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Complex Fibonacci p-Numbers

Dursun Tasci and Feyza Yalcin

Abstract In the present paper, the complex Fibonacci p-numbers are defined by
two-dimensional recurrence relation and some results are obtained.

1. Introduction

The complex Fibonacci numbers are considered by many authors. Harman [1]
introduced complex Fibonacci numbers at Gaussian integers by two dimensional
recurrence relation. In [1], for n,m € Z and (n,m) = n + im, G(n, m) numbers
satisfy the following recurrence relations

G(n+2,m)=G(n+1,m)+G(n,m),
G(n,m+2)=G(n,m+1)+ G(n,m),

with initial conditions
G(0,0)=0, G(1,0)=1, G(0,1)=i, G(1,1)=1+i.

In [1], Harman defined the complex Fibonacci numbers as
G(n,m) =F, 1 F,+iF,F,.

Taking m = 1, G(n, m) is the nth particular complex Fibonacci number
F'=F,+iF,

given by Horadam [2].
In [3], Pethe defined the generalized Gaussian Fibonacci numbers. On the
other hand, Berzsenyi [4] gave a different method by defining Gaussian Fibonacci

2000 Mathematics Subject Classification.11B39.
Key words and phrases.Complex Fibonacci p-numbers; Complex Fibonacci numbers; Fibonacci
p-numbers.

Copyright © 2013 Feyza Yalcin et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



214 Dursun Tasci and Feyza Yalcin

numbers. Berzsenyi defined the Gaussian Fibonacci numbers F,_ ,,;, for n an integer
and m a nonnegative integer by

2 /m
Fromi = E I(k) i*F,_,. (1.1)
k=0

From (1.1), F,,; also satisfy

Fn+mi = F(n71)+mi + F(n72)+mi'
For a fixed m (or similarly a fixed n), in Harman’s generalization [1], a second
order recurrence relation is considered. In this paper for p > 1 and n, m be
nonnegative integers, Harman’s recurrence relation is generalized to a particular
pth order recurrence relation, i.e.,

G,(n+1,m)=G,(n,m)+ G,(n—p,m), n>p, (1.2)

Gp(n,m+1) = Gy(n,m)+G,(n,m—p), m>p, (1.3)
with initial conditions for all r,s € {0,1,2,...,p}

Gp(r,s)=F,, +iF,, (1.4

where F, ,, is the nth Fibonacci p-number.

Many authors deal with Fibonacci p-numbers and their applications
([51,[6],[7D). In [5], for any integer p > 0, n € Z and n > p, the nth Fibonacci
p-number is given by the recurrence relation

F,(n)=F,(n—-1)+F,(n—p—1) (1.5)
with the initial conditions
F,(0)=0, F,(1)=F,(2)=---=F,(p)=1.
The Lucas p-numbers hold the same recurrence relation with the initial conditions
L,(0)=p+1,L,(1)=---=L,(p)=1.

In the case p = 1 the classical Fibonacci numbers are obtained.
The well known relationship between F,,(n) and L,(n) is given by

L,(n)=F,(n+1)+pF,(n—p). (1.6)

Throughout this paper the nth Fibonacci p-number and Lucas p-number will be

denoted by F, , and L, ,, respectively.

2. Main Results

In this section some properties related to the recurrence relations in (1.2) and
(1.3) are presented. It is obvious that

F =0
G,(n,m)=1 2" " 2.1
iFpm, n=0.
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Proposition 1.

G,(n,1)=F, , ,G,(0,1) +F, ,G,(1,1). (2.2)

»1t=p

Proof. Use induction on n. Since F, _, =1, F, o = 0 and from the initial conditions
in (1.4), for n =0 (2.2) is true. Suppose that (2.2) is true for n — 1. From (1.2),

G,(n,1)=G,(n—1,1)+ G,(n—p —1,1).
By induction hypothesis,

Gp(n; 1) = Fp,n—p—le(O: 1) + Fp,n—le(]-: 1)
+ Fpp0p1G,(0,1)+F,, , 1G,(1,1).

Rearranging the RHS use of (1.5) shows that (2.2) is true for n. So, for all
nonnegative integers (2.2) is true. OJ

In (2.2) by replacing the initial values in (1.4)

G,(n,1)=F,, +iF, 11q (2.3)
is obtained. By using (2.1), (2.3) can be written as

Gp(n,1) = G,(n,0) + G,(0,n+1).
Proposition 2.

Gp(n,m)=F, ,_,G,(n,0)+F, ,G,(n,1). (2.4
Proof. The proof is similar to Proposition 1. O
Proposition 3.

