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Abstract. For a molecular graph G, the Y -index is defined as the sum of fourth degree of all vertices
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1. Introduction
All graphs considered here are simple, connected, finite and undirected. Let G = (V (G),E(G)) be
a connected graph of order n with |E(G)| = m edges. The degree of a vertex u ∈V (G), denoted by
dG(u), is the number of edges incident to u. The neighborhood of a vertex u ∈V (G) is defined as
the set NG(u) consisting of all vertices v which are adjacent to u in G.

In the fields of chemical graph theory, molecular topology and mathematical chemistry, a
topological index is a type of molecular descriptor that is calculated as degree based on the
molecular graph of a chemical compound. Topological indices are numerical parameters of a
graph which characterize its topology and are usually graph invariant. Topological indices are
used for example in the development of quantitative structure-activity relationships (QSARs) in
which the biological activity or other properties of molecules are correlated with their chemical
structure.
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Amid various degree-based topological indices, one of the most studied topological index
is the Zagreb index, introduced by Gutman and Trinajstić in [11]. The Zagreb indices are
defined as

M1(G)= ∑
v∈V (G)

dG(u)2 = ∑
uv∈E(G)

[dG(u)+dG(v)]

and

M2(G)= ∑
u,v∈V (G)

dG(u)dG(v).

In [10], Furtula and Gutman investigated the F-index or the forgotten topological index. The F -
index of a graph G is defined as

F(G)= ∑
v∈V (G)

dG(v)3 = ∑
uv∈E(G)

[dG(u)2 +dG(v)2].

The Y-index recently introduced by Alameri et al. [4] is defined as

Y (G)= ∑
u∈V (G)

dG(u)4 = ∑
uv∈E(G)

[dG(u)3 +dG(v)3].

They also showed that the predictive ability of this index is similar to that of first Zagreb index.
There are various recent studies of Y -index (one can refer [2,4]).

Among the most well known products of graphs, the corona product of graphs is one of
the most important graph operations as different important classes of graphs can be formed
by taking corona product of some general and particular graphs. Also, by specializing the
components of corona product of graphs different interesting classes of graph such as t-theory
graph, sunlet graph, bottleneck graph, suspension of graphs and some classes of bridge graphs
can be formed (see [3,5–8] and [14]).

Lu and Miao1 has determined spectra of subdivision-vertex and subdivision-edge coronae.
In [12], Liu and Lu has determined spectra of subdivision-vertex and subdivision-edge
neighborhood corona. In [13], Malpashree has determined some degree and distance based
topological indices of vertex-edge corona of two graphs.

We explore the explicit expressions of different types of corona product of graphs such
as subdivision-vertex corona, subdivision-edge corona, subdivision-vertex neighborhood,
subdivision-edge neighborhood corona and vertex-edge corona of two graphs in this paper.

2. Main Results
Let G1 and G2 be two simple connected graphs with ni number of vertices and mi number of
edges respectively, i ∈ {1,2}. The corona product of G1 ◦G2 of these two graphs is obtained by
taking one copy of G1 and n1 copies of G2 and by joining each vertex of the i-th copy of G2 to
the i-th vertex of G1, where 1≤ i ≤ n1. The corona product of G1 and G2 has total number of
(n1n2 +n1) vertices and (m1 +n1m2 +n1n2) edges.

Several authors defined other different versions of corona product of graphs such as
subdivision-vertex corona, subdivision-edge corona, subdivision-vertex neighborhood corona,
subdivision-edge neighborhood corona and vertex-edge corona (see 1,[12,13]). The subdivision
graph S(G) of a graph G is a graph obtained by inserting a new vertex onto each edge of G.

1P. Lu and Y. Miao, Spectra of the subdivision-vertex and subdivision-edge coronae, arXiv:1302.0457v2,
URL: https://arxiv.org/pdf/1302.0457.pdf.
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In this paper, we calculate the Y-index of subdivision-vertex corona, subdivision-edge corona,
subdivision-vertex neighborhood corona, subdivision-edge neighborhood corona and vertex-edge
corona of two connected simple graphs.

2.1 Subdivision-vertex Corona
Definition 2.1. Let G1 and G2 be two simple connected graphs with ni number of vertices and
mi number of edges respectively, i ∈ {1,2}. The subdivision-vertex corona of G1 and G2, denoted
by G1 ⊙G2, is obtained from S(G1) and n1 copies of G2, all vertex-disjoint, by joining the i-th
vertex of V (G1) to every vertex in the i-th copy of G2.

