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1. Introduction
In this paper, we consider only simple undirected connected graphs. As well known, a graph
whose vertices have equal degrees is said to be regular. Then, a graph in which all the vertices
do not have equal degrees can be viewed as somehow deviating from regularity. In mathematical
literature, several measures of such ‘irregularity’ were proposed [3] [6] [5] [4]. A measure of
’irregularity’ was put forward by Albertson [2]. Albertson defines irregularity of G as

irr(G)= ∑
uv∈E(G)

|degG(u)−degG(v)| . (1.1)

The most investigated irregularity measure is the Total Irregularity of a graph. It is found
by Abdo et al. in [1], as:

irrt(G)= 1
2

∑
u,v∈V (G)

|dG (u)−dG (v)| . (1.2)
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In this paper, we focus on two types of totally segregated bicyclic graphs on n vertices with
maximum total irregularity. The notion of totally segregated graph is defined in [7]. A connected
graph G is said to be totally segregated, if uv ∈ E(G), degG(u) ̸= degG(v). Three types of bicyclic
graphs are introduced in [9].

Minimum total irregularity of totally segregated ∞ bicyclic graph is found in [8]. In this
paper we find maximum total irregularity of two types of totally segregated bicyclic graphs on
n vertices.

2. Totally Segregated Extended Bicyclic Graphs
A bicyclic graph is a simple connected graph in which the number of edges is exactly one more
than the number of vertices. Here our focus is on extended bicyclic graph. Extended ∞ bicyclic
graph is a bicyclic graph constructed by attaching trees to the basic bicycle denoted by ∞(p, q, l)
(see Figure 1), is obtained from two vertex-disjoint cycles Cp and Cq by connecting one vertex
of Cp and one vertex of Cq with a path Pl of length l−1 (l ≥ 2), where p, q ≥ 3; and Θ-bicyclic
graph, is a bicyclic graph constructed by attaching trees to the basic bicycle denoted by θ(p, q, l)
(see Figure 2), is a graph on p+ q− l vertices with the two cycles Cp and Cq having l common
vertices, where p, q ≥ 3 and l ≥ 2.

Figure 1. The graph ∞(p, q, l) with p ≥ 3, q ≥ 3 and l ≥ 2

Figure 2. The graph θ(p, q, l) with p ≥ 3, q ≥ 3 and l ≥ 2

In Figure 1, let w1 be the common vertex of Pl and Cp and let w5 be the common vertex of
Pl and Cq. Let w2 ∈V (Cp)\{w1}, w3 ∈V (Cq)\{w5} and w4 ∈V (Pl)\{w1,w5} if l ≥ 3.
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In Figure 2, let w1 = z1, w2 ∈ {x1, x2, · · · , xp−l}, w4 ∈ {z2, · · · , zl−1} if l ≥ 3, w3 ∈ {y1, y2, · · · , yq−l},
and w5 = zl . Let Pn, Cn and Sn be the path, cycle, and star on n vertices, respectively. A rooted
graph has one of its vertices, called the root, distinguished from the others. Root of the star
Sn is its central vertex. Let G1 and G2 be two graphs: v1 ∈ V (G1) and v2 ∈ V (G2). The graph
G = (G1,v1)◦ (G2,v2) denote the resultant graph by identifying v1 with v2. Let x ∈V (∞(p, q, l))
and v be the root of the rooted tree T . Take ∞(p, q, l, x◦T)= (∞(p, q, l, x))◦ (T,v). In this case
we say that tree T is attached to the graph ∞(p, q, l) at x (for example, see Figure 3).

Figure 3. The graph ∞(p, q, l, x◦S5)

Remark 2.1. Let Sn be a star on n vertices. If a star S2 is attached to ∞(p, q, l) (p ≥ 3, q ≥ 3)
at w2, the resultant graph G is denoted by ∞(p, q, l,w2 ◦S2).
Note that Θ(p, q, l,w1 ◦T)∼=Θ(p, q, l,w5 ◦T), (p ≥ 3, q ≥ 3, l ≥ 2).

The set denoted by B+
n(Cp ◦T1,Cq ◦T2) is the set of those graphs each of which is an ∞+-

bicyclic graph such that a tree is attached to at least one vertex (say w2) in V (Cp)\{w1} and
a tree is attached to at least one vertex (say w3) in V (Cq) \ {w5}, where w1,w2,w3,w5 are as
defined in Figure 1.

A totally segregated extended ∞ bicyclic graph is a extended ∞ bicyclic graph which is
totally segregated (see Figure 4).

Figure 4. Totally segregated ∞+ bicyclic graph with, basic bicycle ∞(3,3,3)

The extended bicyclic graph with basic bicycle ∞(p, q, l), (p ≥ 3, q ≥ 3, l ≥ 2) is called ∞+-
bicyclic graph in short and the bicyclic graph with basic bicycle Θ(p, q, l), (p ≥ 3, q ≥ 3, l ≥ 2) is
called Θ-bicyclic graph in short.

Remark 2.2. For n ≤ 9, a totally segregated ∞+-bicyclic graph of order n does not exist.
For n ≤ 4, a totally segregated Θ-bicyclic graph of order n does not exist.

Proposition 2.1. If G is totally segregated ∞+-bicyclic graph of order n, (n ≥ 10), then
∆(G)≤ n−6.

Communications in Mathematics and Applications, Vol. 13, No. 3, pp. 877–892, 2022



880 Maximum Total Irregularity of Totally Segregated Extended Bicyclic Graphs: T.F. Jorry

Proof. Let G be a totally segregated ∞+-bicyclic graph on n vertices. Let Cp and Cq (p ≥ 3, q ≥ 3)
be two cycles in G and let Pl , l ≥ 2 be the path connecting one vertex of Cp and one vertex of
Cq of length l−1 where l ≥ 2.

