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1. Introduction
Some uncertainty is always there for outcomes in each and every random experiment.
The entropy provides a quantitative measure of this uncertainty. Entropy was originally defined
in physics, especially in second law of thermodynamics but in information theory it was firstly
defined by Shannon [10] as under:

If f be probability density function and F be distribution function of random variable X ,
then entropy function is given by

H( f )= E[− log( f (X ))] . (1)

For the very sharply peaked distribution, entropy is very low and is much higher when the
probability is spread out. In other words, entropy measures the uniformity of distribution.
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On estimation of entropies for different life distributions, many researchers have worked.
Noteworthy work in this direction may be refereed from Lazo and Rathie [7], Misra et al. [9],
Jeevanand and Abdul-Sathar [3], and Kayal and Kumar [6] etc.

Suppose the random variable X has the probability distribution f (x,θ) where interest is
to estimate entropy function as function of θ. When we estimate θ, some prior information
about unknown parameter θ as an initial guess value θ0 (based on the past experience) is given.
Thompson [11] recommended that by modifying usual estimator of unknown parameter θ by
moving it closer to θ0, we can create shrinkage estimation.

When initial value is near to true value of the parameter θ then shrinkage estimator gives
better results than usual estimator. Various authors have discussed the concept of shrinkage
estimators for different parameters or parametric functions under a variety of distributions.

In this paper, we shall concentrate on obtaining shrinkage estimation of entropy function,
under symmetric/asymmetric loss functions using progressive type II censored sample, when
the underlying distribution is assumed to exponential distribution. The form of density we
consider is

f (x,θ)= 1
θ

e−
x
θ , x ≥ 0, θ > 0 . (2)

Progressive censoring is a useful scheme for reliability and life time studies and for a
more detailed discussion about progressive censoring, one may refer to Balakrishnan and
Aggarwala [1].

2. Shrinkage Estimators of H(f )
For exponential distribution with mean θ, the entropy function becomes

H( f )= 1+ ln(θ) . (3)

Since H( f ) is linear function of ln(θ), estimating H( f ) is equivalent to estimating ln(θ). We shall
write I(θ)= ln(θ) so that H( f )= 1+ I(θ). Now, we shall discuss estimation of I(θ).

From the exponential distribution (given in (2)), let X1:m:n, X2:m:n, . . . , Xm:m:n be type II
progressive censored sample. Then, for this sample (Balakrishnan and Aggarwala [1]), the joint
density is

f (x1:m:n, x2:m:n, . . . , xm:m:n)

= C
m∏

i=1
f (xi:m:n)(1−F(xi:m:n))Ri , 0≤ x1:m:n ≤ x2:m:n ≤ . . .≤ xm:m:n, (4)

where (R1,R2, . . . ,Rm) be the progressive censoring scheme and m, the number of observed
failures and (R1,R2, . . . ,Rm) are all pre-fixed with

C = n(n−R1 −1)(n−R1 −R2 −2) . . . (n−R1 −R2 − . . .−Rm−1 −m+1) .

Now substituting the density function and survival function in (4) we get

f (x1:m:n, x2:m:n, . . . , xm:m:n)

= C
(

1
θ

)m
exp

(
−

m∑
i=1

(Ri +1)xi:m:n

θ

)
, 0≤ x1:m:n ≤ x2:m:n ≤ . . .≤ xm:m:n . (5)
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Then MLE (Maximum Likelihood Estimator) of θ can easily be obtained as

θ̂ =

m∑
i=1

(Ri +1)xi:m:n

m
. (6)

Since I(θ) is continuous function of θ, so we replace θ by its MLE θ̂ in I(θ), to obtain the MLE
of I(θ). Therefore, MLE of entropy function for the exponential distribution is

Ĥ( f )= 1+ ln(θ̂) . (7)

It can easily be shown that the distribution of θ̂ has distribution as

f (θ̂;θ)=
(m
θ

)m θ̂m−1 exp
(
−mθ̂

θ

)
Γ(m)

, θ̂ > 0 . (8)

Kambo et al. [5] modified a preliminary test single stage shrinkage estimator for exponential
distribution mean which takes prior estimate θ0 at both stages of the estimator when the data
is right censored and Jiheel and Shanubhogue [4] considered two shrinkage entropy estimators
for the same distribution. This motivates us to propose a new estimator.

