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Abstract. In this article, the governing equations of a homogeneous, isotropic micropolar micro-
stretch elastic solid for xz-plane are considered and solved for surface wave propagation. Two types
of frequency equations for Rayleigh waves are derived, in which one is along the free surface of
micropolar micro-stretch elastic solid half space and another is at viscous liquid/micropolar micro-
stretch solid interface. These are dispersive in nature. In the study of some particular cases, we
observed that four types of Rayleigh waves are propagate, out of these, two waves are at free surface
of generalized micropolar solid and micro-stretch solid and another two types of waves are at interface
of viscous liquid/non-microstretch solid. In these four waves, three Rayleigh waves are dependent
on solid density and one of them is non-dispersive in nature. Numerical example is considered for a
particular solid and viscous liquid layer and the frequency curves are drawn and discussed with the
help of MATLAB programme.
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1. Introduction
Rayleigh waves are surface type waves which are combination of two types of motions named
as longitudinal and transverse motion and these waves are create an elliptic motion. In the
year 1885, the Rayleigh waves are predicted by L. Rayleigh [13], so they are named as Rayleigh
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waves. These waves are very sensitive to surface defects, so they are very useful in the fields
like earthquake engineering, geophysics, ocean beds, material sciences and telecommunication
industrial etc.

The dispersive relation of Rayleigh waves and Love waves in an elastic solid half-space
which is covered by single solid layer derived by Love [11]. Eringen [4] derived the constitutive
relations and field equations for micropolar elastic media within the frame work of linear theory
by introducing micropolar theory of elasticity. Eringen [3] developed his investigation on the
theory of micropolar elasticity by including the axial stretch during the molecules rotation and
also he extended his research on this theory by including stretch. The equations of motions,
constitutive relations for thermo-micro stretch fluid are given by Eringen [5], also he derived
the solution for acoustical waves in bubbly liquids. The microstretch continuum is a model for
Bravais lattice with basis on the atomic level and two phase dipolar solids with core on the
microscopic level.

The dispersive reflection problem at the interface of solid and viscous liquid by Miles [12].
The propagation of Rayleigh waves in isotropic solids such as isotropic micro stretch
thermoelastic solids, micro stretch thermoelastic solids under inviscid fluids are studied
by Kumar et al. [10], Sharma et al. [14] and cited therein. Kumar and Tomar [8] studied
the reflection and transmission of elastic waves at viscous liquid. In recent, Srinivas and
Somaiah [16] studied the fluid effect on radial vibrations.

In the present paper, we derive the dispersion relation of Rayleigh waves at interface of
micropolar micro-stretch elastic solid and viscous liquid layer.

2. Basic Equations
The equations of motion and constitutive relations in a homogeneous, isotropic micropolar
microstretch elastic solid in the absence of body forces, body couples and stretch forces are
followed by Eringen [2], Sherief et al. [15], and Kumar and Kansal [9] as

(λ+2µ+K)∇(∇.U⃗)− (µ+K)∇×∇×U⃗ +K∇× φ⃗+λ0∇ψ∗ = ρ ¨⃗U , (2.1)

(α+β+γ)∇(∇. φ⃗)−γ∇× (∇× φ⃗)+K∇×U⃗ −2Kφ⃗= ρJ ¨⃗
φ , (2.2)

α0∇2ψ∗−λ1ψ
∗−λ0∇.U⃗ = ρJ0

2
ψ̈∗ . (2.3)

The constitutive relations are

Ti j =λUr,rδi j +µ(Ui, j +U j,i)+K(U j,i −ϵi jrφr)+λ0δi jψ
∗ , (2.4)

mi j =αφr,rδi j +βφi, j +γφ j,i +b0ϵm jiψ
∗
,m , (2.5)

λ∗
i =α0ψ

∗
,i +b0ϵi jmφ j,m (2.6)

where λ,µ are Lame’s elastic constants, α,β,γ,K are micropolar constants, λ0,λ1,α0,b0

are microstretch elastic constants, ρ is the density of the solid. U⃗ = (u,v,w) is the macro
displacement vector, φ⃗= (φ1,φ2,φ3) is the micro rotation vector, ψ∗ is the micro stretch scalar,
J is the micro inertia, J0 is the micro inertia of the micro elements, Ti j , mi j are components of
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stress and couple stress tensor, respectively. λ∗
i is the micro stress tensor, e i j = 1

2 (Ui, j +U j,i) are
components of infinitesimal strain, ekk is the dilation, δi j is Kroneckor’s delta. Superpose dot
is the partial derivative with respect to time t and suffix comma is the partial derivative with
respect to the coordinate vector.