Delete one edge e of Pl and get two components C1 and C2. Then each component has
at least 5 vertices and V (G) = V (C1)∪V (C2), E(G) = E(C1)∪E(C2)∪ {e}. Let u be a vertex of
maximum degree in G. If u ∈ V (C1), u is not adjacent to at least 4 vertices of V (C2) and one
vertex of V (C1) in G. In similar manner, if u ∈V (C2), u is not adjacent to at least 5 vertices of
G. Hence ∆(G)≤ n−6.

Totally segregated ∞+ bicyclic graph G of order n with basic bicycle ∞(3,3,2) and
∆(G)= n−6 for n = 11 is presented in Figure 5.

Figure 5. Totally segregated ∞+ graph G with, basic bicycle ∞(3,3,2) and ∆(G)= n−6 for n = 11

Proposition 2.2. If G is a totally segregated Θ-bicyclic graph of order n, (n ≥ 5), then
∆(G)≤ n−1.

Proof. For any graph G, ∆(G)≤ n−1. There exists a totally segregated bicyclic graph G with
basic bicycle θ(p, q, l), (p ≥ 3, q ≥ 3, l ≥ 2) and ∆(G)= n−1 (see Figure 6).

Figure 6. TSB graph G of order n with, basic bicycle θ(3,3,2) and ∆(G)= n−1 for n = 7

3. Maximum Total Irregularity of Totally Segregated Extended Bicyclic
Graphs

Definition 3.1 (α-Transformation [9]). Let G = (V ,E) be a bicyclic graph with basic bicycle
∞(p, q, l) (l ≥ 1), or Θ(p, q, l) (l ≥ 2) with rooted trees T1, · · · ,Tk (k ≥ 1) attached and let u ∈V be
one of the maximal degree vertices of G and let w be any pendant vertex of G which is adjacent
to vertex y (y ̸= u). Let G′ be the graph obtained from G by deleting the pendant edge yw and
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adding a pendant edge uw. The transformation from G to G′ is a α-transformation on G (for
example, see Figure 7).

Note that in Figure 7, the edge yw ∈ E(Ti) and u ∈ V (Ti). In fact, yw ∈ E(T j) for any
j ∈ {1,2, · · · ,k}.

Figure 7. α-transformation

Lemma 3.1 ([9]). Let G = (V ,E) be a ∞+ bicyclic graph with basic bicycle ∞(p, q, l) (l ≥ 2) or
Θ(p, q, l) (l ≥ 2) with k (≥ 1) rooted trees T1,T2, · · · ,Tk attached and let G′ be the graph obtained
from G by α-transformation. Then irrt(G)< irrt(G′).

Definition 3.2 (β1 and β2-transformation). Let G = (V ,E) be a bicyclic graph, with basic
bicycle ∞(p, q, l)(l ≥ 1), such that all trees attached to the basic bicycle are S2 except T where
T ∈ S∗∪PS∗ and S2-s are attached to vertex x, x ∈V (G)\{w1,w5}.
Let u ∈ V be a vertex of maximal degree and let u1,u2, · · · ,ut (t ≥ 1) be the pendant
vertices adjacent to u. Let G′ be the graph obtained from G by deleting the pendant
edges uu1,uu2, · · · ,uut and adding the pendant edges w1u1,w1u2, · · · ,w1ut. We call the
transformation from G to G′ a β1-transformation on G (for example, see Figure 8).
Let u ∈V be the vertex of maximal degree which is the root of the rooted star S∗ (= St+1) and
u1,u2, · · · ,ut (t ≥ 2) be the pendant vertices adjacent to u. Let G′′ be the graph obtained from
G by deleting the pendant edges uu2, · · · ,uut (except one edge) and adding the pendant edges
w1u2, · · · ,w1ut. We call the transformation from G to G′′ a β2-transformation on G (for example,
see Figure 9).

Figure 8. β1-transformation on ∞+-bicyclic graph with two S2-s and T ∈ S∗ are attached
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Figure 9. β2-Transformation on ∞+-bicyclic graph with one S2 and T ∈ S∗ are attached

By Lemma 3.1 and by Definition 3.1, we have the following result.

Lemma 3.2. Let G = (V ,E) be a totally segregated ∞+-bicyclic graph on n vertices
(a) Let G1 = (V ,E′) ∈ B+

n(Cp ◦ T1,Cq ◦ T2) be the graph obtained from G by repeating α-
transformation until one cannot get a new graph belongs to B+

n(Cp ◦T1,Cq ◦T2) from
G1. Then there exists some rooted tree T such that

G1
∼=∞(p, q, l,w◦T,w2 ◦S2,w3 ◦S2), or G1

∼=∞(p, q, l,w2 ◦T,w3 ◦S2), or

G1
∼=∞(p, q, l,w2 ◦S2,w3 ◦T),

where T ∈ S∗ ∪ PS∗, w ∈ V (Pl), w2 and w3 are as defined in Figure 1 and also
irrt(G)< irrt(G1).

(b) In case (a), let u be a vertex of T and let u1,u2, · · · ,ut be the pendant vertices adjacent to u.
Then

degG1 u ≥ degG1 x, for all x ∈V .

