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1. Introduction
The notion of partial metric space (shortly PMS) was introduced by Matthews [8] in 1994 and is
an expansion of metric space. In PMS, the condition d(α,α) need not to be zero and the condition
d(α,α)= 0 is replaced by the condition d(α,α)≤ d(α,β). PMS play vital role in framing models
in the theory of computation and to study the data flow networks. Many researchers proved
different results in PMS e.g. [2], [3], [7] and [8].

In the recent past, many investigations have been conducted on the possibility of generalizing
current metric fixed point theorems to partial metric spaces. Jungck [4] developed the concept
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of compatible mappings that are weaker than the weakly commuting mappings in 1986.
Jungck and Rhoades [6] also expanded the compatibility criteria to include weakly compatible
mappings. Jungck and Rhoades [5] have developed the concept of occasionally weakly compatible
mappings that are weaker than weakly compatible mappings.

The notion of subcompatible and subsequentially continuous mappings was introduced by
Bouhadjera and Godeti-Thobie1 in 2009 and which is weaker than compatible and reciprocally
continuous mappings. In this research article, we deal with two common fixed point theorems
for four self-maps using subcompatible, subsequentially continuous, compatible and reciprocally
continuous mappings.

2. Preliminaries
Definition 2.1. Suppose χ is a nonempty set and let p : χ×χ→ [0,∞) satisfy
(PM1) s = t if and only if p(s, s)= p(t, t)= p(s, t),

(PM2) p(s, s)≤ p(s, t),

(PM3) p(s, t)= p(t, s),

(PM4) p(s, t)≤ p(s, r)+ p(r, t)− p(r, r),
for all s, t and r ∈ χ. Then (χ, p) is said to be a partial metric space, and p is considered a metric
on χ.

Definition 2.2. Suppose (χ, p) is a PMS, then a sequence {un}
(i) converges to u ∈ χ if and only if p(u,u)= p(u,un) as n →∞;

(ii) is known to be Cauchy sequence if and only if p(um,un) as m,n →∞ exists;

(iii) is known to be (χ, p) complete if every Cauchy sequence {un} in it converges.

Remark 2.1. In partial metric space (χ, p), the following are true.
(a) If p(s, t)= 0 then s = t.

(b) If s ̸= t then p(s, t)> 0.

Definition 2.3 ([4]). The mappings E and F of a PMS (χ, p) defined as compatible if
{EFun}= {FEun} as n →∞ whenever sequence {un} in χ such that {Eun} and {Fun} converges
to δ as n →∞ for some δ ∈ χ.

Definition 2.4 ([9]). The mappings E and F of a PMS (χ, p) defined reciprocally continuous if
{EFun}= Eδ and {FEun}= Fδ as n →∞ whenever {un} in χ such that {Eun}, {Fun} converges
to δ as n →∞ for some δ ∈ χ.

Definition 2.5 (1). The mappings E and F of a PMS (χ, p) are defined as subcompatible if and
only if there exists a sequence {un} in χ such that {Eun}= {Fun}= δ as n →∞, δ ∈ χ and which
satisfy {EFun}= {FEun} as n →∞.

1H. Bouhadjera and C. Godet-Thobie, Common fixed point theorems for pairs of subcompatible maps, (2009),
https://arxiv.org/abs/0906.3159 [math.FA].
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It is clear that two occasionally weakly compatible mappings are subcompatible but two
subcompatible mappings are not occasionally weakly compatible mappings. For this, we give an
example.

Example 2.1. Let χ= [0,∞) be endue with PMS p(x, y)=max{x, y}, ∀ x, y ∈ χ. Define E and F
as follows

Ex =
{

x2, if 0≤ x < 1,
3x−1, if 1≤ x <∞,

and Fx =
{

5x−4, if 0≤ x < 1,
x+1, if 1≤ x <∞.

Consider a sequence {un} by un = 1− 1
2n , for n ≥ 1,

lim
n→∞Eun = lim

n→∞

(
1− 1

2n

)2
= 1

and

lim
n→∞Fun = lim

n→∞5
(
1− 1

2n

)
−4= lim

n→∞

(
1− 5

2n

)
= 1 .

Now

lim
n→∞EFun = lim

n→∞E
(
1− 5

2n

)
= lim

n→∞

(
1− 5

2n

)2
= 1

and

lim
n→∞FEun = lim

n→∞F
(
1− 1

2n

)2
= lim

n→∞5
(
1− 1

2n

)2
−4= 1 .

