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Abstract. In this paper, the linear 3-parameter eigenvalue problem (3PEP) in terms of matrix
equations is considered. Using the Rayleigh Quotient iteration method, any one of the three parameters
can be fixed to transform the problem into a linear 2-parameter eigenvalue problem (2PEP). This
admits a family nonlinear eigenvalue problems (NEP) in one parameter. The transformation results
from the elimination of the second equation of respective 2PEP, which is re-arranged as a generalized
eigenvalue problem (GEP) of the form Ey=λF y, where E and F are matrices n×n over C, y ∈Cn is
a non-zero vector and λ is a scalar. A review of some results of the condition number of NEP is also
presented in this paper.
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1. Introduction

Consider the following 3PEP in terms of matrix equations

E i(α)xi := (Mi0 −α1Mi1 −α2Mi2 −α3Mi3)xi = 0, (1.1)
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where ai ∈C are spectral parameters, xi ∈Cni are non zero vectors and Mi j are ni ×ni complex
matrices, for i, j := 1,2,3. The objective of the problem (1.1) is to find tuples (α1,α2,α3, x1, x2, x3)
with all 0 ̸= xi that satisfy E i(a)xi = 0. The 3-tuple α= (a1,a2,a3) is called eigenvalue and the
corresponding tensor product x1 ⊗ x2 ⊗ x3 is called right eigenvector. The eigenvalue α is called
simple if DimKer(E i(a)= 1, for i = 1,2,3. The usual technique for spectral analysis of (1.1) is by
converting it into joint GEPs in tensor product space. This transformation can be established by
defining commuting 3-tuple of certain operator matrices and are given by

∆1z =α1∆0z, ∆2z =α2∆0z, ∆3z =α3∆0z, (1.2)

here

∆0 =
∣∣∣∣∣∣
M11 M12 M13
M21 M22 M23
M31 M32 M33

∣∣∣∣∣∣ , ∆1 =
∣∣∣∣∣∣
M10 M12 M13
M20 M22 M23
M30 M32 M33

∣∣∣∣∣∣ , ∆2 =
∣∣∣∣∣∣
M11 M10 M13
M21 M20 M23
M31 M30 M33

∣∣∣∣∣∣ and

∆3 =
∣∣∣∣∣∣
M11 M12 M10
M21 M22 M20
M31 M32 M30

∣∣∣∣∣∣ (1.3)

and z = x1 ⊗ x2 ⊗ x3 is a decomposable tensor. Atkinson [2] investigated the problem of such
kind carefully for i, j := 1 : k. The problem of this kind arises in diverse domain of science
and engineering (e.g., [6]). Literature on the classical theory of multiparameter system has
been reported in [2,9,25,35,36,38]. Operations of applied Linear algebra can be used to solve
nonsingular system (1.4). But it is convenient to solve the problem consisting of matrices of
low order only. The major computational disadvantages in the cost of computation of operator
matrices ∆i of size N × N . Thus it is necessary to adopt numerical algorithm to find the
solution of the problem (1.1). Method based on QZ-algorithm presented in [19] is suitable
for this purpose. For 2PEP, various numerical methods are available in existing literature
(e.g. [24,31,32]). For 3PEP method presented in [18], and for k-parameter problem methods
developed in [12,34] are suitable to find the numerical solution of the problem.

Motivating Example. Consider the four-point boundary value problem from [17] which is
represented by the differential equation

y′′(x)+ (µ1 +2µ2 cos(x)+2µ3 cos(2x))y(x)= 0 (1.4)

subject to y(0)= y(1)= y(2)= y(3)= 0

The problem is to evaluate the 3-tuple (µ1,µ2,µ3), for which the equation (1.4) agrees for the
non zero solution y(x). The problem (1.4) can be decomposed into a 3PEP consisting of three
two point boundary value problems given by

y′′i (xi)+ (µ1 +2µ2 cos(xi)+2µ3 cos(2xi))yi(xi)= 0 (1.5)