Let V (G1) = {u1,u2, . . . ,un1} and V (G2) = {v1,v2, . . . ,vn2}. Denote by G i
2, the ith copy of G2

in G1 ⊙G2. Let V (G i
2)= {vi1,vi2, . . . ,vin2}, 1≤ i ≤ n1. Let W(G1)= {w1,w2, . . . ,wm1} be the set of

new vertices inserted on the edges of G1.
From definition it is clear that the subdivision-vertex corona G1 ⊙G2 has n1(1+n2)+m1

vertices and 2m1 +n1(n2 +m2) edges.

The degree of a vertex w ∈G1 ⊙G2 is given in the following lemma.

Lemma 2.1 (1). Let G1 and G2 be two vertex disjoint graphs. Then the degree of w ∈V (G1⊙G2) is

dG1⊙G2(w)=


dG1(w)+n2, if w ∈V (G1),
2, if w ∈W(G1),
dG2(w)+1, if w ∈V (G i

2) for some i.

Theorem 2.2. The Y -index of the subdivision-vertex corona G1 ⊙G2 is given by

Y (G1 ⊙G2)=Y (G1)+4n2F(G1)+6n2
2M1(G1)+8n3

2m1 +n1n4
2 +16m1

+ n1Y (G2)+4n1F(G2)+6n1M1(G2)+8n1m2 +n1n2 .

Proof. From definition of subdivision-vertex corona G1 ⊙G2, we get

Y (G1 ⊙G2)= ∑
w∈V (G1⊙G2)

dG(w)4

= ∑
w∈V (G1)

dG(w)4 + ∑
w∈W(G1)

dG(w)4 + ∑
w∈V (G i

2)

dG(w)4

=
n1∑
i=1

(
dG1(ui)+n2)4 +

m1∑
i=1

24 +
n1∑
i=1

n2∑
j=1

(dG2(v j)+1)4

=
n1∑
i=1

(dG1(ui)4 +4n2dG1(ui)3 +6n2
2dG1(ui)2 +4n3

2dG1(ui)+n4
2)

+ 16m1 +
n1∑
i=1

n2∑
j=1

(dG2(v j)4 +4dG2(v j)3 +6dG2(v j)2 +4dG2(v j)+1)

=Y (G1)+4n2F(G1)+6n2
2M1(G1)+8n3

2m1 +n1n4
2 +16m1

+n1(Y (G2)+4F(G2)+6M1(G2)+8m2 +n2)

from where the desired result follows.
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Example 2.3. Let Cn,Pn,Kn be the cycle, the path and the complete graph, respectively, on n
vertices. Then by Theorem 2.2, we obtain the Y -index of the following graphs.

(1) Y (Cn ⊙Cm)= nm4 +8nm3 +24nm2 +113nm+32n, n,m ≥ 3.

(2) Y (Cn ⊙Pm)= nm4 +8nm3 +24nm2 +113nm−98n, n ≥ 3, m ≥ 2.

(3) Y (Cn ⊙Km)= nm5 +nm4 +8nm3 +24nm2 +32nm+32n, n ≥ 3, m ≥ 1.

Figure 1. Subdivision-vertex and subdivision-edge corona products of C3 and K3

2.2 Subdivision-edge Corona
Definition 2.2. Let G1 and G2 be two simple connected graphs with ni number of vertices and
mi number of edges respectively, i ∈ {1,2}. The subdivision-edge corona of G1 and G2, denoted
by G1 ⊖G2, is obtained from S(G1) and m1 copies of G2, all vertex-disjoint, by joining the i-th
new vertex of S(G1), obtained by subdividing each edge of G1, to every vertex in the i-th copy of
G2.

Let V (G1) = {u1,u2, . . . ,un1} and V (G2) = {v1,v2, . . . ,vn2}. Denote by G i
2, the ith copy of G2

in G1 ⊖G2. Let V (G i
2)= {vi1,vi2, . . . ,vin2}, 1≤ i ≤ n1. Let W(G1)= {w1,w2, . . . ,wm1} be the set of

new vertices inserted on the edges of G1.
From definition, we have the subdivision-edge corona G1 ⊖G2 has m1(1+n2)+n1 vertices

and m1(n2 +m2 +2) edges.

The degree of a vertex w ∈G1 ⊖G2 is given in the following lemma.