Thus,

lim
n→∞FEun = lim

n→∞EFun

implies that E and F are subcompatible but E and F are not occasionally weakly compatible
mappings as,

E(1)= 2= F(1) and EF(1)= E(2)= 5 ̸= FE(1)= F(2)= 3 .

Definition 2.6 ([9]). Two mappings E and F of a PMS (χ, p) are said to be reciprocally
continuous if {EFun} = Eδ and {FEun} = Fδ as n → ∞ whenever {un} in χ such that
{Eun}, {Fun} converges to δ as n →∞ for some δ ∈ χ.

Definition 2.7 (1). Two mappings E and F of a PMS (χ, p) are said to be subsequentially
continuous if and only if there exists a sequence {un} in χ such that {Eun}= {Fun}= δ as n →∞
for some δ ∈ χ and satisfy {EFun}= Eδ and {FEun}= Fδ as n →∞.

It can be observed that if E and F are both continuous or reciprocally continuous then they
are subsequentially continuous; however, the converse need not be true. For this, we give an
example to show that subsequentially continuous mappings are not reciprocally continuous
mappings.
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Example 2.2. Let χ= [0,∞) be endue with PMS p(x, y)=max x, y}, ∀ x, y ∈ χ and E, F defined
as

Ex =
{

x+3, if x ∈ [0,6),
2x, if x ∈ [6,12],

and Px =
{
−x+3, if x ∈ [0,6],
3x−3, if x ∈ (6,12].

Let the sequence {un} be defined as un = 1
n , n = 1,2,3, . . .. Then

lim
n→∞Eun = lim

n→∞

(
3+ 1

n

)
= 3= lim

n→∞Pun = lim
n→∞

(
3− 1

n

)
.

Now

lim
n→∞EPun = lim

n→∞E
(
3− 1

n

)
= lim

n→∞

(
6− 3

n

)
= 6= E(3)

and

lim
n→∞PEun = lim

n→∞P
(
3+ 1

n

)
= lim

n→∞

(
6+ 3

n

)
= 6= P(3).

Thus, E and P are subsequentially continuous.
Consider other sequence {un} be defined as un = 3+ 1

n , n = 1,2,3, . . .. Then

lim
n→∞Eun = lim

n→∞

(
6+ 2

n

)
= 6= lim

n→∞Pun = lim
n→∞

(
9+ 3

n
−3

)
.

Also

lim
n→∞PEun = lim

n→∞P
(
6+ 2

n

)
= lim

n→∞

(
15+ 6

n

)
= 15= P(6)

and

lim
n→∞EPun = lim

n→∞E
(
6+ 3

n

)
= lim

n→∞

(
12+ 6

n

)
= 12= E(6).

Thus, E and F are not reciprocally continuous mappings.

Now we will move on to our main results, which generalize and extend the existing theorem
proved on compatible mappings in [7].

3. Main Results
Theorem 3.1. Suppose E, F , P and Q are self-mappings of a complete PMS (χ, p) into itself
with E(χ)⊆Q(χ) and F(χ)⊆ P(χ). If there exists ℏ ∈ [0,1) such that

p(Ex,F y)≤ ℏϕ(x, y), (3.1)

for any x, y ∈ χ, where,

ϕ(x, y)=max
{

p(Ex,Px), p(F y,Q y), p(Px,Q y),
1
2

[p(Ex,Q y)+ p(F y,Px)]
}

. (3.2)

The couple {E,P} and {F,Q} are subcompatible and reciprocally continuous. Then the mappings
E, F , P and Q have a unique common fixed point.
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Proof. Let u0 be any point in χ, using the condition E(χ)⊂Q(χ) gives such that Eu0 =Qu1 for
some u1 ∈ χ and also from the condition F(χ)⊂ P(χ), for u1 ∈ χ and Fu1 ∈ P(χ), there exist u2 ∈ χ
such that Fu1 = Pu2. In general, u2n+1 ∈ χ is chosen such that Eu2n = Qu2n+1 and u2n+2 ∈ χ
such that Fu2n+1 = Pu2n+2, we obtain a sequence {un} in χ such that

u2n = Eu2n =Qu2n+1, u2n+1 = Fu2n+1 = Pu2n+2, where n ≥ 0. (3.3)

Next we show that {un} is a cauchy sequence.
By (3.1) and using (3.3), we observe

p(u2n+1,u2n+2)= p(Qu2n+1,Pu2n+2)

= p(Eu2n,Fu2n+1)

