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1. Introduction
Let Ω be a bounded domain in an n-dimensional Euclidean space Rn with smooth boundary
∂Ω. The eigenvalue problem{

−∆u =λu, in Ω,
u = 0, on ∂Ω

(1.1)

is called the fixed membrane problem. Let 0 < λ1 < λ2 ≤ λ3 ≤ ·· · → +∞ denote the successive
eigenvalues for (1.1), where each eigenvalue is repeated according to its multiplicity. In the case
of n = 2, Payne-Pólya-Weinberger [5] proved

λ2 +λ3

λ1
≤ 6 . (1.2)

Subsequently, in 1964, Brands [2] sharpen (1.2) to
λ2 +λ3

λ1
≤ 5+ λ1

λ2
. (1.3)
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In 1993, for general dimensions n ≥ 2, Ashbaugh and Benguria [1] proved (see the inequality
(6.10) in [1])

λ2 +λ3 +·· ·+λn+1

λ1
≤ n+3+ λ1

λ2
. (1.4)

Recently, the inequality (1.4) has been extended to some Riemannian manifolds, see [6, 3, 4]
and the references therein.

In this note, we consider eigenvalue problem of the following Schrödinger operator{
(−∆+V )u =λu, in Ω,
u = 0, on ∂Ω ,

(1.5)

where V is a continuous bounded function on Ω. Using the method of Brands [2], we study
the eigenvalue problem (1.5) for general dimensions n ≥ 2 and extend the inequality (1.4) as
follows:

Theorem. Let λi be the i-th eigenvalue of the eigenvalue problem (1.5). Then

λ2 +λ3 +·· ·+λn+1

λ1
≤ n+ (M+1)(3ξ+4M+1)

ξ+M
, (1.6)

where M = sup
Ω

|V |/λ1 and ξ=λ2/λ1 .

Remark. If V = 0 in (1.6), from (1.6), it is easy to see that

λ2 +λ3 +·· ·+λn+1

λ1
≤ n+3+ λ1

λ2
,

(1.4) follows. Hence, (1.6) extends the inequality (1.4).

2. Proof of Theorem
Let ui be the orthonormal eigenvalue function with respect to L2 inner product corresponding
to λi , that is,∫

Ω
uiu j = δi j, for any i, j.

We choose rectangular coordinates x̃1, x̃2, . . . , x̃n of the Euclidean space Rn by taking as origin
the center of gravity of Ω with mass-distribution u2

1 such that∫
Ω

x̃iu2
1 = 0, for i = 1,2, · · · ,n. (2.1)

Defining an n×n-matrix B as follows:

B := (bi j)
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where bi j =
∫
Ω x̃iu1u j+1 . Using the orthogonalization of Gram and Schmidt, we know that there

exist an upper triangle matrix R = (Ri j) and an orthogonal matrix Q = (qi j) such that R =QB,
that is,

Ri j =
n∑

k=1
qikbk j =

∫
k

n∑
k=1

qik x̃ku1u j = 0, 2≤ j ≤ i ≤ n. (2.2)

Setting xi =
n∑

j=1
qi j x̃ j . From (2.1) and (2.2), we arrive at

∫
Ω

xiu1u j = 0, for 1≤ j ≤ i ≤ n. (2.3)

Let ϕi = xiu1 . Then ϕi = 0 on ∂Ω and∫
Ω
ϕiu j = 0, for 1≤ j ≤ i ≤ n.

One gets from Rayleigh-Ritz inequality that

λi+1 ≤
∫
Ωϕi(−∆+V )ϕi∫

Ωϕ
2
i

. (2.4)

Note that

(−∆+V )ϕi =λ1xiu1 −2u1,xi ,

where u1,xi = ∂u1/∂xi . It follows that∫
Ω
ϕi(−∆+V )ϕi =

∫
Ω
ϕi(λ1xiu1 −2u1,xi )

=λ1

∫
Ω
ϕ2

i −2
∫
Ω

xiu1u1,xi

=λ1

∫
Ω
ϕ2

i −
∫
Ω

xi(u2
1),xi

=λ1

∫
Ω
ϕ2

i +
∫
Ω

u2
1

=λ1

∫
Ω
ϕ2

i +1 .