Lemma 3.3. Let G be a ∞+-bicyclic graph on n vertices obtained as in Lemma 3.2. That is G is
a ∞+-bicyclic graph and G ∼=∞(p, q, l,w◦T,w2 ◦S2,w3 ◦S2) or G ∼=∞(p, q, l,w2 ◦T,w3 ◦S2) or
G ∼=∞(p, q, l,w2 ◦S2,w3 ◦T).
Let T ∈ PS∗ and let v be the root of the rooted tree T . Let u be a vertex of maximal degree and let
u1,u2, · · · ,ut(t ≥ 1) be the pendant vertices adjacent to u. If G′ is the graph obtained from G by
β1 transformation (Figure 8) then, irrt(G)< irrt(G′).

Proof. Let G = (V ,E). Note that the root v of the rooted tree is not necessarily different from
w1. Clearly, we know that only the degrees of vertices u and w1 have been changed after the
β1-transformation; namely degG′ u = 1, degG′ w1 = degG w1 +degG u−1 and degG′ x = degG x
for any vertex x ∈V \{u,w1}. Let U =V \{u,w1}.
It is given that the vertex u is one of the maximal degree vertices of G; namely, degG u ≥ degG x
for any vertex x ∈V . Then

|degG′ u−degG′ w1|− |degG u−degG w1| = 2degG w1 −2, (3.1)∑
x∈U

|degG′ u−degG′ x|− ∑
x∈U

|degG u−degG x| = 2
∑
x∈U

degG x− (n−2)(degG u+1) . (3.2)

Now, we discuss
∑
x∈U

|degG′ w1 −degG′ x|− ∑
x∈U

|degG w1 −degG x| as follows:
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Case 1: l ≥ 2.
Here t ≥ 2, since u is one of the maximal degree vertices of G. As,

degG w1 −degG w5 −|degG w1 −degG w5| =
{
−2, if v = w5;
0, if v ̸= w5,

and degG w1 ≥ degG x for any x ∈U \{w5},∑
x∈U

|degG′ w1 −degG′ x|−
∑
x∈U

|degG w1 −degG x|

= ∑
x∈U\{w5}

(degG w1 +degG u−1−degG x)− ∑
x∈U\{w5}

(degG w1 −degG x)

+ (degG w1 +degG u−1−degG w5)−|degG w1 −degG w5|
= (n−2)(degG u−1)+ (degG w1 −degG w5)−|degG w1 −degG w5|
≥ (n−2)(degG u−1)−2.

Then, we have∑
x∈U

|degG′ w1 −degG′ x|− ∑
x∈U

|degG w1 −degG x| ≥ (n−2)(degG u−1)−2 . (3.3)

By equations (3.1), (3.2), (3.3) and since degG w1 ≥ 3 and degG x ≥ 1 for any x ∈U , we have

irrt(G′)− irrt(G)= |degG′ u−degG′ w1|+
∑
x∈U

|degG′ u−degG′ x|+ ∑
x∈U

|degG′ w1 −degG′ x|

−
[
|degG u−degG w1|+

∑
x∈U

|degG u−degG x|+ ∑
x∈U

|degG w1 −degG x|
]

≥ 2degG w1 −2+2
∑
x∈U

degG x− (n−2)(degG u+1)+ (n−2)(degG u−1)−2

≥ 2
∑
x∈U

degG x

> 0 .

It follows the result.

Lemma 3.4. Let G be the ∞+-bicyclic graph obtained as in Lemma 3.2 and G ∼=∞(p, q, l,u ◦
T,w2◦S2,w3◦S2) where u ∈V (Pl), l ≥ 2 and w1,w2,w3,w5 are as defined in Figure 1. Let T ∈ S∗

and u be the root of the rooted tree T and u1,u2, · · · ,ut be the pendant vertices adjacent to
u, u ̸= w1 and degG(u) ≥ degG(x), for all x ∈ V (G). If G′ is the graph obtained from G by β1

transformation (Figure 8) then,
(i) G′ ∼=∞(p, q, l,w1 ◦T,w2 ◦S2,w3 ◦S2),

(ii) irrt(G)≤ irrt(G′) and equality holds if and only if u = w5.

Proof. It is given that u ̸= w1. By the definition of β1-transformation, result (i) is obvious. Now
we show that result (ii) holds.
If u = w5, then G and G′ have the same degree sequence. Thus, they have the same total
irregularity, i.e.,

irrt(G)= irrt(G′).
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Hence, we assume u ̸= w5. Note that the degrees of vertices u and w1 have been changed after
β1-transformation as follows:

degG′ u = 2, degG′ w1 = degG w1+degG u−2 and degG′ x = degG x, for any vertex x ∈V \{u,w1}.

Hence degree sequence of G is ((t+2)1,34,2n−t−7,1t+2) and degree sequence of G′ is

((t+3)1,33,2n−t−6,1t+2).

Then by equation (1.2) we have

irrt(G′)= irrt(G)+8.

It follows that

irrt(G)≤ irrt(G′).

Lemma 3.5. Let G be a ∞+-bicyclic graph and G ∼=∞(p, q, l,w2◦T,w3◦S2) or G ∼=∞(p, q, l,w2◦
S2,w3 ◦T), l ≥ 2, where T ∈ S∗. Let T = St+1 and u ∈ {w2,w3} be a vertex of maximal degree
which is the root of the rooted tree T and u1,u2, · · · ,ut (t ≥ 2) be the pendant vertices adjacent to
u. If G′ is the graph obtained from G by β2 transformation (Figure 9) then

(i) G′ ∼=∞+(p, q, l,w1 ◦St,w2 ◦S2,w3 ◦S2),

(ii) irrt(G)= irrt(G′).