We proposed the following shrinkage entropy estimators:

Ĩ1(θ)=
{

k1 ln(θ̂)+ (1−k1) ln(θ0)H0 : θ = θ0, accepted,
(1−k1) ln(θ̂)+k1 ln(θ0), otherwise,

(9)

where k1 is constant such that 0 ≤ k1 ≤ 1 and χ2
1 and χ2

2 are lower and upper αth percentile
values of chi-square distribution with 2m degrees of freedom, respectively. A second choice for
shrinkage factor depends on minimization of mean square error function, for the estimator
given in (9), with respect to k1. The value is denoted by k2 and the corresponding shrinkage
estimator is given by

Ĩ2(θ)=
{

k2 ln(θ̂)+ (1−k2) ln(θ0)H0 : θ = θ0, accepted,
(1−k2) ln(θ̂)+k2 ln(θ0), otherwise.

(10)

In estimation, various loss functions are taken in literature. These can be mainly divided
into two categories, viz. symmetric and asymmetric. Broadly both types of loss functions have
been taken in these problems. Among various symmetric loss functions (Berger [2], Martz and
Waller [8]) Square Error Loss Function (SELF) is well known and extensively used in estimation
problems. Several circumstances may happen in practice where ‘SELF’ may be appropriately
used, especially when underestimation and overestimation are of similar importance.

In spite of above considered justification for ‘SELF’, there may be some practical cases
where overestimation and underestimation are not equally penalized and thus for such cases, a
fruitful asymmetric loss function, that is LINEX loss function was introduced by Varian [12]. It
is defined as

L(∆)= b(ea∆−a∆−1), b > 0, a ̸= 0 , (11)

where ∆= θ̂−θ, b is scale parameter and a is shape parameter. When overestimation is more
critical than underestimation then the positive value of a is used and for other cases, its negative
value is used.

In next section, we calculate the risk of above estimator under both type of loss functions
(symmetric and asymmetric) described above.
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3. Risk of Estimators
3.1 Risk of MLE Î(θ)
Under LLF (LINEX Loss Function), the risk of the estimator Î(θ) is given by

RLLF(Î(θ))= E(Î(θ)/LLF)

=
∫ ∞

0
(exp(a(ln(θ̂)− ln(θ)))−a(ln(θ̂)− ln(θ))−1) f (θ̂;θ)d(θ̂)

=
∫ ∞

0

(
exp

(
a

(
ln

(
θ̂

θ

)))
−a

(
ln

(
θ̂

θ

))
−1

)
f (θ̂;θ)d(θ̂) .

Taking the transformation x = mθ̂
θ

and solving the integral, we get

RLLF(Î(θ))= Γ(m+a)
maΓ(m)

−a(Ψ(m)− ln(m)−1), (12)

where

Ψ(n)=
d

dnΓ(n)
Γ(n)

.

Also, under SELF, the risk of estimator Î(θ) is obtained as

RSELF(Î(θ))= E
(
ln(θ̂)− ln(θ)

)2

=
∫ ∞

0
(ln(θ̂)− ln(θ))2 f (θ̂;θ)d(θ̂)

=
∫ ∞

0

(
ln

(
θ̂

θ

))2

f (θ̂;θ)d(θ̂)

=G(0,∞, (log(x))2)−2ln(m)ψ(m)+ (ln(m))2, (13)

where

G(t1, t2,W)=
∫ t2

t1
Wxn−1e−xdx

Γ(n)
and W is a function of x.