Lemma 2.4 (1). Let G1 and G2 be two vertex disjoint graphs. Then the degree of w ∈V (G1⊖G2) is

dG1⊖G2(w)=


dG1(w), if w ∈V (G1),
2+n2, if w ∈W(G1),
dG2(w)+1, if w ∈V (G i

2) for some i.
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Theorem 2.5. The Y -index of the subdivision-edge corona G1 ⊖G2 is given by

Y (G1 ⊖G2)=Y (G1)+m1(n2 +2)4 +m1Y (G2)+4m1F(G2)+6m1M1(G2)+8m1m2 +m1n2.

Proof. From definition of subdivision-edge corona G1 ⊖G2, we get

Y (G1 ⊖G2)= ∑
w∈V (G1⊖G2)

dG(w)4

= ∑
w∈V (G1)

dG(w)4 + ∑
w∈W(G1)

dG(w)4 + ∑
w∈V (G i

2)

dG(w)4

=
n1∑
i=1

(dG1(ui))4 +
m1∑
i=1

(2+n2)4 +
m1∑
i=1

n2∑
j=1

(dG2(v j)+1)4

=
n1∑
i=1

dG1(ui)4 +
m1∑
i=1

(2+n2)4 +
m1∑
i=1

n2∑
j=1

(dG2(v j)+1)4

=Y (G1)+m1(n2 +2)4 +m1

n2∑
j=1

(dG2(v j)4 +4dG2(v j)3 +6dG2(v j)2 +4dG2(v j)+1)

=Y (G1)+m1(n2 +2)4 +m1Y (G2)+4m1F(G2)+6m1M1(G2)+8m1m2 +m1n2

from where the desired result follows.

Example 2.6. Let Cn, Pn, Kn be the cycle, the path and the complete graph, respectively, on n
vertices. Then by Theorem 2.5, we obtain the Y -index of the following graphs.

(1) Y (Cn ⊖Cm)= nm4 +8nm3 +24nm2 +113nm+32n, n,m ≥ 3.

(2) Y (Cn ⊖Pm)= nm4 +8nm3 +24nm2 +113nm−98n, n ≥ 3, m ≥ 2.

(3) Y (Cn ⊖Km)= nm5 +nm4 +8nm3 +24nm2 +32nm+32n, n ≥ 3, m ≥ 1.

2.3 Subdivision-vertex Neighborhood Corona
Definition 2.3. Let G1 and G2 be two simple connected graphs with ni number of vertices and
mi number of edges respectively, i ∈ {1,2}. The subdivision-vertex neighborhood corona of G1

and G2, denoted by G1♦G2, is obtained from S(G1) and n1 copies of G2, all vertex-disjoint, by
joining the neighbors of the i-th vertex of V (G1) to every vertex in the i-th copy of G2.

Let V (G1)= {u1,u2, . . . ,un1} and V (G2)= {v1,v2, . . . ,vn2}. Denote by G i
2, the ith copy of G2 in

G1♦G2. Let V (G i
2)= {vi1,vi2, . . . ,vin2}, 1≤ i ≤ n1. Let W(G1)= {w1,w2, . . . ,wm1} be the set of new

vertices inserted on the edges of G1.

The degree of a vertex w ∈G1♦G2 is given in the following lemma.

Lemma 2.7 ([12]). Let G1 and G2 be two vertex disjoint graphs. Then the degree of w ∈
V (G1♦G2) is

dG1♦G2(w)=


dG1(w), if w ∈V (G1),
2+2n2, if w ∈W(G1),
dG2(v j)+dG1(ui), if w = vi j ∈V (G i

2) for some i, j.
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Theorem 2.8. The Y -index of G1♦G2 is given by

Y (G1♦G2)=Y (G1)+16m1(n2 +1)4 +n1Y (G2)+8m1F(G2)

+6M1(G2)M1(G1)+8m2F(G1)+n2Y (G1).

Proof. From definition of G1♦G2, we have

Y (G1♦G2)= ∑
w∈V (G1♦G2)

dG(w)4

= ∑
w∈V (G1)

dG(w)4 + ∑
w∈W(G1)

dG(w)4 + ∑
w∈V (G i

2)

dG(w)4

=
n1∑
i=1

(dG1(ui))4 +
m1∑
i=1

(2+2n2)4 +
n1∑
i=1

n2∑
j=1

(dG2(v j)+dG1(ui))4

=Y (G1)+m1(2n2 +2)4 +
n1∑
i=1

n2∑
j=1

[dG2(v j)4 +4dG2(v j)3dG1(ui)

+6dG2(v j)2dG1(ui)2 +4dG2(v j)dG1(ui)3 +dG1(ui)4]

=Y (G1)+16m1(n2 +1)4 +n1Y (G2)+8m1F(G2)+6M1(G2)M1(G1)

+8m2F(G1)+n2Y (G1)

from where the desired result follows.

