFSNR of R if and only if M is a BVMFSNR of R x R.

Theorem 3.7.Let B = (B{,B;,...,B/,B{,B;,...,B;) be a BVMFS of a near-ring R and
M=(M{,Mg,....M,M{,M,,...,M;) be the strongest bipolar valued multi fuzzy relation of R.
Then B is a BVMFNSNR of R if and only if M is a BVMFNSNR of R xR.

Proof. By Theorem B is a BVMFSNR of R if and only if M is a BVMFSNR of
R xR. Let u = (u1,us),v = (v1,v3) € R x R. For all i, M;’(u +v) = M;[(ul,u2)+(v1,v2)] =
M} (u1+v1,uz +vg) = min{B; (u1 +v1),B] (ug +v2)} = min{B] (v1 +u1),B (v + uz)} = M (v1 +
ui,vg + ug) = M[(v1,v2) + (u1,u)l = M +u), for all u,v € R xR, and M (uv) =
M} (w1, u2)(v1,v2)] = M} (u1v1,usve) = min{B (u1v1),B] (ugv2)} = min{B] (viu1),B] (vauz)} =
M} (viug,veug) = M [(v1,ve)(u1,ug)l = M;(vu), for all u,v € R xR. Also, M;(u +v) =
M [(u1,us) + (v1,v2)] = M; (u1 +v1,ug +v2) = max{B; (u1 +v1),B; (ug + v2)} = max{B; (v1 +
u1),B; (vg + ug)t = M (v1 + u,ve +ug) = M; [(v1,v2) + (u1,u2)l = M; (v+u), for all u,v €
R xR, and M;(uv) = M, [(u1,u2)(vi,ve)l = M; (u1v1,ugve) = max{B; (u1v1),B; (ugvg)} =
max{B; (viu1),B; (vauz)} = M; (viu1,veus) = M; [(v1,v2)(u1,uz)l = M; (vu), for all u,v € R xR.
Hence M is a BVMFNSNR of R x R. Conversely, assume that M is a BVMFNSNR of R x R. For
all i, min{B} (u1 +v1),B} (ug +v2)} = M (u1 +v1,ug +ve) = M [(u1,u) + (v1,v2)] = M} (u+v) =
M@ +u) = M [(v1,v2) + (u1,us)l = M (v1 +u1,vz + ug) = min{B; (v1 + u1),B; (v2 + uz)}. Put
ug = o and vy = 0, where o is the identity element of R, then B;L(ul +v1) = B;r(vl +uy), for
all uy,v1 € R, and min{B[ (u1v1),B] (ugve)} = M (u1v1,uzv2) = M [(u1,uz)(v1,v2)l = M (uv) =
M (vu) = M [(v1,v2)(u1,uz)] = M (viug,vauz) = min{B; (viu1),B] (vauz)}. Put us = o and
vy = 0, where o is the identity element of R, then B (ujv1) = B (viu1), for all ui,v; € R.
Also, max{B; (u1 +v1),B; (ug +v2)} = M; (u1 +v1,uz +vs) = M; [(u1,uz) +(v1,v2)l = M, (u+v) =
M;(v+u) =M [(v1,v2) + (u1,ug)l = M; (v1 + u1,v2 + ug) = max{B; (v + u1),B; (v2 + ug)}. Put
ug = o and vg = 0, where o is the identity element of R, then Bi_(ul +v1) = Bi_(vl +uy), for
all u1,v1 € R, and max{B; (u1v1),B; (ugv2)} = M; (u1v1,ugve) = M; [(u1,uz)(v1,v2)l = M; (uv) =
M; (vu) = M [(v1,v2)(u1,u2)l = M; (viui,veug) = max{B; (viu1),B; (veusg)}. Put us = o and
v2 = 0, where o is the identity element of R, then B’ (uiv1) = B; (viuy), for all uj,v; € R.
Hence B is a BVMFNSNR of R. O

Theorem 3.8 ([5]). Let B = (B7,B;,...,B},B],B;,...,B,) be a BVMFSNR of a near-ring R.
Then the pseudo bipolar valued multi fuzzy coset (aB)P is a BVMFSNR of R, for every a € R and
peP.