Proof. By the definition of β2-transformation (Definition 3.2) result (i) is obvious. Now, we show
that result (ii) holds. Note that only the degrees of vertices u and w1 have been changed after the
β2-transformation; namely, degG′ u = 3, degG′ w1 = degG w1 +degG u−3, and degG′ x = degG x
for any vertex x ∈V \{u,w1}. Let U =V \{u,w1}. Note that t ≥ 2.
The vertex u is one of the maximal degree vertices of G; namely, degG u ≥ degG x for any
vertex x ∈ V and degG w1 ≥ degG x for any x ∈ U , degG′ u ≥ degG′ x for any vertex x ∈ U and
degG′ w1 ≥ degG′ x for any x ∈U . Then

|degG′ u−degG′ w1|− |degG u−degG w1| = 2degG w1 −6 , (3.4)∑
x∈U

|degG′ w1 −degG′ x|− ∑
x∈U

|degG w1 −degG x| = (n−2)(t−1) , (3.5)∑
x∈U

|degG′ u−degG′ x|− ∑
x∈U

|degG u−degG x| = (n−2)(1− t) . (3.6)

By equations (3.4), (3.5), (3.6) and since degG w1 ≥ 3, t ≥ 2 and degG u−3≥ 1, we have

irrt(G′)− irrt(G)= |degG′ u−degG′ w1|+
∑
x∈U

|degG′ u−degG′ x|+ ∑
x∈U

|degG′ w1 −degG′ x|

− [|degG u−degG w1|+
∑
x∈U

|degG u−degG x|+ ∑
x∈U

|degG w1 −degG x|]

= 2degG w1 −6+ (n−2)(t−1)+ (n−2)(1− t)= 0. (3.7)

since degG w1 = 3. It follows the result.

By Lemmas 3.1, 3.2, 3.3 and 3.4 we obtain:
If p, q(≥ 3) are given, then

max{irrt(G) : G ∈ Bn(Cp ◦T1,Cq ◦T2)}= irrt(∞(p, q,1,w1 ◦Sr,w2 ◦S2,w3 ◦S2)),
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where r = n− (p+ q), and
if p, q(≥ 3), l(≥ 2) are given, then

max{irrt(G) : G ∈ B+
n(Cp ◦T1,Cq ◦T1)}= irrt(∞(p, q, l,w1 ◦Sr,w2 ◦S2,w3 ◦S2)),

where r = n− (p+ q+ l)+1.

Remark 3.1. The ∞+-bicyclic graphs ∞(p, q, l,w1◦Sr,w2◦S2,w3◦S2) and ∞(p, q, l,w5◦Sr,w2◦
S2,w3 ◦S2) have same degree sequence and hence same total irregularity (w1,w2,w3,w5 are as
defined in Figure 1).

In the following theorem, the totally segregated ∞+-bicyclic graph with the maximum total
irregularity is determined.

Let n ≥ 10 be a positive integer and p, q, l be positive integers with p ≥ 3, q ≥ 3, l ≥ 2 and
p+q+l+r−1= n and G =∞n(p, q, l,w2◦S2,w3◦S2,w1◦Sr) or G =∞n(p, q, l,w2◦S2,w3◦S2,w5◦
Sr). Clearly, the degree sequence of G is ((r+2)1,33,2p+q+l−6,1r+1). By simple calculation, by
eq. (1.2) we have

irrt(G)= (p+ q+ l−6)(2r+4)+ (r+1)(r+1)+9r+3 . (3.8)

Lemma 3.6. Let n, p, q, l, r be positive integers with p≥3, q≥3, l≥2, r≥2 and n=p+q+l+r−1.
(a) If p ≥ 4, then

irrt(∞n(p, q, l,w2 ◦S2,w3 ◦S2,w1 ◦Sr))< irrt(∞n(p−1, q, l,w2 ◦S2,w3 ◦S3,w1 ◦Sr))

< irrt(∞n(p−1, q, l,w2 ◦S2,w3 ◦S2,w1 ◦Sr+1)).

(b) If q ≥ 4, then

irrt(∞n(p, q, l,w2 ◦S2,w3 ◦S2,w1 ◦Sr))< irrt(∞n(p, q−1, l,w2 ◦S2,w3 ◦S3,w1 ◦Sr))

< irrt(∞n(p, q−1, l,w2 ◦S2,w3 ◦S2,w1 ◦Sr+1)).

(c) If l ≥ 3, then

irrt(∞n(p, q, l,w2 ◦S2,w3 ◦S2,w1 ◦Sr))< irrt(∞n(p, q, l−1,w2 ◦S2,w3 ◦S3,w1 ◦Sr))

< irrt(∞n(p, q, l−1,w2 ◦S2,w3 ◦S2,w1 ◦Sr+1)).

Proof. Clearly, proofs of the results (a), (b) and (c) are similar and hence we prove only the
result (a).
Given the positive integers n, p, q, r, l with p ≥ 3, q ≥ 3, l ≥ 2, r ≥ 2 and p+ q+ l+ r−1= n.
Let

G ∼=∞n(p, q, l,w2 ◦S2,w3 ◦S2,w1 ◦Sr),

G1
∼=∞n(p−1, q, l,w2 ◦S2,w3 ◦S3,w1 ◦Sr), and

G2
∼=∞n(p−1, q, l,w2 ◦S2,w3 ◦S2,w1 ◦Sr+1).

G1 is obtained from G by contracting any edge different from w1w2 of Cp and adding
one pendant edge at w3. G2 is obtained from G by contracting any edge different from
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w1w2 of Cp and adding one pendant edge at w1. Clearly, the degree sequence of G is
((r+2)1,33,2p+q+l−6,1r+1).
Degree sequence of G1 is ((r+2)1,41,32,2p+q+l−7,1r+2).
Degree sequence of G2 is ((r+3)1,33,2p+q+l−7,1r+2).
By simple calculation, by equation (1.2) we have

irrt(G)= (p+ q+ l−6)(2r+4)+ (r+1)(r+1)+9r+3,

irrt(G1)= irrt(G)+2(p+ q+ l−6)+4,

irrt(G2)= irrt(G)+2(p+ q+ l−6)+6.