such that yi(xi)= 0, yi(i−1)= yi(i)= 0,

where i = 1,2,3. A smooth function y(x) that satisfies the differential equation (1.4) can be
generated from the functions yi(xi), i = 1,2,3. The 3-parameter problem defined in equation (1.5)
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processes the Klein Oscillation property. That is for each 3-tuple of non-negative integers
(n1,n2,n3) there exist a 3-tuple (µ1,µ2,µ3), such that the problem (1.4) processes a solution y(x)
that has n1, n2 and n3 zeros on interval (0,1), (1,2) and (2,3), respectively. Discretizing the
equation (1.5) in the environment of Chebyshev collocation of 200 points yields a 3PEP of the
form considered in equation (1.1).

2. Transformation of 3PEP into a 2PEP

Let ∆0 defined by the equation (1.3) is nonsingular. Then, using the Rayleigh Quotient iteration
method presented in [7], any one of three parameters ai , i = 1,2,3 can be evaluated from the
corresponding GEP. Let, a3 is known. This a3 can be calculated from the system ∆3z = a3∆0z by
using the Rayleigh Quotient iteration method. Let z∗ := x∗1 ⊗ x∗2 ⊗ x∗3 be the actual eigenvectors
of the system ∆3z = α3∆0z. Then x∗1 , x∗2 and x∗3 satisfy the system ∆3z∗ = α3∆0z∗. Thus the
Tensor Rayleigh Quotient at the exact value of eigenvector becomes

ρ = (z∗)T∆3z∗

(z∗)T∆0z∗
= (z∗)Ta3∆0z∗

(z∗)T∆0z∗
= a3

(z∗)T∆0z∗

(z∗)T∆0z∗
= a3 . (2.1)

Since the problem considered in this paper is nonsingular so the Tensor Quotient in the equation
(2.3) is well defined, where

ρ = (x∗1 ⊗ x∗2 ⊗ x∗3 )T∆3(x∗1 ⊗ x∗2 ⊗ x∗3 )

(x∗1 ⊗ x∗2 ⊗ x∗3 )T∆0(x∗1 ⊗ x∗2 ⊗ x∗3 )
. (2.2)

Although, it seems that complexity may be arose in computing ρ due to the presence of the
operator matrices ∆0 and ∆3 and but it is possible to compute all the tensor quotient quite
efficiently with decomposable tensor z = x1 ⊗ x2 ⊗ x3 as the expressions present in (2.2) can
be written as determinants which can be evaluated numerically. For example, the expression
(x1 ⊗ x2 ⊗ x3)T∆0(x1 ⊗ x2 ⊗ x3) can be written as [3]:

(x1 ⊗ x2 ⊗ x3)T∆0(x1 ⊗ x2 ⊗ x3)=

∣∣∣∣∣∣∣∣
xT

1 M11x1 xT
1 M12x1 xT

1 M13x1

xT
2 M21x2 xT

2 M22x2 xT
2 M23x2

xT
3 M31x3 xT

1 M32x3 xT
3 M33x3

∣∣∣∣∣∣∣∣ . (2.3)

Let xn
1 , xn

2 and xn
3 be some approximations to the eigenvectors x1, x2 and x3 respectively, where

n ∈ Z+. Then, the iterative scheme of Rayleigh Quotient iteration method for ∆3z = a3∆0z
presented in [7], and is given below:

Step 1: Select starting guess x0
1, x0

2, x0
3 with ∥z0∥ = 1 .

Step 2: Calculate the Rayleigh quotient ρn(z)= (zn)T∆3zn

(zn)T∆0zn .

Step 3: Solve the system (∆3 −ρn∆0)zn+1 =∆0zn .

Step 4: Normalize zn+1 such that zn+1 = zn+1

∥zn+1∥ .