Theorem 3.9. Let B=(B7,B;,...,B;,B],B;,...,B;) be a BUMFNSNR of a near-ring R. Then
the pseudo bipolar valued multi fuzzy coset (aB)? is a BVMFNSNR of R, for every a € R and
peP.

Proof. By Theorem the pseudo bipolar valued multi fuzzy coset (aB)? is a BVMFSNR of R,
foreverya€R and pe P. Let u,ve R. For all i, (aB;")p;(u +v)=p/(@)B](u+v)=p/(@)B(v+
u) = (aB;)Pi (v+u), for all u,v € R, and (@B} i (uv) = p; (@B} (wv) = p} (@)B; (vu) = (@B} i (vw),
for all u,v € R. Also (aBi_)pi (w+v)=p;(@B;(u+v)=p;(@)B; (v+u)= (aBi_)pi (v+u), for all
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u,v€R, and (aBi_)p;(uv) = p; (@)B; (uv) = p; (a)B; (vu) = (aBi_)p;(vu), for all u,v € R. Hence
the pseudo bipolar valued multi fuzzy coset (aB)? is a BVMFNSNR of R, for every a € R and
peP. O]

Theorem 3.10 ([5]). Let B=(B{,B;,...,B;,B],B;,...,B,) and C=(C7,C5,...,C,,C],C;,...,
C,,) be any two bipolar valued multi fuzzy subsets of the near-rings R and H, respectively and
B x C be a BVMFSNR of R x H. Then the following are true:
(@) if Bf(w)<C/(0"), VY u€R and B; (1) 2C;(0"), V u € R, then B is a BVMFSNR of R, where
0’ is the identity element of H.

(i) if C/(w)<B(0), YV u€H and C;(u)2B;(0), V u € H, then C is a BVMFSNR of H where
o0 is the identity element of R.

(iii) either B is a BVMFSNR of R or C is a BVMFSNR of H.

Theorem 3.11. Let B = (B} ,B;,...,B;,B],B;,...,B,) and C =(C],C;,...,C},C{,C5,...,C}))
be any two bipolar valued multi fuzzy subsets of the near-rings R and H, respectively and B x C
be a BVMFNSNR of R x H. Then the following are true:
(i) if Bf(w)<C/(0"), YV ueR and B;(u) 2 C;(0'), V u € R, then B is a BVMFNSNR of R,
where o' is the identity element of H.

(i) if C/(w)<B(0), YV ue H and C;(u) 2 B;(0), VY u € H, then C is a BVMFNSNR of H
where o is the identity element of R.

(iii) either B is a BVMFNSNR of R or C isa BVMFNSNR of H.

Proof. (i) By Theorem B is a BVMFSNR of R. Let u,v € R. That is (u,0'),(v,0') €
R x H. For all i, using Bf(u) < C/(0"), V u € R and B;(u) = C;(0'), ¥ u € R, then
B (u+v)=min{B] (u+v),C; (o' +0")} = (B; x C;)"((u +v),(0' +0") = (B; x C;)"[(u,0") + (v,0")] =
(BixC)"[(v,0)+(u,0)]=(B; xC;)" ((v+u),(0'+0") =min{B (v+u),C; (o' +0")} = B} (v+u), for all
u,v € R, and B (uv) = min{B] (uv),C; (0o'0")} = (B; x C;)*(uv),(0'0")) = (B; x C;)"[(u,0")(v,0")] =
(Bi x C;)"[(v,0')u,0"] = (B; x C;)"((vu),(0'0")) = min{B (vu),C; (o'0")} = B (vu), for all u,v e R.
Also, B; (u+v) = max{B; (u+v),C; (0'+0")} = (B; xC;)~(u+v),(0'+0") = (B; xC;)"[(u,0")+(v,0")] =
(BixCi)"[(v,0)+(u,0"] = (B;xC;) ((v+u),(0'+0") =max{B; (v+u),C; (o' +0")} = B; (v+u), for all
u,v € R, and B; (uv) = max{B; (uv),C; (0'0")} = (B; x C;)”((uv),(0'0") = (B; x C;)"[(u,0")(v,0")] =
(Bi x C;)"[(v,0')(u,0")] = (B; x C;)"((vu),(0'0")) = max{B; (vu),C; (o'0")} = B (vu), for all u,v € R.
Hence B is a BVMFNSNR of R.

