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1. Introduction
Numerical analysis is the area of mathematics and computer science that creates, analyzes,
and implements algorithms for solving numerically the problems of continuous mathematics.
Numerical linear algebra refers to problems involving the solution of systems of linear equations,
possibly with a very large number of variables [6]. Linear systems are usually written using
matrix-vector notation,

Ax = b,

with A the matrix of coefficients for the system, x the column vector of the unknown variable
x1, . . . , xn and b a given column vector. For larger linear systems there are two types of methods:
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(1) direct method, and (2) indirect method. Direct methods lead to a theoretically exact solution x
in a finite number of steps. Indirect methods are approximate methods which create a sequence
of approximating solutions of increasing accuracy. Indirect methods are also called as Iterative
methods [4].

The rate of converges of an iterative method depends strongly on the eigen values of the
coefficient matrix A. Hence, generally there is a transformation of the coefficient matrix
A into another matrix, called a preconditioner, with a more favorable eigen values. A good
preconditioner improves the convergence of the iterative methods. Indeed, a preconditioner
plays an important role on the convergence of iterative methods [8].

The first iterative method was given by the Jacobi (1824) and later by the Gauss-Seidel
(1848) (cf. Curtis et al. [1]). After about 100 years the popular Successive Over Relaxation
(SOR) method was discovered by D. M. Young [10]. He introduced a relaxation factor to the
Gauss-Seidal method to increase the rate of convergence. Gauss-Seidal method is a particular
case of SOR method. To find the value of relaxation parameter, is a difficult task. The value of
relaxation parameter in SOR method is not yet find for all types of system of equations. The
value of relaxation parameter, lies in between 0 and 2 such that the radius of convergence of
iteration matrix of SOR method, should be less than 1 (see [2,11]). In Section 1, we have given
some basic ideas of a linear system of equations and iterative methods which are used to solve
the problems. In Second 2, we have described briefly the iterative methods. In Section 3, we
have given convergence criteria of iterative methods. Some numerical examples are given in
Section 4. In Section 5, we have concluded some results based on numerical examples.

2. Iterative Methods
2.1 Jacobi Method
Consider the linear system of equations as

Ax = b,

where A ∈ Rn×n is a coefficient matrix and b ∈ Rn is a given n-dimensional real vector.
The iterative formula in component form according to Jacobi is given as

x(k)
i = 1

aii

(
bi −

∑
i 6= j

ai jx(k−1)
j

)
,

where x(k)
i is the solution vector after kth iteration by taking x(0)

i (initial guess) as (0,0, . . . ,0)t.
Jacobi method takes the value of previous iteration to for the solution vector. If splitting of
the coefficient matrix A is given as A =D+L+U , where D is a diagonal matrix, L is strictly
lower triangular matrix, and U is strictly upper triangular matrix. Then, the Jacobi method in
the matrix form is given as:

x(k) =−D−1(L+U)x(k−1) +D−1b

=BJ x(k−1) +C ,
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where BJ = −D−1(L+U), and is an iteration matrix of Jacobi method and C = D−1b is an
iteration vector.

2.2 Gauss-Seidal Method
This method is also called as the method of successive displacement. In Gauss-Seidal method
the updated values of variables are used to find the solution vector. The iterative formula in
component form according to Gauss-Seidal is given as:

x(k)
i = 1

aii

(
bi −

∑
i<J

ai jx(k−1)
j − ∑

i>J
ai jx(k)

j

)
.

The Gauss-Seidal method in the matrix form is given as:

x(k) =−(D+L)−1Ux(k−1) + (D+L)−1b

=BGSx(k−1) +C ,

where BGS =−(D+L)−1U is an iteration matrix, and C= (D+L)−1b is an iteration vector.