3. Problem Formulation
Consider a homogeneous, isotropic micropolar micro-stretch elastic solid M1 lying under a
uniform homogeneous viscid liquid layer medium M2 of thickness T with cartesian coordinate
system oxyz at any point on the plane horizontal surface and z-axis pointing vertically
downward in to the half-space.

T

O

z = T

x

z

Homogeneous viscous liquid

layer medium M2

Isotropic micropolar micro-stretch

elastic half-space medium M1

Figure 1. Geometry of the problem

Consider the direction of wave propagation along x-axis and amplitudes decaying in
the direction of z-axis, so, all the particles vibrating on a line parallel to y-axis are equally
displayed. With these assumptions all the field equations are independent of y-coordinates.
For the two dimensional problem, we take macro displacement vector U⃗ components and micro-
rotation vector φ⃗ components are

U⃗ = (u, o,w), φ⃗= (0,φ,0) (3.1)

and stretch component ψ∗(x, z, t) with u,w and φ are functions of x, z, t.
Using equation (3.1) in equations (2.1), (2.2) and (2.3), we obtain

(µ+K)∇2u+ (λ+µ)(u,xx +w,xz)−Kφ,z +λ0ψ
∗
,x = ρü , (3.2)

(µ+K)∇2w+ (λ+µ)(w,zz +u,xz)+Kφ,x +λ0ψ
∗
,z = ρẅ , (3.3)

K(u,z −w,x)−γ∇2φ−2Kφ= ρJφ̈ , (3.4)

α0∇2ψ∗−λ1ψ
∗−λ0(u,x +w,z)= ρJ0

2
ψ̈ , (3.5)

where ∇2 = ∂2

∂x2 + ∂2

∂z2 .
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The displacement components u and w can be expressed by Helmholtz potentials χ,ψ as

u = ∂χ

∂x
− ∂ψ

∂z
, w = ∂χ

∂z
+ ∂ψ

∂x
(3.6)

on using equation (3.6) in equations (3.2) to (3.5), we get

(λ+2µ+K)∇2χ+λ0ψ
∗ = ρ∂

2χ

∂t2 , (3.7)

(µ+K)∇2ψ+Kφ= ρ∂
2ψ

∂t2 , (3.8)(
γ∇2 +2K +ρJ

∂2

∂t2

)
φ+K∇2ψ= 0 , (3.9)(

α0∇2 −λ1 − ρJ0

2
∂2

∂t2

)
ψ∗−λ0∇2χ= 0 . (3.10)

Following Fehler [7], the equations of motion and stresses are given in xz-plane for viscous
liquid medium as

KL∇2φL + 4
3
ηL ∂

∂t
∇2φL = ρ∂

2φL

∂t2 , (3.11)

ηL ∂

∂t
∇2ψL = ρL ∂

2ψL

∂t2 (3.12)

and

TL
zx = ηL ∂

∂t

[
2
∂2φL

∂x∂z
+ ∂2ψL

∂x2 − ∂2ψL

∂z2

]
, (3.13)

TL
zz =

[
KL − 2

3
ηL ∂

∂t

][
∂2φL

∂x2 + ∂2φL

∂z2

]
+2ηL ∂

∂t

[
∂2ψL

∂x∂z
− ∂2φL

∂z2

]
. (3.14)

The components of displacements are given by

uL = ∂φL

∂x
− ∂ψL

∂z
, wL = ∂φL

∂z
− ∂ψL

∂x
, (3.15)

where KL is bulk modulus, ρL is fluid density, ηL is fluid viscosity and φL,ψL are potentials of
longitudinal and transverse waves, respectively.

4. Solution of the Problem
Consider the surface wave solution along the direction of x-axis for the equations (3.7) to (3.10)
of the form

(χ,ψ,ψ∗,φ)(x, z, t)= [
χ̄(z),ψ̄(z),ψ̄∗(z), φ̄(z)

]
ei(ηx−ωt) , (4.1)

where the wave number η, angular frequency ω are connected by the wave velocity ν as
ν= ω

η
and χ̄,ψ̄,ψ̄∗, φ̄ are amplitudes of χ,ψ,ψ∗,φ, respectively. The Rayleigh surface waves are

damped in time with wave velocity ν taken as Re(ν)> 0 and Im(ν)≤ 0.
Inserting equation (4.1) in equations (3.7) to (3.10) we obtain the following system of four

simultaneous second order differential equations[
C1D2 +ρω2 −C1η

2]χ̄+λ0ψ̄
∗ = 0 , (4.2)[

C2D2 +ρω2 −C2η
2]ψ̄+Kφ̄= 0 , (4.3)

Communications in Mathematics and Applications, Vol. 14, No. 1, pp. 89–103, 2023



Rayleigh Wave Propagation at Viscous Liquid/Micropolar Micro-stretch. . . : K. Somaiah and A. R. Kumar 93

K(D2 −η2)ψ̄+ [
γD2 +2K −ρJω2 −γη2]φ̄= 0 , (4.4)

−λ0(D2 −η2)χ̄+
[
α0D2 + ρJ0

2
ω2 −λ1 −α0η

2
]
ψ̄∗ = 0 , (4.5)

where C1 =λ+2µ+K , C2 =µ+K and D ≡ d
dx .