Using above algorithm approximate value of a3can be obtained. Then, 3PEP reduces to
following 2PEP with three equations

E1(a)x1 := (M1 −a1M11 −a2M12)x1 = 0, (2.4a)
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E2(a)x2 := (M2 −a1M21 −a2M22)x2 = 0, (2.4b)

E3(a)x3 := (M3 −a1M31 −a2M32)x3 = 0, (2.4c)

where Mi := Mi0 −a3Mi3, i := 1,2,3. Define the matrices L10,L1i :C→C, for i := 1,2 such that

L10 =
(
M1 0
0 M2

)
; L1i =

(
M1i 0

0 M2i

)
.

The first two equations of the system of equations (2.4)(a,b,c) can be replaced by a single matrix
pencil as follows

P1(a)z1 := (L10 −a1L11 −a2L12)z1 = 0, (2.5)

where z1 = (x1, x2)T . Consider the following system

P1(a)z1 := (L10 −a1L11 −a2L12)z1 = 0, (2.6)

E3(a)x3 := (M30 −a1M31 −a2M32)x3 = 0 (2.7)

which is equivalent to the linear system (2.4) and is a 2PEP. The corresponding system of joint
GEPs are given by

∆iZ = ai∆0Z, i = 1,2, (2.8)

where Z := z1 ⊗ x3 and the operator matrices are defined as

∆0 := L11 ⊗M32 −L12 ⊗M31 ,

∆1 := L10 ⊗M32 −L12 ⊗M30; ∆2 := L11 ⊗M30 −L10 ⊗M31 . (2.9)

Consider that 2PEP is nonsingular i.e. |∆0| ̸= 0. In the next section the conversation of 2PEP
into a NEP with single parameter will be presented.

3. Nonlinearization of 2PEP

The 2PEP can be transform into a NEP of one parameter by nonlinearizing the later. The matrix
pencil defined in equation (2.7) can be rewritten as parametrized GEP in terms of a1. A family
of continuous functions {hi(a1)} is generated, defined by the eigenvalues of the matrix pencil
(2.7) due to perturbation theory of eigenvalue problems, such that a2 is the eigenvalue of a GEP.
That is, the functions hi(a1) and g i(a1) can be viewed, as the solution to

(M30 −a1M31 −hi(a1)M32) g i(a1)= 0, (3.1)

sT g i(a1)= 1 (3.2)

for a fixed value of a1 and for any given vector s ∈Ck . Here, normalization conditions in equation
(3.2) have been introduced explicitly to define uniquely the corresponding eigenvector.

Since the right hand side of the equation (3.2) is an analytic function and therefore the
normalized conditions in equation (3.2) are preferable over usual Euclidean normalization.
Substituting a2 by hi(a1) in matrix pencil (2.6), it follows that the solution of 2PEP will satisfy

N(a1)z1 := (L10 −a1L11 −hi(a1)L12)z1 = 0 . (3.3)
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Thus, a2 and the matrix pencil of the equation (2.6) have been eliminated from 2PEP. The
problem define by the equation (4.2) is a NEP. Here, N(a1) = L10 − a1L11 − hi(a1)L12. The
problem N(a1)z1 := 0 in fact a family of NEPs due to different nonlinearity of the functions
h1,h2, . . . ,hk. The scalar a1 ∈C is called the eigenvalue it satisfy N(a1)z1 = 0 for some nonzero
vector z1. Such a nonzero vector z1 is called eigenvector of NEP. The eigenvalue a1 can be
obtained as a root of the equation

det(N(a1))= 0 . (3.4)

The eigenvalue a(0)
1 of N(a1)z1 = 0 is said to be simple, when det(N(a1)) has simple zero at

a1 = a(0)
1 [17]. NEP has wide applications in applied research e.g., [10,37,39]. Both theoretical

and numerical aspects of NEP were well investigated by the researchers. Various numerical
methods such as classical Newton’s method [30] block type Newton method [26], disguised and
quasi-Newton method [20], LU-decomposition method [11], modified Newton’s method [8],
residual inverse iteration [29], Jacobi-Davidson type methods [4], implicit determinant
method [37], method using contour integrals [1,3], Riesz-projected-based method [5], FEAST
algorithm [14], Broyden’s method [21] etc. were successfully applied for numerical solution
of NEP. Recently, a rational approximation method [13] and a selection technique [17] were
applied to NEP to evaluate several eigenvalues. For state of the art of iterative methods can be
found in [16,27,28].