2.3 Richardson’s Method
In the matrix form the Richardson’s method is given as:

x(k)
i = x(k−1)

i +ω(b− A)x(k−1)
i

= (I −ωA)x(k−1)
i +ωb ,

x(k) =BRM x(k−1) +C ,

where ω is a scalar parameter that has to be chosen such that the sequence x(k) converges,
where BRM = (I − A) is an iteration matrix, and C=ωb is an iteration vector.

2.4 SOR Method
For any iterative method, in finding x(k) from x(k−1), we move a certain amount in a particular
direction from x(k−1) to x(k). This direction is the vector x(k) − x(k−1) since

x(k) = x(k−1) + (x(k) − x(k−1)) .

If we assume that the direction from x(k−1) to x(k) is taking as closer, but not all the way, to the
true solution x, then it would make sense to move in the same direction x(k)− x(k−1), but farther
along that direction. Here is how we derive the SOR method from the Gauss-Seidel method.
First, notice that we can write the Gauss-Seidel equation as:

Dx(k) = b−Lx(k) −Ux(k−1)

so that

x(k) =D−1[b−Lx(k) −Ux(k−1)].

We can subtract x(k−1) from both sides to get

x(k) − x(k−1) =D−1[b−Lx(k) −Dx(k−1) −Ux(k−1)].
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Now, think of this as the Gauss-Seidel correction (x(k) − x(k−1))GS . As suggested above, it turns
out that convergence x(k) → x of the sequence of approximate solutions to the true solution is
often faster if we go beyond the standard Gauss-Seidel correction. The idea of the SOR method
is to iterate,

x(k) = x(k−1) +ω(x(k) − x(k−1))GS ,

where, as we just found

(x(k) − x(k−1))GS =D−1[b−Lx(k) −Dx(k−1) −Ux(k−1)]

and where generally 1<ω< 2. Notice that if ω= 1 then this is the Gauss-Seidel method. Written
out in detail, the SOR method is

x(k) = x(k−1) +ωD−1[b−Lx(k) −Dx(k−1) −Ux(k−1)].

We can multiply both sides by matrix D and divide both sides by ω to rewrite this as
1
ω
Dx(k) = 1

ω
Dx(k−1) + [b−Lx(k) −Dx(k−1) −Ux(k−1)]

then collect the x(k) terms on the left hand side to get,(
L+ 1

ω
D

)
x(k) = 1

ω
Dx(k−1) + [b−Dx(k−1) −Ux(k−1)]

=
(

1
ω
D−D−U

)
x(k−1) +b .

When we solve for x(k) we get

x(k) =
(
L+ 1

ω
D

)−1 [(
1
ω
D−D−U

)
x(k−1) +b

]
.

Notice that the SOR Method is also of the form

x(k) =BSOR x(k−1) +C .

The iteration matrix BSOR that determines convergence of the SOR method is(
L+ 1

ω
D

)−1 (
1
ω
D−D−U

)
so optimal convergence is achieved by choosing a value of ω that minimizes∥∥∥∥(

L+ 1
ω
D

)−1 (
1
ω
D−D−U

)∥∥∥∥ .

Thus finally, this method introduces a parameter ω whose role is to minimize the spectral
radius, the largest in modulus eigen value, of their iterative matrix. Successive over relaxation
is the acceleration of Gauss-Seidal method for a suitable choice of relaxation parameter ω. So
the iterative formula for SOR method in component form according to Young [10] is given as

x(k)
i = (1−ω)x(k−1)

i + ω

aii

(
bi −

∑
i<J

ai jx(k−1)
j − ∑

i>J
ai jx(k)

j

)
and SOR method in the matrix form is given as

x(k) = (D+ωL)−1[−ωU + (1−ω)D]x(k−1) + (D+ωL)−1ωbx(k) =BSOR x(k−1) +C
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where

BSOR = (D+ωL)−1[−ωU + (1−ω)D]

is an iteration matrix, and C=ω(D+ωL)−1b is an iteration vector.

