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Abstract. In this paper, we studied and introduced an extension of the classical hyperbolic functions.
Namely, we defined k-Lucas hyperbolic functions and studied their hyperbolic and recurrence
properties, and looked at relationship this new k-Lucas hyperbolic functions between k-Fibonacci
hyperbolic functions, which were studied before by Falcon and Plaza. We gave the definition of the
quasi-sine k-Lucas function and some of the features associated with it.
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1. Introduction
The Lucas sequence {Ln}= {2,1,3,4,7,11,18, . . .} is the simplest and most well-known integer
sequence, each term is equal to sum of previous two terms, beginning with the values L0 = 2,
L1 = 1. Furthermore the ratio of two consecutive Lucas numbers converges to the Golden Mean
(Golden Ratio), φ= 1+p5

2 .
Stakhov and Rozin defined the symmetrical hyperbolic functions [11]. Later, Falcon and

Plaza introduced a new class of hyperbolic functions, which are called k-Fibonacci hyperbolic
functions [5]. Also, they studied hyperbolic and recurrence properties of these new type functions
[5]. Then, Falcon introduced the k-Lucas numbers [2].

In this paper, we intrudeced a new class of hyperbolic functions, which we have named “the
k-Lucas hyperbolic functions”. Additionally, we studied hyperbolic and recurrence properties
of these functions, and looked at the relationship between k-Fibonacci hyperbolic numbers.
Finally, we mentioned the quasi-sine k-Lucas functions and some relations about them.
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1.1 The k-Lucas Numbers
Falcon [2] defined the k-Lucas numbers that are given for any positive real number k by the
following recurrence relation for n ≥ 1:

Lk,n+1 = kLk,n +Lk,n−1 (1.1)

with the initial values

Lk,0 = 2, Lk,1 = k .

First k-Lucas numbers are:

Lk,0 = 2 ,

Lk,1 = k ,

Lk,2 = k2 +2 ,

Lk,3 = k3 +3k ,

Lk,4 = k4 +4k2 +2 ,

Lk,5 = k5 +5k3 +5k ,

Lk,6 = k6 +6k4 +9k2 +2 .

Particularly, for the case k = 1, we get the classical Lucas numbers {2,1,3,4,7,11,18, . . .}, with
the recurrence relation

L0 = 2, L1 = 1, Ln+1 = Ln +Ln−1 for n ≥ 1 .

For the case k = 2, we get the classical Pell Lucas numbers {2,2,6,14,34,82,198, . . .}, with the
recurrence relation

P0 = 2, P1 = 2, Pn+1 = 2Pn +Pn−1 for n ≥ 1 .

The characteristic equation for the recurrence relation of the k-Lucas numbers (1.1) is:

σ2 = kσ+1 . (1.2)

This characteristic equation (1.2) has two real root:

σ1 = k+
p

k2 +4
2

, σ2 = k−
p

k2 +4
2

.

In particular, if we take k = 1 in σ1 , we have σ1 = 1+p5
2 known as the golden ratio φ. If we take

k = 2 in σ1 , we have σ1 = 1+p
2 known as the silver ratio. Finally, if we take k = 3 in σ1 , we

have σ1 = 3+p13
2 known as the bronze ratio.

The Binet’s formula for k-Lucas numbers defined by (see [2]):

Lk,n =σn
1 +σn

2 (1.3)
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where σ1,σ2 are the roots of the characteristic equation (1.2).
By using σ2 =− 1

σ1
, we can write the formula (1.3) as follows:

Lk,n =σn
1 + (−1)nσ−n

1 . (1.4)

In [2], Falcon proved that: lim
n→∞

Lk,n
Lk,n−1

=σ1 where σ1 is the positive root of Eq. (1.2). It is obvious

that, for the case k = 1, we get lim
n→∞

Lk,n
Lk,n−1

=φ.

2. k-Lucas Hyperbolic Functions
The classical hyperbolic functions are defined by:

cosh x = ex + e−x

2
,

sinh x = ex − e−x

2
.

Moreover, we know that the Lucas hyperbolic sine and cosine functions are respectively given
by [11, 13, 15]:

sLh(x)=φ(2x+1) −φ−(2x+1) ,

cLh(x)=φ2x +φ−2x .

where φ= 1+p5
2 .

We can expand these functions to the k-Lucas hyperbolic functions as follows:

sLkh(x)=σ(2x+1)
1 −σ−(2x+1)

1 ,

cLkh(x)=σ2x
1 +σ−2x

1 .

where σ1 is the positive root of the characteristic equation (1.2), that is σ1 = k+
p

k2+4
2 .