Example 2.9. Let Cn,Pn,Kn be the cycle, the path and the complete graph, respectively, on n
vertices. Then by Theorem 2.8, we obtain the Y -index of the following graphs.

(1) Y (Cn♦Cm)= 16nm4 +64nm3 +96nm2 +320nm+32n, n,m ≥ 3.

(2) Y (Cn♦Pm)= 16nm4 +64nm3 +96nm2 +320nm−318n, n ≥ 3, m ≥ 2.

(3) Y (Cn♦Km)= nm5 +20nm4 +70nm3 +100nm2 +65nm+32n ,n ≥ 3, m ≥ 1.

Figure 2. Subdivision-vertex and subdivision-edge neighborhood corona products of C3 and K3
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2.4 Subdivision-edge Neighborhood Corona
Definition 2.4. For two vertex disjoint graphs G1 and G2, the subdivision-edge neighborhood
corona of G1 and G2, denoted by G1 ⋄G2, is obtained from S(G1) and m1 copies of G2, all
vertex-disjoint, by joining the neighbors of the i-th new vertex of S(G1) to every vertex in the
i-th copy of G2.

Let V (G1) = {u1,u2, . . . ,un1}, E(G1) = {e1, e2, . . . , em1} and V (G2) = {v1,v2, . . . ,vn2}. Let
V (G i

2) = {vi1,vi2, . . . ,vin2}, 1 ≤ i ≤ n1. Let W(G1) = {w1,w2, . . . ,wm1} be the set of new vertices
inserted on the edges of G1.

The degree of a vertex w ∈G1 ⋄G2 is given in the following lemma.

Lemma 2.10 ([12]). Let G1 and G2 be two vertex disjoint graphs. Then the degree of w ∈V (G1⋄G2)
is

dG1⋄G2(w)=


(n2 +1)dG1(w), if w ∈V (G1),
2, if w ∈W(G1),
dG2(v j)+2, if w = vi j ∈V (G i

2) for some i, j.

Theorem 2.11. The Y -index of G1 ⋄G2 is given by

Y (G1 ⋄G2)= (n2 +1)4Y (G1)+16m1 +n1Y (G2)+8n1F(G2)+24n1M1(G2)+64n1m2 +16n1n2.

Proof. From definition of G1 ⋄G2, we have

Y (G1 ⋄G2)= ∑
w∈V (G1♦G2)

dG(w)4

= ∑
w∈V (G1)

dG(w)4 + ∑
w∈W(G1)

dG(w)4 + ∑
w∈V (G i

2)

dG(w)4

=
n1∑
i=1

(n2 +1)4dG1(vi)4 +
m1∑
i=1

24 +
n1∑
i=1

n2∑
j=1

(dG2(v j)+2)4

= (n2 +1)4Y (G1)+16m1 +
n1∑
i=1

n2∑
j=1

(dG2(v j)4 +8dG2(v j)3 +24dG2(v j)2 +32dG2(v j)+16)

= (n2 +1)4Y (G1)+16m1 +n1(Y (G2)+8F(G2)+24M1(G2)+64m2 +16n2)

from where the desired result follows.

Example 2.12. Let Cn,Pn,Kn be the cycle, the path and the complete graph, respectively, on n
vertices. Then by Theorem 2.11, we obtain the Y -index of the following graphs.

(1) Y (Cn ⋄Cm)= 16nm4 +64nm3 +96nm2 +320nm+32n, n,m ≥ 3.

(2) Y (Cn ⋄Pm)= 16nm4 +64nm3 +96nm2 +320nm−318n, n ≥ 3, m ≥ 2.

(3) Y (Cn ⋄Km)= nm5 +20nm4 +70nm3 +100nm2 +65nm+32n, n ≥ 3, m ≥ 1.

2.5 The Vertex-edge Corona
Definition 2.5. The vertex-edge corona of two graphs G1 and G2 is denoted by G1 ⊗G2, is
the graph obtained by taking one copy of G1, n1 copies of G2 and also m1 copies of G2, then

Communications in Mathematics and Applications, Vol. 14, No. 1, pp. 131–141, 2023
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joining the i-th vertex of G1 to every vertex in the i-th vertex copy of G2 and also joining the
end vertices of j-th edge of G1 to every vertex in the j-th edge copy of G2, where 1≤ i ≤ n1 and
1≤ j ≤ m1.