≤ ℏϕ(u2n,u2n+1), (3.4)

where

ϕ(u2n,u2n+1)=max
{

p(Eu2n,Pu2n), p(Fu2n+1,Qu2n+1), p(Pu2n,Qu2n+1),

1
2

[p(Eu2n,Qu2n+1)+ p(Fu2n+1,Pu2n)]
}

Using (3.3), we observe

ϕ(u2n,u2n+1)=max
{

p(Eu2n,Fu2n−1), p(Fu2n+1,Eu2n), p(Fu2n−1,Eu2n),

1
2

[p(Eu2n,Eu2n)+ p(Fu2n+1,Fu2n−1)]
}

. (3.5)

From the definition (PM4), we observe

p(Fu2n−1,Fu2n+1)+ p(Eu2n,Eu2n)≤ p(Fu2n−1,Eu2n)+ p(Fu2n+1,Eu2n). (3.6)

From (3.5) and (3.6), we observe

ϕ(u2n,u2n+1)=max{p(Eu2n,Fu2n−1), p(Fu2n+1,Eu2n)}. (3.7)

But if ϕ(u2n,u2n+1)= p(Fu2n+1,Eu2n) then by (3.4), we observe

p(Fu2n+1,Eu2n)≤ ℏp(Fu2n+1,Eu2n), 0≤ ℏ< 1, (3.8)

this gives that p(Eu2n+1,Eu2n) = 0. Thus, ϕ(u2n,u2n+1) = p(Fu2n−1,Eu2n) and from (3.4), we
get

p(Fu2n+1,Eu2n)≤ ℏp(Fu2n−1,Eu2n), (3.9)

which gives

p(u2n+2,u2n+1)≤ ℏp(u2n+1,u2n), for all ℏ≥ 0.
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After simple calculation, noting 0 ≤ ℏ < 1, we conclude that {un} as a Cauchy sequence.
However (χ, p) being complete, this implies {un} converges to some point δ ∈ χ. Consequently,
the subsequences

{Eu2n}, {Qu2n+1}, {Fu2n+1}, {Pu2n+2} also converges to δ ∈ χ. (3.10)

Since the pair (E,P) is subcompatible then there exists a sequence {un} such that {Eun}, {Pun}
converges to α as n →∞ for some α ∈ χ and satisfy

{EPun}= {PEun} as n →∞ (3.11)

and also the pair (E,P) is reciprocally continuous then {EPun}= Eα and

{PEun}= Pα (3.12)

as n →∞.
Using (3.11) and (3.12), we have

Eα= Pα. (3.13)

Similarly the couple (F,Q) is subcompatible and reciprocally continuous then there exists a
sequence {vn} such that {Fvn}= {Qvn}=β as n →∞ for some β ∈ χ and which satisfy

{FQvn}= {QFvn} (3.14)

and

{FQvn}= Fβ and {QFvn}=Qβ. (3.15)

Therefore, using (3.14) and (3.15), we have

Fβ=Qβ. (3.16)

From (3.13) and (3.16), we can observe that α is a coincidence point of the couple (E,P) and β

is a coincidence point of the couple (F,Q).
Now we have to show that α=β.
If possible suppose that α ̸=β. Then put x = un, y= vn in (3.1), we get

p(Eun,Fvn)≤ ℏϕ(un,vn) (3.17)

where

ϕ(un,vn)=max
{

p(Eun,Pun), p(Fvn,Qvn), p(Pun,Qvn),
1
2

[p(Eun,Qvn)+ p(Fvn,Pun)]
}

.

Letting n →∞ using {Eun}= {Pun}=α and {Fvn}= {Qvn}=β, we observe

lim
n→∞ϕ(un,vn)=max

{
p(α,α), p(β,β), p(α,β),

1
2

[
p(α,β)+ p(β,α)

]}
=max{p(α,α), p(β,β), p(α,β), p(α,β)}

= p(α,β) . (3.18)
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From (3.17) and (3.18) together on letting n →∞ gives

lim
n→∞ p(Eun,Fvn)≤ ℏ lim

n→∞ϕ(un,vn)

implies that p(α,β)≤ ℏp(α,β), since ℏ ∈ [0,1).
This gives that α=β. Therefore from (3.16), we have

Fα=Qα. (3.19)

Now we prove that Eα=α. If possible suppose that Eα ̸=α, then from the condition (3.1), on
letting x =α and y= vn, we have

p(Eα,Fvn)≤ ℏϕ(α,vn) (3.20)

where

ϕ(α,vn)=max
{

p(Eα,Pα), p(Fvn,Qvn), p(Pα,Qvn),
1
2

[p(Eα,Qvn)+ p(Fvn,Pα)]
}

.