If we look at the graphics of k-Lucas hyperbolic sine and cosine functions, we see that
sLkh(x) is symmetric with respect to the origin, while graphic of cLkh(x) presents a symmetry
with respect to the axis x = 0. For this reason, hence, we will define the k-Lucas hyperbolic sine
and cosine functions, respectively:

sLkh(x)=σx
1 −σ−x

1 , (2.1)

cLkh(x)=σx
1 +σ−x

1 ,

since σ1 +σ−1
1 =

p
k2 +4.

Figure 1
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The k-Lucas numbers are determined through the k-Lucas hyperbolic functions as follows:

cLkh(2n)= Lk,2n ,

sLkh(2n+1)= Lk,2n+1.

There are the following relations between the k-Lucas hyperbolic functions and the classical
hyperbolic functions:

sLkh(x)= 2sinh(x lnσ1) ,

cLkh(x)= 2cosh(x lnσ1).

Also, the k-Lucas hyperbolic functions and the k-Fibonacci hyperbolic functions are connected
among themselves by the following simple correlations:

sFkh(x)= sLkh(x)p
k2 +4

,

cFkh(x)= cLkh(x)p
k2 +4

.

2.1 Properties of the k-Lucas Hyperbolic Functions
Now, we will give some properties about the k-Lucas hyperbolic functions, which are similar to
the classical hyperbolic functions.

Proposition 1 (Pythagorean theorem).

[cLkh(x)]2 − [sLkh(x)]2 = 4.

Proof.

[cLkh(x)]2 − [sLkh(x)]2 = (σx
1 +σ−x

1 )2 − (σx
1 −σ−x

1 )2

=σ2x
1 +2+σ−2x

1 −σ2x
1 +2−σ−2x

1

= 4.

Proposition 2 (Sum and difference).

2cLkh(x∓ y)= cLkh(x)cLkh(y)∓ sLkh(x)sLkh(y) ,

2sLkh(x∓ y)= sLkh(x)cLkh(y)∓ cLkh(x)sLkh(y).

Proof. Let us prove the first identity:

cLkh(x)cLkh(y)+ sLkh(x)sLkh(y)

= (σx
1 +σ−x

1 )(σy
1 +σ

−y
1 )+ (σx

1 −σ−x
1 )(σy

1 −σ
−y
1 )

=σ
x+y
1 +σx−y

1 +σ−x+y
1 +σ−x−y

1 +σx+y
1 −σx−y

1 −σ−x+y
1 +σ−x−y

1

= 2(σx+y
1 +σ−(x+y)

1 )

= 2cLkh(x+ y).
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By doing y= x in the first and third previous formula, we have:

cLkh(2x)= 1
2

[
(cLkh(x))2 + (sLkh(x))2] ,

sLkh(2x)= sLkh(x)cLkh(x).

Proposition 3 (nth derivatives).

(cLkh(x))(n) =
{

(lnσ1)(n)sLk(x), if n = 2m+1 ,
(lnσ1)(n)cLk(x), if n = 2m ,

(sLkh(x))(n) =
{

(lnσ1)(n)cLk(x), if n = 2m+1 ,
(lnσ1)(n)sLk(x), if n = 2m .

2.2 Some Reoccurrences About the k-Lucas Hyperbolic Functions
Now, we will show some identities about the k-Lucas hyperbolic functions, which are related
with the k-Lucas numbers.

Proposition 4 (Recursive relations).

sLkh(x+1)= kcLkh(x)+ sLkh(x−1) ,

cLkh(x+1)= ksLkh(x)+ cLkh(x−1).

Proof. Let us prove the first identity:
Since σ2

1 = kσ1 +1, then σx+1
1 = kσx

1 +σx−1
1 .

In addition σ−(x−1)
1 = kσ−x

1 +σ−(x+1)
1 then kσ−x

1 - σ−(x−1)
1 =−σ−(x+1)

1 .

kcLkh(x)+ sLkh(x−1)= k(σx
1 +σ−x

1 )+ (σx−1
1 +σ−(x−1)

1 )

= kσx
1 +kσ−x

1 +σx−1
1 +σ−x+1

1

= (kσx
1 +σx−1

1 )+ (kσ−x
1 +σ−x+1

1 )

=σx+1
1 −σ−(x+1)

1

= sLkh(x+1).