3. Convergence Criteria of Iterative Methods
The basic idea of iterative methods is to construct a sequence of vectors x(k) that enjoy
the property of convergence

x = lim
(k→∞)

x(k) , (3.1)

where x is the solution of linear system of equations. In practice, the iterative process is stopped
at the minimum value of n such that ‖x(n)–x‖ < ε where ε is a fixed tolerance, and ‖ · ‖ is
any convenient vector norm. However, since the exact solution is obviously not available, it is
necessary to introduce suitable stopping criteria to monitor the convergence of the iteration.
Iterative Methods for solving Linear Systems to start with, we consider iterative methods of the
form given x(0),

x(k+1) =Bx(k) +C, k ≥ 0,

where B is an n×n square matrix called the iteration matrix, and C is a vector that is obtained
from the right hand side b.

3.1 Convergence of Richardson Method
If λ j ∈C1, j = 1, . . . ,n, are the eigenvalues of A ∈L (Rn), then, for constant ω> 0, the eigenvalues
of the iteration matrix BRM = I −ωA of Richardson’s method are 1−ωλ1, . . . ,1−ωλn. Hence,
we obtain

ρ(BRM)= max
i=1,...,n

|1−ωλi| .
Evidently, we are interested in the optimal value of ω for which ρ(BRM) is minimal. For this
suppose that A is symmetrizable and hence that all eigenvalues λ1, . . . ,λn are real. Then with
the algebraically smallest and largest values

λmin = max
i=1,...,n

λ j, λmax = max
i=1,...,n

λ j .

We evidently have

ρ(BRM)=max{|1−ωλmin|, |1−ωλmax|}.
In particular, for the case of positive eigenvalues we obtain the convergence result.

Theorem 3.1. Let all eigenvalues of A ∈L (Rn) be real and positive. Then Richardson’s method
converges if and only if 0 < ω < 2

λmax
, where λmax is the algebraically largest eigenvalue of A.

If there is convergence, then ρ(BRM) is minimal for

ωopt = 2
(λmax +λmin)

, ρ(Bopt)= (λmax −λmax)
(λmax +λmin)

.
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Theorem 3.2. Let A ∈ L (Rn) be symmetric and positive-definite. Then Richardson’s method
converges if and only if, 0<ω< 2

‖A‖2
.

3.2 Convergence of Jacobi Method
Theorem 3.3. If A is a strictly diagonally dominant matrix by rows, the Jacobi and Gauss-Seidel
methods are convergent.

Proof. Let us prove the part of the theorem concerning the Jacobi method, while for the Gauss-

Seidel method we refer to [9]. Since A is strictly diagonally dominant by rows, |ai,i| >
n∑

j=1
|ai, j|

for j 6= i and i = 1, . . . ,n. As a consequence

‖B‖∞ = max
i=1,...,n

n∑
j=1, j 6=i

|ai, j|
|ai,i|

< 1

so that the Jacobi method is convergent.

Theorem 3.4. If A and 2D − A are symmetric and positive definite matrices, then the Jacobi
method is convergent and ρ(BJ)= ‖BJ‖A = ‖BJ‖D.

3.3 Convergence of Gauss-Seidal Method
Theorem 3.5. If A is symmetric positive definite, the Gauss-Seidel method is monotonically
convergent with respect to the norm ‖ ·‖A .

3.4 Convergence of SOR Method
Theorem 3.6 ([3]). Let A ∈ L (Rn) be symmetric, positive definite. Then the SOR method
converges for 0<ω< 2.

Proof. For a symmetric, positive definite A the decomposition becomes A =D−L−Lt where
the diagonal elements of D are strictly positive. Thus, in particular, B is nonsingular and so
must be and D−ωL. For 0<ω< 2 the matrices

B = 1
ω

(D−ωL), C = 1
ω

[(1−ω)D+ωLt]

are well defined and real, and we can write

BSOR =B−1C

=B−1
[

1
ω
D−D+Lt

]
=B−1

[
1
ω

(D−ωL)+L+Lt −D

]
=B−1(B− A)

= I −B−1A .