Letting n →∞ using (3.13) and {Fvn}= {Qvn}=β, we get

lim
n→∞ϕ(α,vn)=max

{
p(Eα,Eα), p(β,β), p(Eα,β),

1
2

[
p(Eα,β)+ p(Fvn,Eα)

]}
=max{p(Eα,Eα), p(β,β), p(Eα,β), p(Eα,β)}

= p(Eα,β)

= p(Eα,α) . (3.21)

From (3.19) and (3.20) together on letting n →∞ gives

lim
n→∞ϕ(Eα,β)≤ ℏ lim

n→∞ϕ(α,vn)

implies that

p(Eα,α)≤ ℏp(Eα,α),

since ℏ ∈ [0,1). This gives that Eα=α.
Therefore

Eα= Pα=α. (3.22)

Now we prove that Fα= α. If possible let Fα ̸= α then using condition (3.1) with x = un and
y=α, we have

p(Eun,Fα)≤ ℏp(un,α) (3.23)

where

ϕ(un,α)=max
{

p(Eun,Pun), p(Fα,Qα), p(Pun,Qα),
1
2

[p(Eun,Qα)+ p(Fα,Pun)]
}

.
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Letting n →∞ and using (3.19) and {Eun}= {Pun}=α, we get

lim
n→∞ϕ(un,α)=max

{
p(α,α), p(Fα,Fα), p(α,Fα),

1
2

[p(α,Fα)+ p(Fα,α)]
}

=max{p(α,α), p(Fα,Fα), p(α,Fα), p(Fα,α)}

= p(α,Fα) . (3.24)

From (3.23) and (3.24) together on letting n →∞ gives

lim
n→∞ p(Eun,Fα)≤ ℏ lim

n→∞ p(un,α)

implies that

p(α,Fα)≤ ℏp(α,Fα)

which is not possible since ℏ ∈ [0,1[. This gives p(α,Fα)= 0 and implies that Fα=α.
Therefore, Fα=Qα=α.
Hence, Eα= Pα= Fα=Qα=α. This shows that α is a CFP of E, F , P and Q.
To prove α is unique CFP, if possible suppose that there is another CFP β of E, F , P and Q.
Then by using (3.1), on letting x =α, y=β, we get

p(α,β)= p(Eα,Fβ)≤ ℏϕ(α,β),

where

ϕ(α,β)=max
{

p(Eα,Pα), p(Fβ,Qβ), p(Pα,Qβ),
1
2

[
p(Eα,Qβ)+ p(Fβ,Pα)

]}
=max

{
p(α,α), p(β,β), p(α,β),

1
2

[p(α,β)+ p(β,α)]
}

= p(α,β).

Thus p(α,β)≤ ℏp(α,β), 0≤ ℏ< 1 and provide that α=β. So, α is becoming unique CFP of E, F ,
P and Q.

Example 3.1. Let χ = [0,4] and p : χ×χ→ [0,∞) be define by p(x, y) = max{x, y}, ∀ x, y ∈ χ.
Then (χ, p) is a complete PMS. E,F,P,Q : χ→ χ are defined by

Ex = Fx =
{

x
2 , if x ∈ [0,2),
3x−4, if x ∈ [2,4],

and Px =Qx =
{

x−1, if x ∈ [0,2),
x2 −2, if x ∈ [2,4].

We have E(χ)⊂Q(χ) and F(χ)⊂ P(χ). Consider the sequence {un} by un = 2+ 1
n , for n ≥ 1. Then

lim
n→∞Eun = lim

n→∞

(
2+ 3

n

)
= 2= lim

n→∞Pun = lim
n→∞

(
2+ 1

n

)2
−2.

Also,

lim
n→∞EPun = lim

n→∞E
{(

2+ 1
n

)2
−2

}
= lim

n→∞

{
3

(
2+ 1

n

)2
−6−4

}
= 2= E(2)
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and

lim
n→∞PEun = lim

n→∞P
(
2+ 3

n

)
= lim

n→∞

([
2+ 3

n

]2
−2

)
= 2= P(2).

Therefore the pair (E,P) is subcompatible and reciprocally continuous.
Consider the other sequence {un} by un = 2− 1

n , for n = 1,2,3, . . .. Then

lim
n→∞Eun = lim

n→∞

(
1− 1

2n

)
= 1= lim

n→∞Pun = lim
n→∞

(
1− 1

n

)
.

Now

lim
n→∞PEun = lim

n→∞P
(
1− 1

2n

)
= lim

n→∞

(
1− 1

2n
−1

)
= 0= P(1)

and

lim
n→∞EPun = lim

n→∞E
(
1− 1

n

)
= lim

n→∞

(
1
2
− 1

2n

)
= 1

2
= E(1).