Hence the result.

Theorem 3.7. If n ≥ 10 is a positive integer and G is a totally segregated ∞+-bicyclic graph
on n vertices with basic bicycle ∞(p, q, l) (p ≥ 3, q ≥ 3, l ≥ 2 and p = 3, q = 3, l = 2 does
not hold simultaneously), then irrt(G) ≤ n2 + n − 46 and the equality holds if and only if
G ∼=∞n(3,3,2,w1 ◦Sn−8,w2 ◦S2,w3 ◦S3).

Proof. Let G be the given totally segregated ∞+-bicyclic graph with basic bicycle ∞(p, q, l),
p ≥ 3, q ≥ 3, l ≥ 2 on n vertices where p+ q+ l+ r−1= n.
Since G is totally segregated there exists a vertices

w2 ∈V (Cp)\{w1} with deg w2 ≥ 3

and

w3 ∈V (Cq)\{w5} with deg w3 ≥ 3.

We prove this theorem in two stages. In the first stage, we obtain bicyclic graph G′ ∼=
∞+

n(p, q, l,w2 ◦S2,w3 ◦S2,w1 ◦Sr) from totally segregated bicyclic graph G, by repeating α,
β1, β2 transformations until a new graph which belongs to B+

n(Cp ◦T1,Cq ◦T2, l) cannot be
obtained from G′ by these transformations. Then, by Lemmas 3.1, 3.3, 3.4, 3.5 we know that
irrt(G)< irrt(G′).
In the second stage we obtain totally segregated bicyclic graph G′′ ∼=∞(3,3,2,w2◦S2,w3◦S3,w1◦
Sn−8) from G′ by repeating replacement of edges until the lengths of the cycles Cp , Cq and path
Pl cannot be reduced. By Lemma 3.6, irrt(G′) < irrt(G′′), where G′′ is totally segregated ∞+

n

bicyclic graph.

Stage 1:
Let G1 be the graph obtained from G by repeating α-transformation until we cannot get a
new graph which belongs to B+

n(Cp ◦T1,Cq ◦T2, l) from G1 by α-transformation. Then G1
∼=

∞n(p, q, l,w2◦S2,w3◦T) or G1
∼=∞n(p, q, l,w2◦T,w3◦S2) or G1

∼=∞n(p, q, l,w2◦S2,w3◦S2,u◦T),
u ∈V (Pl) where T ∈ S∗∪PS∗ and irrt(G)< irrt(G1) by Lemma 3.1.
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Case 1: G1
∼=∞(p, q, l,w2 ◦S2,w3 ◦T where T ∈ S∗).

In this case, we can get a new graph G2
∼=∞n(p, q, l,w2◦S2,w3◦S2,w1◦Sr) by β2-transformation

on G1 and irrt(G1)< irrt(G2) by Lemma 3.5.

Case 2: G1
∼=∞(p, q, l,w2 ◦S2,w3 ◦T) where T ∈ PS∗

Let v be a vertex of T such that the pendant vertices are adjacent to v and u be the root of
rooted tree. If dG1(u,v)= 1, let G2 be the graph obtained from G1 by β1-transformation. Then
G2

∼=∞(p, q, l,w2 ◦S2,w3 ◦S2,w1 ◦Sr) and irrt(G1)< irrt(G2) by Lemma 3.3.
If dG1(u,v)> 1, let G2 be the graph obtained from G1 by β1-transformation and let G3 be the
graph obtained from G2 by repeating α-transformation until a new graph which belongs to
B+

n(Cp◦T1,Cq◦T2, l) cannot be obtained from G3 by α-transformation. Then the resulting graph
is G3

∼=∞(p, q, l,w2 ◦S2,w3 ◦S2,w1 ◦Sr). By Lemmas 3.1 and 3.3 irrt(G1)< irrt(G2)< irrt(G3).

Case 3: G1
∼=∞(p, q, l,w2 ◦T,w3 ◦S2) where T ∈ PS∗∪S∗

The proof is similar to the proof of Cases 1 and 2 and thus we omit it.

Case 4: G1
∼=∞(p, q, l,w2 ◦S2,w3 ◦S2,u ◦T) where T ∈ PS∗ and u ∈V (Pl)

Let v be a vertex of T such that the pendant vertices are adjacent to v and u be the root of the
rooted tree. If dG1(u,v)= 1, let G2 be the graph obtained from G1 by β1-transformation. Then
G2

∼=∞(p, q, l,w2 ◦S2,w3 ◦S2,w1 ◦Sr) and irrt(G1)< irrt(G2) by Lemma 3.3.
If dG1(u,v) > 1, let G2 be the graph obtained from G1 by β1-transformation and let G3

be the graph obtained from G2 by repeating α-transformation until we cannot get a new
graph which belongs to B+

n(Cp ◦T1,Cq ◦T2, l) from G3 by α-transformation. We know that
G3

∼=∞n(p, q, l,w2 ◦S2,w3 ◦S2,w1 ◦Sr). Then irrt(G1)< irrt(G2)< irrt(G3).

Case 5: G1
∼=∞(p, q, l,w2 ◦S2,w3 ◦S2,u ◦T), where T ∈ S∗ and u ∈V (Pl \{w1}))

In this case, if u ̸= w5 we can get a new graph G2
∼= ∞(p, q, l,w2 ◦S2,w3 ◦S2,w1 ◦Sr) by β1-

transformation on G1. Thus irrt(G1)< irrt(G2) by Lemma 3.4. If u = w5, G1 and G2 have same
degree sequence. Hence irrt(G1)= irrt(G2).