3.2 Risk of Shrinkage Estimator Ĩ1(θ)
Risk of estimator Ĩ1(θ) under LLF is obtained as under:

RLLF(Ĩ1(θ))= E(Ĩ1(θ)/LLF)

=
∫ r2

r1

(exp(a(k1 ln(θ̂)+ (1−k1) ln(θ0)− ln(θ)−a(k1 ln(θ̂)

+ (1−k1) ln(θ0)− ln(θ))−1) f (θ̂;θ)dθ̂

+
∫ ∞

0
(exp(a(1−k1) ln(θ̂)+k1 ln(θ0)− ln(θ))

−a((1−k1) ln(θ̂)+k1 ln(θ0)− ln(θ))−1) f (θ̂;θ)dθ̂

−
∫ r2

r1

(exp(a(1−k1) ln(θ̂)+k1 ln(θ0)− ln(θ))

−a((1−k1) ln(θ̂)+k1 ln(θ0)− ln(θ))−1) f (θ̂;θ)dθ̂,

where r1 and r2 are the boundaries of acceptance region of a test of hypothesis H0 : θ = θ0

against alternative H1 : θ ̸= θ0. Letting r1 = θ0χ
2
1

2m , r2 = θ0χ
2
2

2m , x = mθ̂
θ

and solving the integrals,
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we get

RLLF(Î1(θ))= λaΓ(ak1 +m)
Γ(m)(λm)ak1

[I(r′2,ak1 +m)− I(r′1,ak1 +m)]+ (1−2k1)aG(r′1, r′2, ln(x))

+ (mλ)ak1Γ(a(1−k1)+m)
Γ(m)ma − (mλ)ak1Γ(a(1−k1)+m)

Γ(m)ma

· [I(r′2,a(1−k1)+m)− I(r′1,a(1−k1)+m)]

+ (2k1 −1)a ln(mλ)[I(r′2,m)− I(r′1,m)]+a(k1 −1)G(0,∞, ln(x))

−ak1 ln(mλ)+a lnm−1, (14)

where

r′1 =
2χ2

1

λ
, r′2 =

2χ2
2

λ
, λ= θ0

θ
and I(x,n) is cumulative distribution function of gamma distribution given as

I(x,n)=
∫ ∞

0 tn−1e−tdt
Γ(n)

.

Now, we can obtained risk of estimator Ĩ1(θ) under SELF as under:

RSELF(Ĩ1(θ))= E(Ĩ1(θ)/SELF)

=
∫ r2

r1

(k1 ln(θ̂)+ (1−k1) ln(θ0)− ln(θ))2 f (θ̂;θ)dθ̂

+
∫ ∞

0
((1−k1) ln(θ̂)+k1 ln(θ0)− ln(θ))2 f (θ̂;θ)dθ̂

−
∫ r2

r1

((1−k1) ln(θ̂)+k1 ln(θ0)− ln(θ))2 f (θ̂;θ)dθ̂ .

By letting x = mθ̂
θ

and solving the integrals, we obtain

RSELF(Ĩ1(θ))

= ((lnλ)2 − (lnm)2 −2k1(lnmλ)(lnλ)+2k1(lnmλ)(lnm))

· [I(r′2,m)− I(r′1,m)]+ (2k1 lnλ−2k1 lnm−2k1 ln(mλ)+2lnm)G(r′1, r2, (ln x))

+ (k1 −1)2G(0,∞, (ln x)2)+ (2k1 ln(mλ)+2k1 lnm−2k2
1 ln(mλ)−2lnm)G(0,∞, (ln x))

+ (2k1 −1)G(r′1, r′2, (ln x)2)+ (lnm)2 +k2
1(lnmλ)2 −2k1(lnmλ)(lnm) . (15)

3.3 Risk of Shrinkage Estimator Ĩ2(θ)
After minimizing risk function under SELF with respect k1 define in (15) we get

k∗ = 2(lnmλ)(lnm)−2(lnmλ+ lnm)G(0,∞, ln x)+2G(0,∞, (ln x)2)
2G(0,∞, (ln x)2)−4(lnmλ)G(0,∞, ln x)+2(lnmλ)2

− 2(lnλ− lnm− lnmλ)G(r′1, r′2, ln x)+2G(r′1, r′2, (ln x)2)
2G(0,∞, (ln x)2)−4(lnmλ)G(0,∞, ln x)+2(lnmλ)2

− 2((lnmλ)(lnm)− (lnmλ)(lnλ))[I(r′2,m)− I(r′1,m)]
2G(0,∞, (ln x)2)−4(lnmλ)G(0,∞, ln x)+2(lnmλ)2 . (16)
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Theoretically, we could not show that k∗ lies between 0 and 1. Therefore, we define the value of
k∗as

k2 =


0 k∗ < 0
k∗ 0≤ k∗ ≤ 1
1 k∗ > 1

 . (17)

Now, by replacement k1 by k2 we obtain estimator Ĩ2(θ) defined in (10), also by replacement k1

by k2 in (15) we obtain risk function under SELF for estimator Ĩ2(θ).