4. Equivalence and Existence of Nonlinearization of the 2PEP

The existence nonlinearization of the 2PEP into a single NEP is summarized as follows:

2PEP can be characterized explicitly by the eliminating the matrices M2i , i := 0,2 from
equation (2.7). Existence of a nonlinearization is closely related to the Jordan structure of
GEP derived from (2.9) and is given by

(M20 −a1M21)x3 = a2M22x3 . (4.1)

The equation (5.2) is important as it is useful for calculation of a2 = hi(a1) for a given a1. Define
the Jacobian matrix

J(a1,a2) :=
(
E3(a1,a2) −M22x3

sT 0

)
. (4.2)

The Jacobian matrix, J(a1,a2), defined in the equation (4.1) is generally nonsingular. But it is
singular in non generic situation only. In [33], Ringh and Jarlebring showed that the Jacobian
J(a1,a2) is singular if and only if the GEP (4.1) has at least Jordan chain of length two or
more. Thus, nonlinearization technique works if a solution to 2PEP corresponds to a simple
eigenvalue a2 of the GEP represented by the equation (4.1). Again, in [33] it is also showed
that the Jacobian J(a1,a2) is nonsingualar if we take the simple eigenvalue a1 of the GEP
such that s is not orthogonal to the corresponding eigenvector, which confirms the existence
of nonlinerization. Therefore, the nonlinearization exists simple eigenvalues of GEP given in
equation (4.1).
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Again, to determine nontrivial solutions, the matrix pencil defined in equation (2.7) must
satisfy the equation det(E3(a1,a2) = 0, which is a bivariate polynomial in a1. Hence, the
functions hi(a1) presented in the NEP of the equation (3.3) are roots of certain polynomial.
The coefficients of this polynomial are also polynomials in a1. Thus, the functions hi(a1)
are algebraic. It is to be noted that the functions hi(a1) are not always entire functions.
These functions may have branch-point singularities, which create obstacles in computation of
eigenvalues by the iterative methods. Relevant methods for nearest singularity are reported in
the papers [22,23].

5. Analysis of Condition Number

Condition number plays important role in the sensitivity analysis of eigenvalue problem. Norm-
wise condition number of NEP, based on L1i-matrices, i = 0,1,2 are generally used to measure
the sensitivity of a1 and is defined as [33].

CondL1i (a1) := limsup
ε→0

{ |∆a1|
ε

: ∥L1 j∥ = εγ j, j = 0,1,2
}

, (5.1)

where γ j are scalars for j = 0,1,2 and ∆a1 is such that

((L10 +∆L10)− (a1 +∆a1)(L11 +∆L11)− f (a1 +∆a1)(L12 +∆L12)(z1 +∆z1)= 0. (5.2)

Denote u and z1 as the left and right eigenvectors of the NEP respectively, then it follows [33]
that

CondL1i (a1) := ∥u∥ ∥z1∥∆1 +∆1|a1|+∆3|h(a1)|
|uH N ′(a1)z1|

. (5.3)

The quantity |uH N ′(a1)z1| present in the equation (5.3) plays crucial rule in the selection
criteria of eigenvalues of NEP and again, |uH N ′(a1)z1| ̸= 0 for simple eigenvalue [17].