Case 6: G1
∼=∞(p, q, l,w2 ◦S2,w3 ◦S2,w1 ◦T) where T ∈ S∗

Then G1
∼=∞(p, q, l,w2 ◦S2,w3 ◦S2,w1 ◦Sr).

Combining the above arguments, we get a ∞+ bicyclic graph G′ ∼=∞(p, q, l,w2◦S2,w3◦S2,w1◦Sr)
and irrt(G)< irrt(G′)= (p+ q+ l−6)(2r+4)+ (r+1)2 +9r+3.

Stage 2
Given that p ≥ 4 or q ≥ 4 or l ≥ 3.
Let G1

∼=∞(p, q, l,w2 ◦S2,w3 ◦S2,w1 ◦Sr) and p ≥ 4 (or q ≥ 4 or l ≥ 3 )
Here we use two types of edge replacements.

Type A. Contract an edge of Cp which is different from w1w2 (or contract an edge of Cq which
is different from w5w3 or contract an edge of path Pl ) and add a pendant edge to w1. In this
case p is reduced to p−1 and r is increased to r+1.
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Type B. Contract an edge of the cycle Cp which is different from w1w2 ( or contract an edge of
Cq which is different from w5w3 or contract an edge of path Pl ) and add a pendant edge to w3.
Let G′

2 and G′′
2 be the bicyclic graphs obtained from G1 by applying edge replacements type A

and type B, respectively. By Lemma 3.6, we have

irrt(G′
2)> irrt(G1), irrt(G′′

2)> irrt(G1)

and

irrt(G′
2)− irrt(G1)> irrt(G′′

2)− irrt(G1).

Hence first we apply type A-edge replacement on G1 maximum possible times and then type B.
Let p ≥ 4 and let G2 be the bicyclic graph obtained from G1 by repeating type A-edge replacement
until length of the cycle Cp is 4, length of the cycle Cq is 3 and length of the path Pl is 2, since
further application of type A-edge replacement will lead to a non-totally segregated bicyclic
graph. (If p = 3, q ≥ 4, let G2 be the bicyclic graph obtained from G1 by repeating type A-edge
replacement until length of the cycle Cq is 4 and length of the path Pl is 2; if p = 3, q = 3 l ≥ 3
let G2 be the bicyclic graph obtained from G1 by repeating type A-edge replacement until length
of the path Pl is 3). Then

irrt(G1)< irrt(G2)= irrt(∞n(4,3,2,w2 ◦S2,w3 ◦S2,w1 ◦Sn−8)), if p ≥ 4

or

irrt(G1)< irrt(G2)= irrt(∞(3,4,2,w2 ◦S2,w3 ◦S2,w1 ◦Sn−8)), if p = 3, q ≥ 4

or

irrt(G1)< irrt(G2)= irrt(∞(3,3,3,w2 ◦S2,w3 ◦S2,w1 ◦Sn−8)), if p = 3, q = 3, l ≥ 3.

Then

G2
∼=∞(4,3,2,w2 ◦S2,w3 ◦S2,w1 ◦Sn−8)

or

G2
∼=∞(3,4,2,w2 ◦S2,w3 ◦S2,w1 ◦Sn−8)

or

G2
∼=∞(3,3,3,w2 ◦S2,w3 ◦S2,w1 ◦Sn−8).

Let G3 be the totally segregated ∞+
n bicyclic graph obtained from G2 by applying type B edge

replacement till we cannot get a new totally segregated ∞+
n bicyclic graph from G3.

G3 =∞n(3,3,2,w2 ◦S2,w3 ◦S3,w1 ◦Sn−8) and irrt(G2)< irrt(G3).
Degree sequence of G3 is ((n−6)1,41,32,22,1n−6) and irrt(G3)= n2 +n−46.

Theorem 3.8. If G is a totally segregated ∞+-bicyclic graph with basic bicycle ∞(3,3,2) on n
vertices, then irrt(G)≤ n2 +n−46 and equality holds if and only if G ∼=∞n(3,3,2,w1 ◦Sn−8,w2 ◦
S2,w3 ◦S3).
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Proof. Let G be a totally segregated ∞+-bicyclic graph with basic bicycle ∞(3,3,2) (Figure 10).
Since G is totally segregated, at least 3 trees are attached to x where x ∈ V (Cp)∪V (Cq). Let
w1w2x and w3w5 y be two cycles and w1w5 be the edge joining these two cycles. Since G is
totally segregated, it satisfies the following conditions:

For the edge xw2, deg x ≥ 3 or deg w2 ≥ 3. Let deg w2 ≥ 3. For the edge yw3, deg y ≥ 3 or
deg w3 ≥ 3. Let deg w3 ≥ 3. For the edge w1w5, deg w1 ≥ 4 or deg w5 ≥ 4.