4. Relative Risk
To examine performance of the estimators Ĩ1(θ) and Ĩ2(θ) under SELF and LLF we compare
relative risks of these estimators with respect to the best possible estimator Î(θ) in this case.
Relative risk of Ĩ1(θ) under LLF is

RRLLF(Ĩ1(θ))= RLLF(Î(θ))
RLLF(Ĩ1(θ))

. (18)

Also, relative risk of Ĩ1(θ) and Ĩ2(θ) under SELF is

RRSELF(Ĩ1(θ))= RSELF(Î(θ))
RSELF(Ĩ1(θ))

(19)

and

RRSELF(Ĩ2(θ))= RSELF(Î(θ))
RSELF(Ĩ2(θ))

. (20)

5. Numerical Computations and Graphical Analysis
It is noticed that RRLLF(Ĩ1(θ)), RRSELF(Ĩ1(θ)) and RRSELF(Ĩ2(θ)) are functions of m, k1, a, α
and λ. To manifest performance of proposed estimators under LLF and SELF, we have taken
following values:

m = 6,9,12, k1 = 0.2,0.4,0.6, a = 1,2,3, α= 0.01,0.05, λ= 0.25(0.25)1.75

Tables 1-3 and Figures 1-8 present the behaviour of relative risks of the estimators with
respect to α for varying values of k1, m and a.

(i) Relative risks of both proposed estimators are high in and around λ= 1, i.e. true value of
θ is closer to θ0, under SELF as well as LLF. Further, as m increases range of relative
risk greater than one become small.

(ii) RRLLF(Ĩ1(θ)) is higher than RRSELF(Ĩ1(θ)) and RRSELF(Ĩ2(θ)) is higher than
RRSELF(Ĩ1(θ)).

(iii) RRLLF(Ĩ1(θ)) is increasing function of a if 0.25 ≤ λ≤ 0.75 and decreasing function of a
if λ = 1.5, 1.75. Further, if α = 0.01 and λ = 1.25, it is decreasing with a except m = 6,
k1 = 0.2. If α= 0.05 it is decreasing except m = 6, k1 = 0.4 and for m = 6,9,12, k1 = 0.2.
For λ= 1, α= 0.01, RRLLF(Ĩ1(θ)) is decreasing when k = 0.2, otherwise it is increasing.
For α= 0.05 and λ= 1, it is increasing when k1 = 0.2 and k1 = 0.4.

(iv) For λ = 0.25, RRLLF(Ĩ1(θ)), RRSELF(Ĩ1(θ)) are decreasing with both m and k1 and if
λ= 1.5,1.75 then the relative risks are decreasing with m but increasing with k1.
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(v) RRSELF(Ĩ2(θ)) is increasing with m if λ= 0.25 and λ= 1 and otherwise it is decreasing.

(vi) RRLLF(Ĩ1(θ)), RRSELF(Ĩ1(θ)) are decreasing functions of α, if 0.75 ≤ λ ≤ 1.25 except
k = 0.6 and RRSELF(Ĩ2(θ)) is decreasing with α, if 0.75≤λ≤ 1.25.