From equation (4.1), we have the surface waves, so the quantity η must be real and positive.
According to Suhubi and Eringen [6] theory, we consider the solution of simultaneous equations
(4.2) to (4.5) in the form of surface wave solutions for half-space solid as

χ̄(z)= A1e−r1z + A2e−r2z , (4.6)

ψ̄(z)= A3e−r3z + A4e−r4z , (4.7)

ψ̄∗(z)= A1ξ1e−r1z + A2ξ2e−r2z , (4.8)

φ̄(z)= A3ξ3e−r3z + A4ξ4e−r4z , (4.9)

where

r2
1, r2

2 =
1
2

[−P ± (P2 −4Q)
1
2
]
,

r2
3, r2

4 =
1
2

[−P1 ± (P2
1 −4Q1)

1
2
]
,

P = 1
2α0

[ρJ0ω
2 −2λ1]+ ρω2α0 +λ2

0

α0(λ+2µ+K)
−2η2,

Q = [ρJ0ω
2 −2(λ1 +α0η

2
)][ρω2 −η2(λ+2µ+K)]

2α0(λ+2µ+K)
−2λ0η

2,

P1 = 2K −ρJω2

γ
+ γρω2 −K2

γ(µ+K)
−2η2,

Q1 = [ρω2 − (µ+K)η2][2K −ρJω2 −γη2]+η2K2

γ(µ+K)
,

ξ j =
C1(η2 − r2

j)−ρω2

λ0
, j = 1,2,

ξl =
C2(η2 − r2

l )−ρω2

K
, l = 3,4 .



. (4.10)

On substituting amplitudes given in equations (4.6) to (4.9) in equation (4.1), we obtain

χ(x, z, t)=
2∑

j=1
A j e−r j zei(ηx−ωt) ,

ψ(x, z, t)=
4∑

j=3
A j e−r j zei(ηx−ωt) ,

ψ∗(x, z, t)=
2∑

j=1
A jξ j e−r j zei(ηx−ωt) ,

φ(x, z, t)=
4∑

j=3
A jξ j e−r j zei(ηx−ωt) ,



(4.11)

where A j , j = 1,2,3,4 are arbitrary constants.
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The solutions of equations (3.11) and (3.12) are

φL(x, z,ω, t)= A exp[i(ηx−ωt)−ϵ1z] , (4.12)

ψL(x, z,ω, t)= Bexp[i(ηx−ωt)+ϵ2z] , (4.13)

where A,B are arbitrary constants, x-axis is the direction of propagation and

ϵ1 = 3ρLω2 − (4iωηL +3KL)η2

3KL +4iωηL ,

ϵ2 = η2 − iρLω

ηL .

 (4.14)

5. Boundary Conditions and Dispersion Equations
With the help of equation (3.1), the constitutive relations (2.4) to (2.6) reduces to

Tzz =λ∂u
∂x

+ (λ+2µ+K)
∂w
∂z

+λ0ψ
∗ , (5.1)

Tzx = (µ+K)
∂u
∂z

+µ∂w
∂x

−Kφ , (5.2)

mzy = γ∂φ
∂z

+b0
∂ψ∗

∂x
, (5.3)

λ∗
z =α0

∂ψ∗

∂z
−b0

∂φ

∂x
(5.4)

with the help of equation (4.11), equation (3.6) reduces to

u = iηe−r1z A1 + iηe−r2z A2 + r3e−r3z A3 + r4e−r4z A4 , (5.5)

w =−r1e−r1z A1 − r2e−r2z A2 + iηe−r3z A3 + iηe−r4z A4 . (5.6)

The boundary conditions at the interface separating M1 and M2 at z = 0 are given as
(i) Continuity of the longitudinal displacement is

u = uL . (5.7)

(ii) Continuity of the transversal displacement is

w = wL . (5.8)

(iii) Continuity of the normal stress is

Tzz = TL
zz . (5.9)

(iv) Continuity of shear stress is

Tzx = TL
zx . (5.10)

(v) Vanishing of tangential couple stress is

mzy = 0 . (5.11)