Thus lim
n→∞EPun = E(1) and lim

n→∞PEun = P(1) but lim
n→∞PEun ̸= lim

n→∞EPun, which shows that
the pair (E,P) is reciprocally continuous but not subcompatible. The contractive condition (3.1)
holds for the value of ℏ ∈ [0,1). we observe that 2 is the unique CFP of maps E, F , P and Q.

Now we generate another theorem on PMS using subsequentially continuous and compatible
mappings.

Theorem 3.2. Suppose (χ, p) is a complete PMS and E, F , P and Q are self-mappings on χ,
with E(χ)⊆Q(χ) and F(χ)⊆ P(χ). If there exists a ℏ ∈ [0,1) such that

p(Ex,F y)≤ ℏϕ(x, y), (3.25)

for any x, y ∈ χ, where

ϕ(x, y)=max
{

p(Ex,Px), p(F y,Q y), p(Px,Q y),
1
2

[p(Ex,Q y)+ p(F y,Px)]
}

. (3.26)

The couple {E,P} and {F,Q} are subsequentially continuous and compatible. Then the mappings
E, F , P and Q have one and only one common fixed point.

Proof. Since the couple (E,P) is subsequentially continuous and compatible, there exists a
sequence {un} in χ such that

lim
n→∞Eun = lim

n→∞Fun =α, for some α ∈ χ (3.27)

and

lim
n→∞EPun = Eα and lim

n→∞PEun = Pα and lim
n→∞PEun = lim

n→∞EPun . (3.28)
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This implies that

Eα= Pα. (3.29)

Similarly the pair (F,Q) is subsequentially continuous and compatible, there exists a sequence
{vn} in χ such that

lim
n→∞Fvn = lim

n→∞Qvn =β, for some β ∈ χ, (3.30)

lim
n→∞FTvn = Fβ and lim

n→∞QBvn =Qβ and lim
n→∞FQvn = lim

n→∞QFvn. (3.31)

This gives that

Fβ=Qβ. (3.32)

Thus from (3.29) and (3.32), Eα = Pα and Fβ = Qβ. This shows that the pair (E,P) has
coincidence point α whereas the pair (F,Q) has coincidence point β.
The rest of the proof of this theorem can be done easily as Theorem 3.1.

We justify the above theorem with the following example:

Example 3.2. Let χ= [0,5] and p : χ×χ→ [0,∞) is define by p(x, y)=max{x, y} for all x, y ∈ χ.
Then (χ, p) is a complete PMS. E,F,P,Q : χ→ χ are defined by

Ex = Fx =
{

x
5 , if x ∈ [0,1],
x+4

5 , if x ∈ (1,5],
and Px =Qx =

{
x
4 , if x ∈ [0,1],
x+3

4 , if x ∈ (01,5].

We have E(χ)⊂Q(χ) and F(χ)⊂ P(χ).
Consider a sequence {un} by un = 1

n , where n = 1,2,3, . . ., then

lim
n→∞Eun = lim

n→∞

(
1

5n

)
= 0

and

lim
n→∞Fun = lim

n→∞

(
1

4n

)
= 0.

Next,

lim
n→∞EFun = lim

n→∞E
(

1
4n

)
= lim

n→∞

(
1

20n

)
= 0= E(0)

and

lim
n→∞FEun = lim

n→∞F
(

1
5n

)
= lim

n→∞

(
1

20n

)
= 0= F(0).

Therefore, E and F are subsequentially continuous and are compatible.
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Consider another sequence {un} by un = 1+ 1
n , for n = 1,2,3, . . .. Then

lim
n→∞Eun = lim

n→∞ lim
n→∞

(
1+ 1

5n

)
= 1

and

lim
n→∞Fun = lim

n→∞

(
1+ 1

4n

)
= 1.

Also

lim
n→∞EFun = lim

n→∞E
(
1+ 1

4n

)
= lim

n→∞

(
1+ 1

20n

)
= 1 ̸= E(1)

and

lim
n→∞FEun = lim

n→∞F
(
1+ 1

5n

)
= lim

n→∞

(
1+ 1

20n

)
= 1 ̸= F(1).

Thus, E and F are not reciprocally continuous.
Also, the contractive condition (3.1) holds for the value of ℏ ∈ [0,1). We observe that 0 is the
unique common fixed point of maps E, F , P and Q.

4. Conclusion
In this research article, we generate two results. In the first result, two pairs are assumed
to be subcompatible and reciprocally continuous and in the second result, two pairs are
subsequentially continuous and compatible mappings. Further, these results are justified
with appropriate examples. Thus, we assert our results generalized and extend the results
proved in [7].
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