Gp (n, m) = Fp,m+1Fp,n + in,n+1Fp,m . (25)
Proof. Consider (2.4) with (2.1) and (2.3) gives

Gp(n; m) = Fp,m—pr,n + Fp,m(Fp,n + in,n+1)-
From (1.5),

Gp(n; m) = Fp,m+1Fp,n + in,n+1Fp,m .

This completes the proof. O

Thus G,(n,m) can be written in terms of Fibonacci p-numbers. The complex
Fibonacci p-numbers Gp(n, m) can be defined by (2.5).

For p =1, (2.5) gives the Harman’s definition in [1].

In [7], Tuglu et al. give the sum of bivariate Fibonacci p-polynomials. Taking
x =y =1in ([7], Prop. 6) gives the sum of Fibonacci p-numbers. So, from (2.1)
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and (2.3) the following sums are obvious.

k
D G, (1,0)=Fypipir — 1,
n=0

k
261D = Fpreppir = D+ i(Fppipra— 1.
n=0

Taking m = n, it is obvious that

k
Z Gp(n: Tl) = (1 + i)(Fp,le,Z + Fp,ZFp,S +eet Fp,ka,k+1)

n=1

k
= (141D FpuFpnir
n=1
The following proposition gives an analogy of (1.6).

Proposition 4.
G,(n+1,m)+pG,(n—p,m)=G,(m+1,0)L, , +G,(0,m)L, 1.
Proof. From (2.5) and (1.6),
Gp(n+1,m)+pG,(n—p,m)
=Fp mi1Fpni1 T 1FpmFpnio + P(Fp mir Fpnp + 1Fp mFpn-pi1)
= (Fpni1 +PFpnp)Fpmi1 +U(Fp o+ PFpnpi1)Fpm
=Ly Fpmi1 +ilpni1Fpm-
Use of (2.1) ends the proof. O
Thinking (1.2) and (1.3) jointly,
G,(n+2,m+2)=G,(n+1,m+1)+G,(n+1,m—-p+1)
+ G,(n—p+1,m+1)+G,(n—p+1,m—p+1)

is obvious. This new recurrence relation denotes that each complex Fibonacci p-
number G,(n,m) is sum of the four previous numbers at the vertices of a square
on Gaussian lattice.

For n = 5,m =4, it is clear that

G4(7,6) = 16 + 15
= G3(6; 5) + G3(6: 2) + G3(3: 5) + G3(3: 2)

By choosing the initial conditions pursuant to Lucas p-sequence, consider the
recurrence relations in (1.2) and (1.3) with initial conditions for all r,s €
{0,1,2,...,p}

G,(r,s) =L, , +iF

- (2.6)

where F, , and L, , is the nth Fibonacci and Lucas p-number, respectively.
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y
4 T 5+4i 5+4i 5+4i 8 +5i 10+12i 15+16i 20+ 20i
3 T 4+3i 4+3i 4+3i 4+6i 8+9i 12+12i 16+15i
20 T 3+2i 3+2i 3+2i 3+4i 6+ 6i 9+8i 12+10i
i T 2+i 2+i 2+i 2+2i 4+3i 6+4i 8+5i
i T 1+i 1+i 1+i 1+2i 2+3i 3+4i 4+5i
i T 1+i 1+i 1+i 1+2i 2+3i 3+4i 4+ 5i
i T 1+i 1+i 1+i 1+2i 2+3i 3+4i 4+5i
o1 1 s s s

Figure 1. The first G,(n, m) numbers for p = 3.

By applying the same procedure, the propositions below can be given.

Proposition 5.
G,(n,0)=1Lp,.
Proof. The proof is obvious.

Proposition 6.
G,(n,1)=F,, ,G,(0,1)+F,,G,(1,1).
Proof. The proof can be seen by induction on n.

Proposition 7.
Gpy(n,1) =Ly, +iFp 41 -
Proof. From (2.8) and (2.6),
Gpy(n, 1) =Fp_p(Lpo+iFy1)+Fy(Ly1 +iF, )
=F,,,(p+1+i)+F,(1+1)
=Fp i1 +PFpnp +1F, 0
=Lpn+iFp 41
Proposition 8.

G,(n,m) =F, ,_,G,(n,0) + F, ,G,(n,1).

Proof. The proof is obvious from induction on m.

Replacing the values in (2.7) and (2.8) to (2.9), it is concluded that

Gp(n, m) = Fp,m+1Lp,n + in,n+1Fp,m .

217

2.7

(2.8)

(2.9)
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This paper outlines the concept of complex Fibonacci p-numbers and their
applications and illustrates that this kind of generalization is possible for sequences
in similar feature.
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