Formula defined in equation (5.3) is further improved in [33] by considering the perturbations
with respect to M3i-matrices, i = 0,1,2 as follows:

Cond(a1) := limsup
ε→0

{ |∆a1|
ε

: ∥L1 j∥ = εγ j and ∥M3 j∥ = εµ j, j = 0,1,2
}

, (5.4)

where µ j , j = 0,1,2 are scalars and ∥∆a1∥ satisfies the equation (5.2) with a perturbed h such
that a2 +∆a2 = h(a1 +∆a1) with

(M30 +∆M20)− (a1 +∆a1)(M31 +∆M31)− (a2 +∆a2)(M32 +∆M32)(x3 +∆x3)= 0,

1= sT(x3 +∆x3). (5.5)

The perturbation of a2 is analyzed subject to perturbations with respect to M3i-matrices and
fixing perturbations in a1 by

Condh(a1) := limsup
ε→0

{ |∆a2|
ε

: ∥∆a1∥ = εγ and ∥M3 j∥ = εµ j for j := 0,1,2
}

, (5.6)

where ∆a2 satisfies (5.8) for a given a1 and γ is a scalar.
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Let u and x3 be the left and right eigenvectors of GEP defined in equation (4.1) associated
with simple eigenvalue a2 = f (a1) for given a1 ∈C. Then, the following relation is true [33].

Condh(a1)=Condh,M3i (a1)+Condh,a1(a1),

where

Condh,M3i (a1) := ∥u∥ ∥x3∥µ1 +µ2|a1|+µ3|h(a1)|
|uH M32x3|

(5.7)

and

Condh,a1(a1) := γ
|uH M31x3|
|uH M32x3|

. (5.8)

Proposition 5.1 ([15]). Let M be p × p complex matrix such that Rank(M) = p − 1. Then,
adj(M)= yx∗ for some vectors 0 ̸= x and 0 ̸= y such that M y= 0 and x∗M = 0.

Theorem 5.1. Let u and z1 be the left and right eigenvectors corresponding to the simple
eigenvalue a1 of the NEP defined in equation (3.3). Moreover, let v and x3 be the left and right
eigenvectors corresponding to the simple eigenvalue a2 = f (a1) of the GEP defined in equation
(4.1). Then,

Cond(a1)=CondL1i (a1)+Condh,M3i (a1)
|uHL12z1|

|tr[ad j(N(a1)N ′(a1)]| . (5.9)

Proof. Using the [33, Theorem 4.2], we have

Cond(a1)=CondL1i (a1)+Condh,M3i (a1)
|uHL12z1|

|uH N ′(a1)z1|
. (5.10)

Since the eigenvalue a1 is simple and therefore Rank(N(a1) := n3 −1.

Therefore, there exist vectors 0 ̸= z1, u ∈Cn
3 such that adj(N(a1) := z1u∗ with N(a1)z1 = 0 and

u∗N(a1)= 0.

This implies,

tr(adj(N(a1)N ′(a1) := tr(z1uH N ′(a1)= uH N ′(a1)z1 .

Substituting it in the equation (5.10) proves Theorem 5.1.

Theorem 5.2. Under the assumptions and conditions of Theorem 5.1, Cond(a1) satisfies

Cond(a1)=CondL1i (a1)+Condh,M3i (a1)
|uHL12z1|

|κ1κ2qT N ′(a1)p| , (5.11)

where κi ; (i = 1,2) are nonzero scalars, 0 ̸= p, q are some right and left eigenvectors of the NEP
N(a1)z1 = 0, respectively.

Proof. Let the eigenvalue a1 be simple. Then, it is well known that Dim(Ker(N(a1) = 1.
Therefore, there exists scalars 0 ̸= κi ; i = 1,2 such that z1 = κ1 p and u = κ2q. This implies,

uH N ′(a1)z1 = (κ2q)H N ′(a1)(κ1 p)= κ2κ1qH N ′(a1)p .