The following short calculation shows that

A–Bt
SOR ABSOR = A− (I −B−1A)t A(I −B−1A)
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= (B−1A)t A+ AB−1A− (B−1A)t A(B−1A)

= (B−1A)t[Bt +B–A]B−1A , (3.2)

where

Bt +B− A = 2
ω
D−L−Lt − (D−L−Lt)

= 1
ω

(2−ω)D .

Since 0<ω< 2 this proves that Bt +B− A is symmetric positive definite, whence (3.2) implies
the same for A−Bt

SOR ABSOR . Let now λ ∈ C1 be any eigenvalue of BSOR and u ∈ Cn, u 6= 0
a corresponding eigenvector. Then

u∗Au > u∗Bt
SOR ABSORu = (λu)∗A(λu)= |λ|2u∗Au

so that |λ|2 < 1 and hence also

ρ(BSOR)< 1

as claimed.

Theorem 3.7 ([5]). If all diagonal elements of A ∈L (Cn) are nonzero, then the spectral radius
of the SOR iteration matrix satisfies,

ρ(BSOR)≥ |ω−1|. (3.3)

Hence a necessary condition for the SOR method to converge is |ω−1| < 1 (for ω ∈R this condition
becomes ω ∈ (0,2)).

Proof. Because L is strictly lower triangular we have

detD−1 = det(D+ωL)−1

and

det(BSOR)= (D+ωL)−1 det((1−ω)D+ωU)

= det((1−ω)I +ωD−1U)

= det((1−ω)I)

= (1−ω)n ,

since D−1U is strictly upper triangular. Since det(BSOR) is the product of the eigenvalues of
BSOR it follows that

ρ(BSOR)n ≥ det(BSOR)= (1−ω)n

and therefore that (3.3) holds.

In the positive-definite case the necessary condition is also sufficient for convergence [3], as
the following theorem shows.

Theorem 3.8. If A ∈Cn×n is hermetian positive definite, then the (pointwise or block) forward
SOR method converges for all ω ∈ (0,2).
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Proof. We have

BSOR = (D+ωL)−1[−ωU + (1−ω)D]

= I −
(

1
ω

(D−ωL)
)−1

A

= I −B−1A,

where

B = 1
ω

(D−ωL) .

Let λ ∈C be an eigenvalue of BSOR with corresponding eigenvector v ∈Cn. Then

Av = (1–λ)Bv .

Since

v∗Av > 0, λ 6= 1.

Hence
(v∗Bv)
(v∗Av)

= 1
(1−λ)

.

Consequently,

2Re
1

(1−λ)
= 1

(1−λ)
+ 1

(1− λ̄)
)

= (v∗Bv)
(v∗Av)

+ (v∗Bv)

(v∗Av)

= (v∗(B+B∗)v)
(v∗Av)

.

Since B = 1
ω

(D−ωL) and D∗ =D and L∗ =U we have

B+B∗ =ω−1D−L+ (ω−1D−L)∗

= 2ω−1D–L−U t

= A+ (2ω−1 −1)D

and

2Re
1

(1−λ)
= (v∗(B+B∗)v)

(v∗Av)

= 1+
(

2
ω

–1
)

(v∗Dv)
(v∗Av)

.

If A ∈Cn×n is hermetian positive definite, its (block) diagonal D is hermetian positive definite.
Hence

2Re
1

(1–λ)
= 1+

(
2
ω

–1
)

(v∗Dv)
(v∗Av)

> 1.

If we set λ=α+ iβ, then

1< 2Re
1

(1–λ)
= 2

(1−α)
(1−α)2 +β2
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which implies

|λ|2 =α2 +β2 < 1.

Since λ was an arbitrary eigenvalue of BSOR , ρ(BSOR)< 1.