(vi) Vanishing of normal microstress is

λ∗
z = 0 . (5.12)
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Inserting equations (3.13), (3.14) and (5.1) to (5.4) with the help of equations (3.15), (5.5) and
(5.6) in equations (5.7) to (5.12) we obtain, the following system of six equations

iηA1 + iηA2 + r3A3 + r4A4 − iηA+ϵ2B = 0 ,

−r1A1 − r2A2 + iηA3 + iηA4 +ϵ1A+ϵ2B = 0 ,[−λη2−iηr1(λ+2µ+K)+λ0ξ1
]
A1+

[−λη2−iηr2(λ+2µ+K)+λ0ξ2
]
A2+(iληr3−η2)A3

+(iληr4 −η2)A4 −
[
(ϵ2

1 − (ηL)2)+ 2iωηL

3
+KL +2iωηLϵ2

1

]
A−2ϵ2ω(ηL)2B = 0 ,

−iηr1(2µ+K)A1 − iηr2(2µ+K)A2 +
[
r2

3(µ+K)−µη2 −Kξ3
]
A3

+[
r2

4(µ+K)−µη2 −Kξ4
]
A4 −2ωϵ1(ηL)2A+ i(ϵ2

2 − (ηL)2)ηLωB = 0 ,

ib0ξ1ηA1 + ib0ξ2ηA2 −γr3ξ3A3 −γr4ξ4A4 = 0 ,[
α0r3 + ib0ηξ3

]
A3 +

[
α0r4 + ib0ηξ4

]
A4 = 0 .



(5.13)

The system (5.13) has a non-trivial solution if and only if

det(ai j)= 0, 1≤ i, j ≤ 6 . (5.14)

Solving the determinant (5.14) we get the following dispersion relations

2δ2ω
2 =−

(
2δ3 +δ4 + 4δ1

δ2δ
(ρ2J+δ5)

)
±

{(
2δ3 +δ4 + 4δ1

δ2δ
(ρ2J+δ5)

)2

−4
(
δ2

1 +δ2
3 +δ3δ4 − 4δ1δ6

δ

)} 1
2

(5.15)

and

∆1 =−∆2 , (5.16)

where ai j (1≤ i, j ≤ 6), δl (1≤ l ≤ 6), δ, ∆1 and ∆2 are given in Appendix.
Equation (5.15) represents dispersion relation for Rayleigh waves along free surface of

Micropolar microstretch elastic solid half-space and equation (5.16) is a dispersion relation
between viscous liquid layer and micropolar microstretch solid half-space.

Particular Cases
1. When α0 → 0 in equation (5.15), we get the following frequency equation of Rayleigh

waves in free surface of generalized micropolar elastic solid. It is dispersive in nature.

ρ

(
γ

C2
− J

)
ω2 = 2(γη2 −K) . (5.17)

2. When γ→ 0 in equation (5.15), we get

ρω2 = (2C2K2 −6K) or ρω2 = (K −C2K2) (5.18)

which is a frequency equation of Rayleigh waves in free surface of generalized micropolar
elastic solid and it is non-dispersive in nature.

3. By applying the properties of determinants, the equation (5.16) reduces to

r3 = r4 = iη and ϵ1 =−iη . (5.19)
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Under using equation (5.19), we get the following frequency Type-I and Type-II equations
at interface of viscous liquid and non-microstretch elastic solid respectively given by

2(3η2 +1)ω= 3iηL
[
λη2 +K2

(ηL)2 −1
]

(5.20)

and

ρω= ηηL

[
−iηL ±

{
4iη

(
µ+ K

2
+C2

)
− (ηL)2

} 1
2
]

. (5.21)

6. Numerical Application
To study the effect of fluid and stretch on the dispersion curves in a micropolar micro-stretch
elastic solid, we adopt the available physical parameters as:
The micropolar elastic solid parameters given below Chiroiu and Munteanu [1]: λ= 7.583 Gpa;
µ = 6.334 Gpa; K = 14.905 Mpa; ρ = 1189 kg/m3; J = 6.25 × 10−7 m2; γ = 2.896 N; α =
3.688 Gpam2.
With the unavailability, the micro-stretch parameters taken from Kumar et al. [10]: α0 =
0.779×10−9 N; b0 = 0.5×10−9 N; λ0 = 0.5×1010 N/m2; λ1 = 0.5×1010 N/m2.
Viscous liquid parameters given below Fehler [7]: KL = 0.119× 109 dyne/m2; ρL = 1.01×
10−3 kg/m2; ηL = 0.0014 poise.
The non-dimensional wave number η taken as 10≤ η≤ 100.