Substituting it in the equation (5.10) proves Theorem 5.2.
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Define the sequence {ak
1}∞k=0 such that it converges to some simple eigenvalue a1 ∈C which is

computed by using iterative method of order t ∈N. Set the factor cn = ak+1
1 −a1

(ak
1−a1)t . Then, c is termed

as convergent factor and is defined as c = lim
k→∞

ck, if the limit exists. Let, the matrix N(a1) is

twice differentiable such that uH N ′′(a1)z1 ̸= 0, then convergent factor c is given by [39]

c = 1
2

uH N ′′(a1)z1

uH N ′(a1)z1
. (5.12)

Using the equation (5.13), the expression |uH N ′(a1)z1| present in the denominator part of the
equation (5.10) can be expressed in terms of c. Thus, the equation (5.10) becomes

Cond(a1)=CondL1i (a1)+2cCondh,M3i (a1)
|uHL12z1|

|uH N ′′(a1)z1|
. (5.13)

5.1 Bounds of Cond(a1, N)

Recall that, the matrix valued function N(a1) = L10 − a1L11 − hi(a1)L12. Here, N(a1) is an
analytic function having Lipschitz derivative, which is continuous in real case. Assume
that (â1, ẑ1, û) be the solution of GEP. Let â1 be simple eigenvalue. Consider the following
neighborhood

M(a1,σ)= {a1 ∈C : |a1 − â1| <σ}

Also, set the following:

χξ(z1)= {z1 ∈CN :∠(Span{z1},Span{ẑ1})= ε}

and

χξ(u)= {u ∈CN :∠(Span{u},Span{û})=σ}.

Then, the functional defined by r : χξ(z1)×χξ(u)→ M(a1,σ), is said to be two sided [39] Rayleigh
functional if the following conditions holds:

(i) r(lz1,mu)= r(z1,u) for any non zero scalars l,m ∈C,

(ii) uH N(r(z1,u))z1 = 0,

(iii) uH N ′(r(z1,u))z1 ̸= 0,

for every z1 ∈ χξ(z1) and u ∈ χξ(u).

Theorem 5.3 ([39]). Let |ûH N ′(â1)ẑ1| ̸= 0. Then, there exists ε> 0 and η> 0 such that for which
the following inequality is true.

|r(z1,u)− â1| = 8
3

∥N(â1)∥
|ûH N ′(â1)z1|

tan(ξ)tan(ε), (5.14)

where ξ = ∠(Span{z1},Span{ẑ1}), η = ∠(Span{u},Span{û}) and û, ẑ1 are the left and right
eigenvectors of the NEP corresponding to the eigenvalue â1 such that ∥û∥ = ∥ẑ1∥ = 1.

Theorem 5.4 ([39]). Let û, ẑ1be the left and right eigenvectors of the NEP corresponding to the
eigenvalue â1such that ∥û∥ = ∥ẑ1∥ = 1 and |ûH N ′(â1)ẑ1| ̸= 0. Assume that ξ< p

3 and η< p
3 . Then,
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the following inequality holds.

|r(z1,u)− â1| = 32
3

∥N(â1)∥
|ûH N ′(â1)z1|

∥z1 − z∗1∥ ∥u−u∗∥ .

Remark 5.1. Let û, ẑ1 be the left and right eigenvectors corresponding to the eigenvalue
â1of the NEP defined in equation (3.3), such that ∥û∥ = ∥ẑ1∥ = 1 and |ûH N ′(â1)ẑ1| ̸= 0. Then,
Cond(a1) satisfy the following inequalities.

(i) There exists ε> 0 and σ> 0 such that

Cond(a1)=CondL1i (a1)+ 3
8

Condh,M3i (a1)|r(z1,u)−a1| |uHL12z1|
∥N(a1)∥tan(ξ).tan(η)

where ξ=∠(Span{z1},Span{ẑ1}) and η=∠(Span{u},Span{û}),

(ii) For ξ< p
3 and η< p

3 , we have

Cond(a1)=CondL1i (a1)+ 3
32

Condh,M3i (a1)|r(z1,u)−a1| |uHL12z1|
∥N(a1)∥ ∥z1 − z∗1∥ ∥u−u∗∥ .