Case 1. T is not attached to w5. Then,

deg w1 ≥ 4, deg w3 ≥ 4, deg w2 ≥ 3, deg x ≥ 2, deg y≥ 2 . (3.9)

Let G1 be the graph obtained from G by repeating α-transformation till a new graph cannot be
obtained from G1 by α-transformation so that it satisfies the required degree condition in (3.9).
Then there exists a rooted tree T attached to one of the five vertices (w1,w2,w3, x, y) where
T ∈ S∗∪PS∗ and irrt(G)< irrt(G1) by Lemma 3.1. Let u be the root of the rooted tree.
Let T ∈ S∗.
If u = w1, then G1

∼=∞(3,3,2,w2 ◦S2,w3 ◦S3,w1 ◦Sn−8) and irrt(G)< irrt(G1)= n2 +n−46.
If u = x or y, we can get a new graph G2

∼= ∞(3,3,2,w2 ◦ S2,w3 ◦ S3,w1 ◦ Sn−8) by β1-
transformation on G1 and irrt(G1)< irrt(G2)= n2 +n−46.
If u = w2, we can get a new graph G2

∼=∞(3,3,2,w2S2,w3 ◦S3,w1 ◦Sn−8) by β2-transformation
on G1 and irrt(G1)< irrt(G2)= n2 +n−46.
If u = w3, we can get a new graph G2

∼= ∞(3,3,2,w2 ◦ S2,w3 ◦ S3,w1 ◦ Sn−8) by deleting all
pendant edges from w3 except two and attaching to w1 and irrt(G1)= irrt(G2)= n2 +n−46.
If T ∈ PS∗.
Let v be vertex of T such that pendant vertices are adjacent to v. If dG1(u,v)= 1, let G2 be the
graph obtained from G1 by β1-transformation. Then G2

∼=∞(3,3,2,w2 ◦S2,w3 ◦S3,w1 ◦Sn−8)
and irrt(G1)< irrt(G2)= n2+n−46 by Lemma 3.2. If dG1(u,v)> 1, let G2 be the graph obtained
from G1 by β1-transformation and let G3 be the graph obtained from G2 by repeating α-
transformation until we cannot get a new graph from G3, which satisfies the degree condition
(3.9). G3

∼=∞(3,3,2,w2 ◦S2,w3 ◦S3,w1 ◦Sn−8). Then irrt(G1)< irrt(G2)< irrt(G3)= n2 +n−46.

Case 2: T is not attached to w1

The proof is similar to the proof of Case 1. In this case we get G3
∼=∞(3,3,2,w2 ◦S3,w3 ◦S2,w5 ◦

Sn−8).

Case 3: T is attached to w1 and w5

Since deg w1 ̸= deg w5, let deg w1 > deg w5. Then

deg w1 ≥ 5, deg w5 ≥ 4, deg w3 ≥ 3, deg w2 ≥ 3, deg x ≥ 2, deg y≥ 2 . (3.10)

Let G1 be the graph obtained from G by repeating α-transformation till a new graph from G1

cannot be obtained by α-transformation so that it satisfies the required degree condition (3.10).
Then in G1 there exists a rooted tree T attached to one of the six vertices where T ∈ S∗∪PS∗

and irr t(G)< irr t(G1) by Lemma 3.1. Let u be the root of the rooted tree.
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If T ∈ S∗ and u = w1, then

G1
∼=∞(3,3,2,w2 ◦S2,w3 ◦S2,w5 ◦S2,w1 ◦S∗),

G2 be the TS graph obtained from G1 by deleting the pendant edge from w5 and attaching to
w3. Then G1 and G2 have same degree sequence. G2

∼=∞(3,3,2,w2 ◦S2,w3 ◦S3,w1 ◦Sn−8) and
irr t(G1)= irr t(G2)= n2 +n−46.
If T ∈ S∗ and u = x or y, we can get a new graph G2

∼=∞(3,3,2,w2 ◦S2,w3 ◦S2,w5 ◦S2,w1 ◦S∗)
by β1-transformation on G1 and G3 be the TS graph obtained from G2 by deleting the
pendant edge from w5 and attaching to w3. Here G2 and G3 have same degree sequence.
G3

∼=∞(3,3,2,w2 ◦S2,w3 ◦S3,w1 ◦Sn−8) and irrt(G1)< irrt(G2)= irrt(G3)= n2 +n−46.
If T ∈ S∗ and u = w2 or u = w3, we can get a new graph G2

∼=∞(3,3,2,w2◦S2,w3◦S2,w5◦S2,w1◦
S∗) by β2-transformation on G1 and G3 be the totally segregated graph obtained from G2 by
deleting the pendant edge from w5 and attaching to w3. G3

∼=∞(3,3,2,w2◦S2,w3◦S3,w1◦Sn−8)
and irrt(G1)< irrt(G2)= irrt(G3)= n2 +n−46.
Let T ∈ PS∗.
Let v be a vertex of T such that the pendant vertices are adjacent to v.
If dG1(u,v) = 1, let G2 be the graph obtained from G1 by β1-transformation. Then G2

∼=
∞(3,3,2,w2 ◦S2,w3 ◦S2,w5 ◦S2,w1 ◦S∗) and G3 be the TS graph obtained from G2 by deleting
the pendant edge from w5 and attaching to w3. G3

∼=∞(3,3,2,w2 ◦S2,w3 ◦S3,w1 ◦Sn−8) and
irrt(G1)< irrt(G2)= irrt(G3)= n2 +n−46.
If dG1(u,v) > 1, let G2 be the graph obtained from G1 by β1-transformation and let G3 be
the graph obtained from G2 by repeating α-transformation until G3

∼=∞(3,3,2,w2 ◦S2,w3 ◦
S2,w5◦S2,w1◦S∗). G4 be the TS graph obtained from G2 by deleting the pendant edge from w5

and attaching to w3. G3
∼=∞(3,3,2,w1 ◦Sn−8,w2 ◦S2,w3 ◦S3) and irrt(G)< irrt(G1)< irrt(G2)<

irrt(G3)= irrt(G4)= n2 +n−46.
Combining the above arguments, we complete the proof.