Table 1. Relative risk of estimator Ĩ1(θ) under LLF

α= 0.01 λ

m k1 a 0.25 0.50 0.75 1 1.25 1.50 1.75

6 0.2 1 0.6724 0.7235 2.1920 10.7343 3.6235 1.2976 0.6950

2 0.8411 0.8303 2.3113 10.7027 3.5268 1.1741 0.5938

3 1.0868 1.0048 2.3866 10.6109 3.6033 1.1248 0.5358

0.4 1 0.4752 0.9058 2.5094 5.4178 3.7452 1.9394 1.1643

2 0.5841 1.1167 2.7318 5.5340 3.4797 1.7085 0.9878

3 0.7526 1.3812 3.1701 5.9805 3.4331 1.6006 0.8897

0.6 1 0.3043 1.0811 2.2719 2.8287 2.6753 2.1946 1.7150

2 0.3802 1.2513 2.5671 2.8975 2.4743 1.8972 1.4270

3 0.4977 1.5394 3.0881 3.1359 2.4165 1.7375 1.2584

9 0.2 1 0.6735 0.5949 1.6399 10.8305 2.5778 0.8792 0.4787

2 0.8096 0.6907 1.6943 10.8093 2.4873 0.7921 0.4075

3 0.9947 0.8279 1.8145 10.7355 2.4867 0.7411 0.3587

0.4 1 0.3566 0.7514 2.0717 5.4938 3.0836 1.4058 0.8188

2 0.4310 0.8691 2.2414 5.5729 2.8653 1.2479 0.7003

3 0.5359 1.0448 2.5335 5.8729 2.7751 1.1547 0.6228

0.6 1 0.2017 0.7721 2.1125 2.8567 2.5599 1.8915 1.3259

2 0.2527 0.8804 2.3570 2.9031 2.3534 1.6461 1.1270

3 0.3234 1.0455 2.7438 3.0626 2.2480 1.4909 0.9954

12 0.2 1 0.6324 0.5466 1.3217 10.8784 2.0029 0.6738 0.3803

2 0.7399 0.6372 1.3779 10.8631 1.9229 0.6052 0.3225

3 0.8822 0.7582 1.4773 10.8026 1.8981 0.5589 0.2797

0.4 1 0.2826 0.6364 1.7680 5.5327 2.6131 1.1087 0.6453

2 0.3387 0.7322 1.9066 5.5926 2.4330 0.9888 0.5540

3 0.4135 0.8653 2.1256 5.8186 2.3382 0.9096 0.4892

0.6 1 0.1516 0.5824 1.9589 2.8709 2.4404 1.6378 1.0379

2 0.1900 0.6607 2.1658 2.9055 2.2409 1.4389 0.8982

3 0.2403 0.7719 2.4724 3.0258 2.1197 1.3028 0.7994

(Table Contd.)
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α= 0.01 λ

m k1 a 0.25 0.50 0.75 1 1.25 1.50 1.75

α= 0.05

6 0.2 1 0.8034 0.8811 1.8931 4.7812 2.5208 1.1466 0.6948

2 0.9797 1.0097 1.9198 4.7926 2.5456 1.0658 0.6020

3 1.2427 1.2163 2.0372 4.7696 2.6588 1.0424 0.5485

0.4 1 0.4943 1.0451 2.3731 4.4762 3.2389 1.8084 1.1554

2 0.6040 1.2175 2.5800 4.5746 3.0692 1.6123 0.9824

3 0.7752 1.5074 2.9844 4.9056 3.0698 1.5255 0.8864

0.6 1 0.2969 0.9908 2.3965 3.1777 3.0116 2.3906 1.7347

2 0.3723 1.1451 2.7173 3.2550 2.7343 2.0318 1.4383

3 0.4883 1.4080 3.2873 3.5430 2.6361 1.8355 1.2650

9 0.2 1 0.7353 0.7776 1.5278 4.7936 1.9780 0.8500 0.5386

2 0.8692 0.8979 1.5726 4.8022 1.9616 0.7764 0.4599

3 1.0566 1.0681 1.6738 4.7839 2.0011 0.7344 0.4052

0.4 1 0.3619 0.8351 2.0146 4.5271 2.7392 1.3729 0.8684

2 0.4363 0.9644 2.1801 4.5940 2.5814 1.2230 0.7397

3 0.5416 1.1571 2.4627 4.8162 2.5282 1.1351 0.6549

0.6 1 0.2000 0.7 2.1753 3.2135 2.8582 1.9545 1.2136

2 0.2509 0.8003 2.4288 3.2656 2.5871 1.6915 1.0381

3 0.3213 0.9529 2.8320 3.4583 2.4411 1.5249 0.9231

12 0.2 1 0.6532 0.7444 1.2998 4.8000 1.6394 0.6995 0.4748

2 0.7589 0.8592 1.3511 4.8069 1.6072 0.6327 0.4024