(ii) By Theorem C is a BVMFSNR of H. For all i, using C{(u) <B}(0), V u € H and
C;(u)=B;(0),V ueH, then C(u+v)=min{C; (u +v),B (0 +0)} =(B; xC;)"((0 +0),(u+v)) =
(B; xC)*[(0,u)+(0,v)] = (B; xC;)*[(0,v)+(0,u)] = (B; xC;)* ((0+0),(v+u)) = min{C] (v+u),B] (o +
0)}=CI(v+u), for all u,v € H, and C; (uv) =min{C/ (uv),B] (00)} = (B; x C;)"((00),(uv)) = (B; x
Ci)l(o,u)0,v)] = (B; x C;)*[(0,v)(0,u)] = (B; x C;)"((00),(vw)) = min{C; (vu),B; (00)} = C/ (vu),
for all u,v € H. Also, C; (u +v) = max{C; (u +v),B; (0 +0)} = (B; x C;)"((0 +0),(u +v)) = (B; x
Ci)~[(o,u)+(0,0)] = (B; xC;)"[(0,v)+(0,u)] = (B; xC;)~((0+0),(v+u)) = max{C; (v+u),B; (0+0)} =
C; (v+u), for all u,v € H, and C; (uv) = max{C; (uv),B; (00)} = (B; x C;)"((00),(uv)) = (B; x
Ci)"[(o,u)(o,v)] = (B; x C;)"[(0,v)(0,u)] = (B; x C;) ((00),(vu)) = max{C; (vu),B; (00)} = C; (vu),
for all u,v € H. Hence C is a BVMFNSNR of H. Hence (iii) is clear. O
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Theorem 3.12. Let B=(B7,Bj,...,B;,B],B;,...,B;) be a bipolar valued multi fuzzy normal
subnear-ring of a near-ring R. For any u,v € R, define a binary relation ~on R by u ~v &
B;L(u -v)= B;L(o) and B; (u—v)=B; (0), for all i, where o is the identity element of R. Then ~ is
a congruence of R.

Proof. The reflexivity and symmetry are obvious. To prove the transitivity, let © ~ v and
v~w. Then B (u—v) =B/ (v-w) =B (0) and B; (u—v) =B; (v-w) = B; (0). Then B (u-w) =
Bi(u—-v+v-w) = min{B!(u -v),B/ (v —w)} = B (o) implies that B} (v —w) = B} (0) and
B;(u-w)=B;(u-v+v-w)=<max{B; (u—-v),B; (v-w)}=B; (o) implies that B, (v —w) = B; (0).
Therefore, ~ is transitive. Hence ~ is an equivalence relation. O

Theorem 3.13.If B = (B{,B],...,B,;,B],B;,...,B,) be a bipolar valued multi fuzzy normal
subnear-ring of a near-ring R, then the quotient G/B is a near-ring with the operations
B, +B, =By, and B,B, = By,.

Proof. Let B,,B, € G/B. Then B,-B,=B,+B_, =B, _, € G/B and B,B, = B, € G/B. Hence
the quotient G/B is a group. O

4. Conclusion

Bipolar valued multi fuzzy normal subnear-ring of a near-ring is defined and their properties
are proved. We can extend these concepts into many algebraic systems.
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