Definition 3.1. Let the N ×N matrix A be partitioned into the form

A =

 A1,1 . . . A1,q
... . . . ...

Aq,1 . . . Aq,q

 ,

where A i, j is an ni ×n j submatrix and n1 + . . .+nq = N . The q× q block matrix of A is said to
have A-property if there exists two disjoint nonempty subsets SR and SB of {1,2, . . . , q} such
that SR ∪SB = {1,2, . . . , q} and such that if A i, j 6= 0 and i 6= j then i ∈ SR and j ∈ SB or j ∈ SR

and i ∈ SB.

Theorem 3.9. If the matrix A enjoys the A-property and if BJ has real eigenvalues, then
the SOR method converges for any choice of x(0) iff

ρ(BJ)< 1 and 0<ω< 2 .

Moreover,

ωopt = 2

1+
√

1− (ρ(BJ))2

and the corresponding asymptotic convergence factor is

ρ(Bopt)= 1−
√

1− (ρ(BJ))2

1+
√

1− (ρ(BJ))2
.

Theorem 3.10. Let A =D+L+U be a matrix that satisfies the technical assumption

det(Dk−γL−γ−1U)= det(kD−L−U), for all k,γ ∈R− {0} (3.4)

and BJ and BSOR the iteration matrices of the Jacobi and SOR methods as defined above.
If µ is an eigenvalue of BJ and λ 6= 0 satisfies,

µ= λ+ω−1
ωλ1/2 (3.5)

for some ω ∈ (0,2) then λ is an eigenvalue of BSOR .

Proof. We have the definitions for BJ and BSOR that

BJ =−D−1(L+U), BSOR = (D+ωL)−1[−ωU + (1−ω)D].

Let λ be one eigenvalue of BSOR , λ 6= 0. Because U and L are strictly upper and lower triangular
matrices, and their main diagonals are zeros, we have

det(−D−1)det(D−ωL)= 1

det(BSOR −λI)= det
[
(D+ωL)−1{(1−ω)D+ωU}–λI

]
= det(D−1)det(D−ωL)det

[
(D+ωL)−1{(1−ω)D+ωU}–λI

]
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= det
[
(1−ω)I +ωD−1U −λI +ωλD−1L

]
=ωn det

[(
1
ω
−1

)
I +D−1U − λI

ω
+λD−1L

]
= (−1)nωnλ1/2 det(D−1)det

[
(ω+λ− I)

(ωλ1/2 )D−λ−1/2U −λ1/2L
]

= (−1)nωnλ1/2 det
[
ω+λ− I
ωλ1/2 I −D−1U −D−1L

]
=ωnλ1/2det

[
BJ − ω+λ− I

ωλ1/2 I
]

.

Because λ 6= 0 satisfies

µ= (ω+λ− I)
(ωλ1/2)

,

where µ is an eigenvalue of BJ . In turn, when µ is an eigenvalue of BJ , and λ satisfies that
relation, then λ is an eigenvalue of BSOR .

Theorem 3.11. Assume A = D+ L +U is a matrix that satisfies (3.4), and assume that
BJ = I −D−1A has only real eigenvalues and that β = ρ(BJ) < 1. Then the SOR iteration
converges for every ω ∈ (0,2), and the spectral radius of the SOR matrix is

ρ(BSOR)= f (x)=
{

1
4 [ωβ+ρ(ωβ)2 −4(ω−1)]2, for 0<ω≤ωopt,
ω−1, for ωopt ≤ω< 2,

(3.6)

where ωopt, the optimal value of ω is

ωopt = 2

1+
√

1−β2
. (3.7)

For any other value of ω we have

ρ(BSORopt)< ρ(BSOR), for ω ∈ (0,2)− {ωopt} .