3 0.9010 1.0109 1.4420 4.7919 1.6133 0.5873 0.3481

0.4 1 0.2839 0.7103 1.7588 4.5532 2.3741 1.1259 0.7230

2 0.34 0.8138 1.8990 4.6038 2.2330 1.0035 0.6175

3 0.4149 0.9580 2.1185 4.7711 2.1643 0.9223 0.5421

0.6 1 0.1512 0.5318 1.9702 3.2316 2.6937 1.6016 0.8850

2 0.1896 0.6058 2.1758 3.2709 2.4424 1.4089 0.7698

3 0.2399 0.7106 2.4820 3.4157 2.2863 1.2776 0.6894
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Table 2. Relative risk of estimator Ĩ1(θ) under SELF

α= 0.01 λ

m k1 0.25 0.50 0.75 1 1.25 1.50 1.75

6 0.2 0.5479 0.6668 2.2757 10.6353 3.8672 1.5107 0.8573

0.4 0.4025 0.8791 2.4616 5.6176 4.2780 2.3452 1.4617

0.6 0.2539 0.9912 2.1401 2.9240 3.0651 2.7023 2.1967

9 0.2 0.5667 0.5290 1.6504 10.7628 2.7552 1.0116 0.5816

0.4 0.3018 0.6748 2.0018 5.6294 3.4590 1.6530 0.9977

0.6 0.1636 0.7043 1.9745 2.9208 2.8986 2.2686 1.6261

12 0.2 0.5476 0.4781 1.3063 10.8277 2.1394 0.7706 0.4589

0.4 0.2392 0.5676 1.6953 5.6353 2.8974 1.2837 0.7743

0.6 0.1213 0.5284 1.8283 2.9192 2.7413 1.9246 1.2361

α= 0.05

6 0.2 0.6780 0.8102 1.9557 4.7096 2.5718 1.2923 0.8416

0.4 0.4224 0.9532 2.3244 4.5989 3.6078 2.1566 1.4465

0.6 0.2466 0.9113 2.2558 3.3051 3.5356 3.0051 2.2321

9 0.2 0.6352 0.6937 1.5372 4.7461 2.0470 0.9621 0.6506

0.4 0.3077 0.7506 1.9439 4.6104 3.0215 1.6079 1.0621

0.6 0.1619 0.6371 2.0343 3.2992 3.2988 2.3594 1.4799

12 0.2 0.5724 0.6569 1.2854 4.7459 1.7096 0.7931 0.5721

0.4 0.2407 0.6361 1.6834 4.6162 2.6021 1.3042 0.8713

0.6 0.1209 0.4802 1.8423 3.2962 3.0711 1.8803 1.0496

Table 3. Relative risk of estimator Ĩ2(θ) under SELF

α= 0.01 λ

m 0.25 0.50 0.75 1 1.25 1.5 1.75

6 0.5101 0.4775 1.7642 11.1057 2.4954 0.9288 0.5256

9 0.6822 0.3780 1.2113 11.3394 1.7651 0.6283 0.3615

12 0.8476 0.3464 0.9311 11.4601 1.3668 0.4818 0.2880

α= 0.05

6 0.7263 0.6050 1.4563 3.4817 1.6160 0.7917 0.5159

9 0.8702 0.5271 1.1112 3.5150 1.2890 0.5966 0.4061

12 0.9544 0.5173 0.9135 3.5318 1.0782 0.4964 0.3632
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Graph of relative risk of estimator Ĩ1(θ) under LLF

Figure 1. For α= 0.01

Figure 2. For α= 0.01

Figure 3. For α= 0.05
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Figure 4. For α= 0.05

Relative risk of estimator Ĩ1(θ) with respect to α under SELF

Figure 5. For α= 0.01

Figure 6. For α= 0.01
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Figure 7. For α= 0.05

Figure 8. For α= 0.05

6. Conclusion
From Tables 1-3 and from Figures 1-8 following conclusions are drawn: Relative risks of both
proposed estimators are high in and around λ = 1, i.e., true value of θ is closer to θ0, under
SELF as well as LLF and RRLLF(Ĩ1(θ)) is higher than RRSELF(Ĩ1(θ)) and RRSELF(Ĩ2(θ)) is
higher than RRSELF(Ĩ1(θ)).
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