The variation of frequency with wave number for free surface of stretched solid and
micropolar solid are shown in Figure 2 and Figure 3, respectively.

Figure 2. Frequency vs. wave number
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Figure 3. Frequency vs. wave number

Type-I dispersion curve for interface of viscous liquid and non micro-stretch (i.e., micropolar)
solid is shown in Figure 4 and this frequency curve decreasing in parabolic path in given range
of wave number 0 to 60 and nearly constant in the range of 60 to 100. Type-II dispersion curve
pertaining to viscous liquid and non micro-stretch (i.e., micropolar) solid shown in Figure 5 and
from this figure we observed that the frequencies are increasing in parabolic path.

Figure 4. Frequency vs. wave number
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Figure 5. Frequency vs. wave number

The comparative graphs are shown in Figure 6 to Figure 10. From these figures we observed
that the Rayleigh surface waves are vanishes at free surface of micropolar micro-stretch solid
and interface of viscous liquid/non micro-stretch (i.e., micropolar) solid. Also, the Rayleigh waves
are propagate in parabolic path at free surface of non micro-stretch (i.e., micropolar) solid and
interface of viscous liquid/non micro-stretch (i.e., micropolar) solid.

Figure 6. Frequency vs. wave number
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Figure 7. Frequency vs. wave number

Figure 8. Frequency vs. wave number
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Figure 9. Frequency vs. wave number

Figure 10. Frequency vs. wave number
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7. Conclusion
In this present investigation, we have derived secular equations for Rayleigh waves in a
homogeneous, isotropic micropolar micro-stretch elastic solid underlying viscous liquid. Under
theoretical illustration and Numerical example, we conclude that

• Two Rayleigh waves along the free surface of micropolar micro-stretch elastic solid half-
space and at interface of viscous liquid/micropolar micro-stretch solid are propagate. These
are functions of wave number so they are dispersive in nature.

• Four special types of Rayleigh waves are propagate, in which two are at free surface
of micropolar solid and micro-stretch solid and another two are at interface of viscous
liquid/micropolar solid. All these waves are dispersive in nature, while the wave at free
surface of micro elastic solid is non-dispersive.

• The waves at free surface of micropolar micro-stretch solid and interface of viscous
liquid/micropolar solid are vanishes.

• The waves are propagate in parabolic path at free surface of micropolar solid and interface
of viscous liquid/micropolar solid.

Appendix
a11 = a12 = iη, a13 = r3, a14 = r4, a15 =−iη, a16 = ϵ2, a21 =−r1, a22 =−r2, a23 = iη, a24 = iη,

a25 = ϵ1, a26 = ϵ2, a31 =λ0ξ1 −λη2 − iηr1C1, a32 =λ0ξ2 −λη2 − iηr2C1, a33 = iληr3 −η2,

a34 = iληr4 −η2, a35 =−
[
ϵ2

1 − (ηL)2 + 2iωηL

3
+KL +2iωηLϵ2

1

]
, a36 =−2ϵ2ω(ηL)2,

a41 =−iηr1(2µ+K), a42 =−iηr2(2µ+K), a43 = r2
3C2 −µη2 −Kξ3, a44 = r2

4C2 −µη2 −Kξ4,

a45 =−2ωϵ1(ηL)2, a46 = i(ϵ2
2 − (ηL)2)ηLω, a51 = ib0ξ1η, a52 = ib0ξ2η, a53 =−γr3ξ3,

a54 =−γr4ξ4, a55 = a56 = 0, a61 = a62 = 0, a63 =α0r3 + ib0ηξ3, a64 =α0r4 + ib0ηξ4,

a65 = a66 = 0, δ=
(
α0K

b0ηC2

)2
, δ1 = γC2δ, δ2 = ρ(γ− JC2), δ3 = 2C2(K −γη2),

δ4 = 2C2γδ, δ5 = (γη2 −2K)ρ−C2η
2Jρ, δ6 = C2(γη2 −2K)η2 −η2K2,

∆1 =

∣∣∣∣∣∣∣∣∣∣∣

iη iη r4 −iη ϵ2
−r1 −r2 iη ϵ1 ϵ2
a31 a32 a34 a35 a36
a41 a42 a44 a45 a46
a51 a52 a54 0 0

∣∣∣∣∣∣∣∣∣∣∣
, ∆2 =

∣∣∣∣∣∣∣∣∣∣∣

iη iη −iη r3 ϵ2
−r1 −r2 ϵ1 iη ϵ2
a31 a32 a35 a33 a36
a41 a42 a45 a43 a46
a51 a52 0 a53 0

∣∣∣∣∣∣∣∣∣∣∣
.
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