Proposition 5 (Catalan’s identities).

cLkh(x− r)cLkh(x+ r)− (cLkh(x))2 = (sLkh(r))2 ,

cLkh(x− r)cLkh(x+ r)− (sLkh(x))2 = (cLkh(r))2 ,

sLkh(x− r)sLkh(x+ r)− (sLkh(x))2 =−(sLkh(r))2 ,

sLkh(x− r)sLkh(x+ r)− (cLkh(x))2 =−(cLkh(r))2.
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Proof. Let us prove the first identity:

cLkh(x− r)cLkh(x+ r)− (cLkh(x))2

= (σx−r
1 +σ−(x−r)

1 )(σx+r
1 +σ−(x+r)

1 )− (σx
1 +σ−x

1 )2

= (σx−r
1 +σ−x+r

1 )(σx+r
1 +σ−x−r

1 )− (σ2x
1 +2+σ−2x

1 )

=σ2x
1 +σ−2r

1 +σ2r
1 +σ−2x

1 −σ2x
1 −2−σ−2x

1

=σ2r
1 −2+σ−2r

1

= (sLkh(r))2.

By doing r = 1 into Catalan’s identities, Cassini or Simson’s identities appear:

cLkh(x−1)cLkh(x+1)− (sLkh(x))2 = k2 +4 ,

sLkh(x−1)sLkh(x+1)− (cLkh(x))2 =−(k2 +4).

Proposition 6.

cLkh(x)cLkh(x+ r)= cLkh(2x+ r)+ cLkh(r) ,

sLkh(x)sLkh(x+ r)= cLkh(2x+ r)− cLkh(r) ,

sLkh(x)cLkh(x+ r)= sLkh(2x+ r)− sLkh(r) ,

cLkh(x)sLkh(x+ r)= sLkh(2x+ r)+ sLkh(r).

Proof. Let us prove the first identity:

cLkh(x)cLkh(x+ r)= (σx
1 +σ−x

1 )(σx+r
1 +σ−(x+r)

1 )

=σ2x+r
1 +σ−r

1 +σr
1 +σ−2x−r

1

= (σ2x+r
1 +σ−(2x+r)

1 )+ (σr
1 +σ−r

1 )

= cLkh(2x+ r)+ cLkh(r).

By doing r = 0 in the previous equations it is obtained:

(cLkh(x))2 = cLkh(2x)+2 ,

(sLkh(x))2 = cLkh(2x)−2 ,

sLkh(x)cLkh(x)= sLkh(2x).

2.3 Some Relations Between the k-Lucas Hyperbolic Numbers and the k-Fibonacci
Hyperbolic Numbers

Now, we will give some correlations between the k-Lucas and the k-Fibonacci hyperbolic
numbers, like previously shown between the k-Lucas and the k-Fibonacci numbers [2].
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Proposition 7.

(sLkh(x))2 = (k2 +4)(cFkh(x))2 −4 ,

(cLkh(x))2 = (k2 +4)(sFkh(x))2 +4.

Proof. Let us prove the first identity:

(k2 +4)(cFkh(x))2 −4= (k2 +4)
(
σx

1 +σ−x
1p

k2 +4

)2

−4

=σ2x
1 −2+σ−2x

1

= (sLkh(x))2.

Proposition 8.

cLkh(x)= cFkh(x−1)+ cFkh(x+1) ,

sLkh(x)= sFkh(x−1)+ sFkh(x+1).

Proof. Let us prove the first identity:

cFkh(x−1)+ cFkh(x+1)=
(
σx−1

1 +σ−(x−1)
1p

k2 +4

)
+

(
σx+1

1 +σ−(x+1)
1p

k2 +4

)

= σx−1
1 +σ−(x−1)

1 +σx+1
1 +σ−(x+1)

1p
k2 +4

= (σx−1
1 +σx+1

1 )+ (σ−(x−1)
1 +σ−(x+1)

1 )p
k2 +4

= σx
1(σ−1

1 +σ1)+σ−x
1 (σ1 +σ−1

1 )p
k2 +4

= cLkh(x).

Proposition 9.

(cLkh(x))2 + (sLkh(x+1))2 = (k2 +4)cFkh(2x+1) ,

(sLkh(x))2 + (cLkh(x+1))2 = (k2 +4)cFkh(2x+1).

Proof. Let us prove the first identity:

(cLkh(x))2 + (sLkh(x+1))2 = (σx
1 +σ−x

1 )2 + (σx+1
1 −σ−(x+1)

1 )2

=σ2x
1 +2+σ−2x

1 +σ2x+2
1 −2+σ−(2x+2)

1

=σ2x
1 (1+σ2

1)+σ−2x
1 (1+σ−2

1 )
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=σ2x
1 σ1

√
k2 +4+σ−2x

1

(p
k2 +4
σ1

)

=σ2x+1
1

√
k2 +4+σ−2x−1

1

√
k2 +4

=
√

k2 +4(σ2x+1
1 +σ−(2x+1)

1 )

= (k2 +4)

(
σ2x+1

1 +σ−(2x+1)
1p

k2 +4

)

= (k2 +4)cFkh(2x+1).