Proof. For a given ω, ρ(BSOR) is the largest eigenvalue of BSOR in absolute value. Suppose
that µ is an eigenvalue of BJ . From (3.5) we have

λ= 1
4

(
ωµ±

√
(ωµ)2–4(ω–1)

)2
. (3.8)

Equation (3.8) gives two eigenvalues for BSOR . First, if

(ωµ)2 −4(ω−1)< 0,

then λ is imaginary, and the absolute value of λ is

|λ| =
(
1
4
ω2µ2 +ω−1− 1

4
ω2µ2

)
=ω−1

when

ω̃≡ (1−
√

1−µ2 )
µ2 <ω< 2 .
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Here, ρ(BSOR)= |λ| is independent of µ= ρ(BJ). Second, if (ωµ)2 −4(ω−1)≥ 0, then

ρBSOR)= max
µ∈ρ(BJ )

1
4

[
ω|µ|±

√
(ω|µ|)2–4(ω–1)

]2
,

ω ∈ (0,ω̃]. On one hand, for a fixed ω,ρ(BSOR) is an increasing function with respect to variable
|µ|. Hence, to get the spectral radius of BSOR , let

|µ| = ρ(BJ)=β,

we have

ρ(BSOR)= 1
4

[
ωβ±

√
(ωβ)2–4(ω−1)

]2
.

On the other hand, ρ(BSOR) can be proved to be a decreasing function with respect of ω in
(0,ω̃]. Details are as follows: We have the first order derivative of ρ(BSOR)

ρ′(BSOR)= 1
2

(
ωβ+

√
(ωβ)2–4(ω–1)β+ β2ω−2√

(ωβ)2–4(ω–1)

)
.

To determine its sign, we need to examine the sign of(
β+ β2ω−2√

(ωβ)2–4(ω–1)

)
.

Because√
(ωβ)2–4(ω–1)> 0, β< 1, ω< 2

and

β

√
(ωβ)2–4(ω–1)+ (β2ω−2)<

√
ω)2–4ω+4+ω–2=

√
(ω−2)2 +ω−2

= 2−ω+ω−2

= 0.

Therefore, ρ′(BSOR) < 0 in the interval (0,ω̃], which implies that ρ(BSOR) is a decreasing
function of ω. When ω= ω̃, ρ(BSOR) gets its minimum in the interval (0,ω̃]. We have proved
above that in the interval (ω̃,2), ρ(BSOR) = ω−1 is an increasing function and also gets its
minimum when ω approaches to ω̃. Moreover, ρ(BSOR) is continuous at the point ω̃. Considering
that the optimal parameter ω is the very number that makes ρ(BSOR) gets its minimum.
Therefore,

ω̃=ωopt = 2(1−
√

1−β2)
β2 = 2

(1+
√

1−β2)
.

According to the statement above, for any value of ω,

ρ(BSORopt)< ρ(BSOR), ω ∈ (0,2)− {ωopt}.

4. Numerical Examples
Example 4.1. Let us consider following system of equations,

2x+ y= 1
x+7y= 5

}
. (4.1)
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Solutions. Exact solution:

x = 0.153846153846154,

y= 0.692307692307692.

Approximate solution:
Methods Noumber of iterations Approximate solution Error vector

Richardson method 37
0.153846152408944
0.692307685840244

1.0e-08∗

0.143721012868525
0.646744535703903

Jacobi method 15
0.153846157129925
0.692307692516186

1.0e-08∗

−0.328377147695846
−0.020849333370876

Gauss-Seidal method 8
0.153846157129925
0.692307691838582

1.0e-08∗

−0.328377142144731
0.046911019513374

SOR method 6
0.153846158504998
0.692307691940860

1.0e-08∗

−0.465884453237919
0.036683256432468

Example 4.2. Let us consider following system of equations:
25x−15y−5z = 1
−15x+18y+0z = 2
−5x+0y+11z = 3

 . (4.2)

Solutions. Exact solution:

x = 0.068148148148148,

y= 0.054320987654321,

z = 0.303703703703704.