Numerical Example. Consider the following nonsingular 3PEP given by the system of
equations (5.15)-(5.17). 1 5 7

6 10 4
11 5 9

x1 =

a1

8 1 0
9 11 0
0 7 5

+a2

−4 −1 7
6 −2 5
−3 0 6

+a3

11 2 −3
4 12 −6
7 4 5


x1, (5.15)

7 0 0
0 9 0
0 0 −12

x2 =

a1

13 5 −2
1 9 8
6 −17 4

+a2

7 17 4
8 10 15
3 5 4

+a3

21 6 −5
9 10 3
8 6 9


x2, (5.16)

10 12 −7
−4 11 −6
5 13 2

x3 =

a1

23 6 4
−3 5 2
2 3 −10

+a2

 5 9 12
−3 11 4
−7 8 2

+a3

 7 25 3
12 −5 4
4 9 8


x3 . (5.17)

The operator matrix ∆0 is nonsingular and hence the problem considered above is nonsingular.
Here a3 = 0.4213 by Rayleigh Quotient iteration method. Now, 3PEP reduces to following 2PEP
with three equations−3.6343 4.1574 8.2639

4.3148 4.9444 6.5278
8.0509 3.3148 6.8935

x1 =

a1

8 1 0
9 11 0
0 7 5

+ a2

−4 −1 7
6 −2 5
−3 0 6


x1, (5.18)

−1.8473 −2.5278 2.1065
−3.7917 4.7870 −1.2639
−3.3704 −2.5278 −15.7917

x2 =

a1

13 5 −2
1 9 8
6 −17 4

+a2

7 17 4
8 10 15
3 5 4


x2, (5.19)

 7.0509 1.4675 −8.2639
−9.0556 13.1063 −7.6852
3.3148 9.2083 −1.3704

x3 =

a1

23 6 4
−3 5 2
2 3 −10

+a2

 5 9 12
−3 11 4
−7 8 2


x3. (5.20)
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Combining the first two equations (5.18) and (5.19), the following single matrix equation of the
form (2.6) can be obtained

−3.6343 4.1574 8.2639 0 0 0
4.3148 4.9444 6.5278 0 0 0
8.0509 3.3148 6.8935 0 0 0

0 0 0 −1.8473 −2.5278 2.1065
0 0 0 −3.7917 4.7870 −1.2639
0 0 0 −3.3704 −2.5278 −15.7917


z1

= a1



8 1 0 0 0 0
9 11 0 0 0 0
0 7 5 0 0 0
0 0 0 13 5 −2
0 0 0 1 9 8
0 0 0 6 −17 4


+a2



−4 −1 7 0 0 0
6 −2 5 0 0 0
−3 0 6 0 0 0
0 0 0 7 17 4
0 0 0 8 10 15
0 0 0 3 5 4


z1 , (5.21)

where z1 = (x1, x2)T . Equation (5.20) together with equation (5.21) yields a 2PEP of the form
defined in equations (2.6) and (2.7). Respective NEP can be obtained using nonlinearization
technique presented in Section 3.

6. Conclusion

In this paper, a general framework of nonlinearizing technique of the 3PEPs into a single
parameter have been discussed. Moreover, an estimation of bounds of condition number Cond(a1)
of simple eigenvalue is also shown using two sided Rayleigh functional. The nonlinearization
techniques presented in this paper have some limitations. The existence of the nonlinearization
depends on the fact that the chosen eigenvalue of the GEP defined by the equation (4.1) need to
be simple. Moreover, the nonlinear functions hi involved in the study are algebraic functions,
and therefore may contain singularities which may create problem in the implementation of
numerical scheme. Again, to find the general solution of the problem (1.1) including the singular
case gives us a new direction to develop other novel direct methods. This may be considered as
future prospect in the research area of k-parameter eigenvalue problem.
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