Proposition 10.

sLkh(x)cFkh(x)= sFkh(2x) ,

cLkh(x)sFkh(x)= sFkh(2x).

Proof. Let us prove the first identity:

cLkh(x)sFkh(x)= (σx
1 +σ−x

1 )
(
σx

1 −σ−x
1p

k2 +4

)

= σ2x
1 −σ−2x

1p
k2 +4

= sFkh(2x).

3. The Quasi-sine k-Lucas Function
In Eq. (1.4), Binet’s formula for the k-Lucas sequence was written as follows:

Lk,n =σn
1 + (−1)nσ−n

1 .

In Eq. (2.1), we defined the k-Lucas hyperbolic sine function as:

sLkh(x)=σx
1 −σ−x

1 .

Furthermore, we know that, where x ∈ R, if we take x as an odd number, sLkh(x) takes the
value which correspond to the k-Lucas sequence, that is sLkh(x)= Lk,n .

With them, using the well-known identity cos(nπ) = (−1)n , we can give the following
definition.

Definition 11. The quasi-sine k-Lucas function defined by:

QL,k(x)=σx
1 +cos(πx)σ−x

1 .

Note that QL,k(x)= Lk,n for all integer n.
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The graphics of QL,k(x) for k = 1,2,3 are given in Figure 2.

Figure 2

Figure 3. shows that the graphics of QL,k(x) for k = 1,2 along with their evolving tangent
curves which are the k-Lucas cosine and sine hyperbolic functions.

Figure 3

3.1 The Quasi-sine k-Lucas Functions and the k-Lucas Numbers
Now, we will give some relations about the quasi-sine k-Lucas functions, which are similar to
the k-Lucas numbers.

Theorem 12 (Recursive relation).

QL,k(x+2)= k QL,k(x+1)+QL,k(x).

Proof.

k QL,k(x+1)+QL,k(x)= k
[
σx+1

1 +cosπ(x+1)σ−x−1
1

]+ [
σx

1 +cos(πx)σ−x
1

]
= k

[
σx+1

1 −cos(πx)σ−x−1
1

]+ [
σx

1 +cos(πx)σ−x
1

]
= kσx+1

1 −kcos(πx)σ−x−1
1 +σx

1 +cos(πx)σ−x
1
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=σx
1(kσ1 +1)−cos(πx)σ−x−2

1 (kσ1 −σ2
1)

=σx+2
1 −cos(πx)σ−x−2

1 (kσ1 −kσ1 −1)

=σx+2
1 −cos(πx+2π)σ−x−2

1 (−1)

=σx+2
1 +cosπ(x+2)σ−(x+2)

1

=QL,k(x+2).

Theorem 13 (Catalan’s identity).

QL,k(x− r)QL,k(x+ r)− (QL,k(x))2 = (−1)r cos(πx)(QL,k(r))2 −4cos(πx).

Proof.

QL,k(x− r)QL,k(x+ r)− (QL,k(x))2

= [
σx−r

1 +cosπ(x− r)σ−x+r
1

][
σx+r

1 +cosπ(x+ r)σ−x−r
1

]− [
σx

1 +cos(πx)σ−x
1

]2

= [
σx−r

1 + (−1)r cos(πx)σ−x+r
1

][
σx+r

1 + (−1)r cos(πx)σ−x−r
1

]
− [σ2x

1 +2cos(πx)+cos2(πx)σ−2x
1 ]

=σ2x
1 + (−1)r cos(πx)σ−2r

1 + (−1)r cos(πx)σ2r
1 + (−1)2r cos2(πx)σ−2x

1

−σ2x
1 −2cos(πx)−cos2(πx)σ−2x

1

= (−1)r cos(πx)[σr
1 +cos(πr)σ−r

1 ]2 −4cos(πx)

= (−1)r cos(πx)(QL,k(r))2 −4cos(πx).

Theorem 14. For any integer r,

lim
x→∞

QL,k(x+ r)
QL,k(x)

=σr
1 .

Proof.

lim
x→∞

QL,k(x+ r)
QL,k(x)

= lim
x→∞

σx+r
1 +cosπ(x+ r)σ−x−r

1

σx
1 +cos(πx)σ−x

1

= lim
x→∞

σx+r
1 + (−1)r cos(πx)σ−x−r

1

σx
1 +cos(πx)σ−x

1

= lim
x→∞

σx
1(σr

1 + (−1)r cos(πx) 1
σ2x

1

σx
1(1+cos(πx) 1

σ2x
1

=σr
1 .

In particular, taking k = 1, we have that σ1 =φ and lim
x→∞

QL,k(x+1)
QL,k(x) =φ.
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