Approximate solution:
Methods Number of iterations Approximate solution Error vector

Richardson method 57
0.068148090688256
0.054321117273847
0.303703626032756

1.0e-06∗

0.057459892177647
−0.129619525786329
0.077670947618014

Jacobi method 50
0.068148015875257
0.054321064702911
0.303703661677200

1.0e-06∗

0.132272891056884
−0.077048590389761
0.042026503832560

Gauss-Seidal method 25
0.068148055689840
0.054321064702911
0.303703661677200

1.0e-07∗

0.924583084538355
−0.770485904175167
0.420265038325596

SOR method 10
0.06814807768745

0.054321000057282
0.303703609196386

1.0e-07∗

0.704606918366935
−0.124029609013809
0.945073176383815
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Example 4.3. Let us consider following system of equations:
4x−1y−2z+2t = 1
−1x+4y−1z−2t =−1
−2x−1y+4z−1t = 2
2x−2y−1z+4t =−2

 . (4.3)

Solutions. Exact solution:

x = 1.000000000000000,

y=−0.333333333333333,

z = 0.666666666666667,

t =−1.000000000000000.

Approximate solution:
Methods Number of iterations Approximate solution Error vector

Richardson method 25

0.999896322221324
−0.333379047079772
0.666616332563392
−1.000088417776678

1.0e-03∗

0.103677778676259
0.045713746438303
0.050334103274818
0.088417776678118

Jacobi method 30

1.024445888756703
−0.348448414847807
0.651551544317527
−0.975553976375561

−0.024445888756704
0.015115081514474
0.015115122349139
−0.024446023624439

Gauss-Seidal method 15

1.000150581564877
−0.333263485847253
0.666751824240107
−1.000019077646038

1.0e-03∗

−0.150581564877572
−0.069847486080132
−0.085157573440187
0.019077646038590

SOR method 7

1.000200692595382
−0.334580690589569
0.665736816742371
−1.000698016266749

−0.000200692595382
0.001247357256236
0.000929849924295
0.000698016266749

Example 4.4. Let us consider following system of equations:
4x−1y+0z+0t = 1
−1x+4y−1z+0t = 0
0x−1y+4z−1t = 0
0x+0y−1z+4t = 0

 . (4.4)

Solutions. Exact solution:

x = 0.267942583732057,

y= 0.071770334928230,

z = 0.019138755980861,

t = 0.004784688995215.
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Approximate solution:
Methods Number of iterations Approximate solution Error vector

Richardson method 20

0.267942582595424
0.071770334184293
0.019138754141750
0.004784688535437

1.0e-08∗

0.113663339851300
0.074393620430602
0.183911142911941
0.045977785727985

Jacobi method 20

0.267942582595424
0.071770330381696
0.019138754141750
0.004784686185303

1.0e-08∗

0.113663339851300
0.454653355241863
0.183911142911941
0.280991216666110

Gauss-Seidal method 8

0.267942576785572
0.071770330381696
0.019138754141750
0.004784688535437

1.0e-08∗

0.694648555343846
0.454653355241863
0.183911142911941
0.045977785727985

SOR method 6

0.267942575355385
0.071770332194892
0.019138755288967
0.004784688904958

1.0e-08∗

0.837667218922533
0.273333805589360
0.069189434390160
0.009025772750720

5. Conclusion
We have concluded that the wrong choice of relaxation parameter may lead to poor convergence.
Finding the value of the relaxation parameter is a very complex process for a very large system
of equations. In particular, if coefficient matrix A is symmetric and positive definite, the SOR
method converges more faster for ωopt = 2

1+
p

1−β2
. We have also concluded that, with the help of

some typical examples, the SOR method converges more rapidly as compared to Richardson,
Jacobi and Gauss-Seidel methods by taking a carefully suitable choice of relaxation parameter
ω ∈ (0,2).
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