Theorem 3.9. If n ≥ 10 is a positive integer and G is a totally segregated ∞+-bicyclic graph,
with basic bicycle ∞(p, q, l) (p ≥ 3, q ≥ 3, l ≥ 2), on n vertices, then irrt(G)≤ n2+n−46 and the
equality holds if and only if G ∼=∞n(3,3,2,w1 ◦Sn−8,w2 ◦S2,w3 ◦S3) (Figure 10).

Figure 10. The graph ∞(3,3,2,w2 ◦S2,w3 ◦S3,w1 ◦Sn−8)

Proof. Combining Theorem 3.7 and Theorem 3.8, we complete the proof.
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Theorem 3.10 ([9]). Let n ≥ 4 be a positive integer and let G be a Θ-bicyclic graph on n vertices.
Then irrt(G)≤ n2+n−16 and the equality holds if and only if G ∼= θ(3,3,2,w1◦Sn−3) (Figure 11).
Clearly, θ(3,3,2,w1 ◦Sn−3)∼= θ(3,3,2,w5 ◦Sn−3).

Figure 11. The graph θ(3,3,2,w1 ◦Sn−3,w3 ◦S3,w1 ◦Sn−8)

Theorem 3.11. If n ≥ 4 is a positive integer and G is a totally segregated Θ-bicyclic graph on n
vertices, then irr t(G)≤ n2 +n−16 and the equality holds if and only if G ∼= θ(3,3,2,w1 ◦Sn−3).

Proof. By Theorem 3.10 we have ifG is a Θ-bicyclic graph on n vertices, irrt(G) ≤ n2 +n−16
and the equality holds if and only if G ∼= θ(3,3,2,w1 ◦Sn−3).
Clearly, G ∼= θ(3,3,2,w1 ◦Sn−3) is a totally segregated bicyclic graph. Hence the result.

Denote by Bn the set of all totally segregated bicyclic graphs on n vertices. Obviously, Bn

consists of two types of graphs: first type denoted by B+
n is the set of those graphs each of which

is a totally segregated ∞+-bicyclic graph and second type denoted by B++
n is the set of those

graphs each of which is a totally segregated Θ-bicyclic graph. Then

Bn =B+
n ∪B++

n .

By Theorem 3.9 we have if G ∈B+
n , irrt(G)≤ n2 +n−46.

By Theorem 3.11 we have if G ∈B++
n , irrt(G)≤ n2 +n−16.

Theorem 3.12. If n ≥ 4 is a positive integer and G ∈Bn is a totally segregated bicyclic graph on
n vertices, then, irr t(G)≤ n2+n−16 and the equality holds if and only if G ∼= θ(3,3,2,w1 ◦Sn−3).

Competing Interests
The author declares that she has no competing interests.

Authors’ Contributions
The author wrote, read and approved the final manuscript.

References
[1] H. Abdo, S. Brandt and D. Dimitrov, The total irregularity of a graph, Discrete Mathematics and

Theoretical Computer Science 16(1) (2014), 201 – 206, URL: https://dmtcs.episciences.org/1263/pdf.

Communications in Mathematics and Applications, Vol. 13, No. 3, pp. 877–892, 2022

https://dmtcs.episciences.org/1263/pdf


892 Maximum Total Irregularity of Totally Segregated Extended Bicyclic Graphs: T.F. Jorry

[2] M. O. Albertson, The irregularity of a graph, Ars Combinatoria 46 (1997), 219 – 225, URL: http:
//www.combinatoire.ca/ArsCombinatoria/Vol46.html.

[3] F. K. Bell, A note on the irregularity of graphs, Linear Algebra and its Applications 161 (1992), 45 –
54, DOI: 10.1016/0024-3795(92)90004-T.

[4] G. Chartrand, P. Erdös and O. R. Oellermann, How to define an irregular graph, The College
Mathematics Journal 19(1) (1988), 36 – 42, DOI: 10.1080/07468342.1988.11973088.

[5] G. H. Fath-Tabar, I. Gutman and R. Nasiri, Extremely irregular trees, Bulletin (Académie serbe des
sciences et des arts. Classe des sciences mathématiques et naturelles. Sciences mathématiques) 38
(2013), 1 – 8, URL: https://www.jstor.org/stable/44097193.

[6] I. Gutman, P. Hansen and H. Melot, Variable neighborhood search for extremal graphs. 10.
Comparison of irregularity indices for chemical trees, Journal of Chemical Information and Modeling
45(2) (2005), 222 – 230, URL: https://pubs.acs.org/doi/abs/10.1021/ci0342775.

[7] D. E. Jackson and R. Entringer, Totally segregated graphs, Congress. Numer. 55 (1986), 159 – 165.

[8] T. F. Jorry and K. S. Parvathy, Minimum total irregularity of totally segregated ∞-bicyclic graph,
International Journal of Recent Technology and Engineering 8(6) (2019), 660 – 663.

[9] L. You, J. Yang, Y. Zhu and Z. You, The maximal total irregularity of bicyclic graphs, Journal of
Applied Mathematics 2014 (2014), Article ID 785084, 9 pages, DOI: 10.1155/2014/785084.

Communications in Mathematics and Applications, Vol. 13, No. 3, pp. 877–892, 2022

http://www.combinatoire.ca/ArsCombinatoria/Vol46.html
http://www.combinatoire.ca/ArsCombinatoria/Vol46.html
http://doi.org/10.1016/0024-3795(92)90004-T
http://doi.org/10.1080/07468342.1988.11973088
https://www.jstor.org/stable/44097193
https://pubs.acs.org/doi/abs/10.1021/ci0342775
http://doi.org/10.1155/2014/785084

	Introduction
	Totally Segregated Extended Bicyclic Graphs
	Maximum Total Irregularity of Totally Segregated Extended Bicyclic Graphs
	References