Let the vertex set of the j-th edge copy of G2 is denoted by Vje (G2) = {u j1,u j2, . . . ,u jn2}
and the vertex set of the i-th vertex copy of G2 is denoted by Viv(G2) = {wi1,wi2, . . . ,win2}.
Also, let us denote the edge set of the j-th edge and i-th vertex copy of G2 by E je (G2)
and E iv(G2) respectively. From definition we have the vertex-edge corona G1 ⊗ G2 has
m1 +m1(m2 +2n2)+n1(n2 +m2) edge and n1 +n2(n1 +m1) vertices.

The degree of the vertices of G1 ⊗G2 is given in the following lemma.

Lemma 2.13 ([13]). Let G1 and G2 be two vertex disjoint graphs. Then the degree of G1 ⊗G2 is

dG1⊗G2 =


(n2 +1)dG1(vi)+n2, ∀ vi ∈V (G1),
dG2(u j)+2, ∀ ui j ∈Vie (G2),
dG2(w j)+1, ∀ wi j ∈Vie (G2).

Theorem 2.14. The Y -index of G1 ⊗G2 is given by

Y (G1 ⊗G2)= (n2 +1)4Y (G1)+4n2(n2 +1)3F(G1)+6n2
2(n2 +1)2M1(G1)+8n3

2(n2 +1)m1

+n1n4
2 +m1Y (G2)+m18F(G2)+24m1M1(G2)+64m1m2 +16m1n2

+n1Y (G2)+4n1F(G2)+6n1M1(G2)+8n1m2 +n1n2.

Figure 3. Vertex-edge corona product of C3 and K3
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Proof. From definition of G1 ⊗G2, we have

Y (G1 ⊗G2)= ∑
vi∈V (G1)

dG(vi)4 + ∑
e i∈E(G1)

∑
ui j∈V (G2)

dG(Ui j)4 + ∑
vi∈V (G1)

∑
wi j∈V (G2)

dG(wi j)4 .

Now to calculate the contribution of A1, we have

A1 =
∑

vi∈V (G1)
dG(vi)4

= ∑
vi∈V (G1)

((n2 +1)dG1(vi)+n2)4

= ∑
vi∈V (G1)

((n2 +1)4dG1(vi)4 +4n2(n2 +1)3dG1(vi)3 +6n2
2(n2 +1)2dG1(vi)2

+4n3
2(n2 +1)dG1(vi)+n4

2)

= (n2 +1)4Y (G1)+4n2(n2 +1)3F(G1)+6n2
2(n2 +1)2M1(G1)+8n3

2(n2 +1)m1 +n1n4
2 ,

A2 =
∑

e i∈E(G1)

∑
ui j∈V (G2)

dG(ui j)4

= ∑
e i∈E(G1)

∑
ui j∈V (G2)

(dG2(ui j)+2)4

= ∑
e i∈E(G1)

∑
u j∈Ve(G2)

(dG2(u j)4 +8dG2(u j)3 +24dG2(u j)2 +32dG2(u j)+16)

= m1(Y (G2)+8F(G2)+24M1(G2)+64m2 +16n2).

Similarly, we get the contribution of A3 as follows,

A3 =
∑

vi∈V (G1)

∑
wi j∈V (G2)

dG(wi j)4

= ∑
vi∈V (G1)

∑
wi j∈Viv(G2)

(dG2(wi j)+1)4

= ∑
vi∈V (G1)

∑
wi j∈Viv(G2)

(dG2(wi j)4 +4dG2(wi j)3 +6dG2(wi j)2 +4dG2(wi j)+1)

= n1(Y (G2)+4F(G2)+6M1(G2)+8m2 +n2).

Adding A1, A2 and A3, we get the desired result.

Example 2.15. Let Cn,Pn,Kn be the cycle, the path and the complete graph, respectively, on n
vertices. Then by Theorem (2.14), we obtain the Y -index of the following graphs.

(1) Y (Cn ⊗Cm)= 81nm4 +216nm3 +216nm2 +433nm+16n, n,m ≥ 3.

(2) Y (Cn ⊗Km)= 2nm5 +85nm4 +222nm3 +220nm2 +97nm+16n, n ≥ 3, m ≥ 1.

3. Conclusion
We calculated the Y -index of many types of corona product of two graphs such as subdivision-
vertex corona, subdivision-edge corona, subdivision-vertex neighborhood corona, subdivision-
edge neighborhood corona and vertex-edge corona. As an application we have given some explicit
expressions for corona products of some graphs. For further study, other topological indices of
these corona product of graphs can be computed.
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