(2.5)

(2.5) combining with (2.4) yields

λi+1 ≤λ1 +
(∫
Ω

(xiu1)2
)−1

. (2.6)

By integration by parts, it holds that∫
Ω

uα+1
1 =−

∫
Ω

xi(uα+1
1 ),xi =−(α+1)

∫
Ω

(xiu1)(uα−1
1 u1,xi ).
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For α> 1/2, it follows from the Cauchy-Schwarz inequality that(∫
Ω

uα+1
1

)2
=(α+1)2

(∫
Ω

(xiu1)(uα−1
1 u1,xi )

)2

≤(α+1)2
∫
Ω

(xiu1)2
∫
Ω

(uα−1
1 u1,xi )

2

= (α+1)2

2α−1

∫
Ω

(xiu1)2
∫
Ω

(u2α−1
1 ),xi u1,xi

=−(α+1)2

2α−1

∫
Ω

(xiu1)2
∫
Ω

u2α−1
1 u1,xi xi .

Thus (∫
Ω

(xiu1)2
)−1

≤ −(α+1)2

2α−1

∫
Ωu2α−1

1 u1,xi xi(∫
Ωuα+1

1
)2 . (2.7)

Applying (2.7) to (2.6), one gets

λ2 +λ3 +·· ·+λn+1

λ1
≤n+ (α+1)2

2α−1
A(α) sup

Ω

(
1− V

λ1

)

≤n+ (M+1)
(α+1)2

2α−1
A(α),

(2.8)

where A(α)= ∫
Ωu2α

1 /
(∫
Ωuα+1

1
)2 .

In the following, we will find an upper bound of

(α+1)2

2α−1
A(α). (2.9)

Define

φ= uα1 −u1

∫
Ω

uα+1
1 , for α> 1.

Then we have∫
Ω
φu1 = 0.

This means that

λ2 ≤
∫
Ωφ(−∆+V )φ∫

Ωφ
2 . (2.10)

Note that

α

∫
Ω

uα−1
1 |∇u1|2 =

∫
Ω

uα1 (−∆)u1

=
∫
Ω

(λ1 −V )uα+1
1 ,

(2α−1)
∫
Ω

u2α−2
1 |∇u1|2 =

∫
Ω

u2α−1
1 (−∆)u1

=
∫
Ω

(λ1 −V )u2α
1 ,
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and
(−∆+V )φ=−α(α−1)uα−2

1 |∇u1|2 + (αλ1 −αV +V )uα1 −λ1u1

∫
Ω

uα+1
1 .

Hence, we have∫
Ω
φ(−∆+V )φ= α2

2α−1
λ1

∫
Ω

u2α
1 − (α−1)2

2α−1

∫
Ω

V u2α
1 −λ1

(∫
Ω

uα+1
1

)2

≤
(

α2

2α−1
+ (α−1)2

2α−1
M

)
λ1

∫
Ω

u2α
1 −λ1

(∫
Ω

uα+1
1

)2
.

(2.11)

From (2.10) and (2.11), we arrive at

λ2

λ1
≤

(
α2

2α−1
+ (α−1)2

2α−1
M

)
A(α)−1

A(α)−1
. (2.12)

Again, by using the Cauchy-Schwarz inequality, one gets(∫
Ω

uα+1
1

)2
=

(∫
Ω

uα1 u1

)2
≤

∫
Ω

u2α
1

∫
Ω

u2
1 =

∫
Ω

u2α
1 .

This means that A(α)> 1 for α> 1. If α is restricted to the condition

ξ−
(

α2

2α−1
+ (α−1)2

2α−1
M

)
> 0 ,

that is

1<α< (M+ξ)+√
(M+ξ)(ξ−1)

M+1
. (2.13)

Then (2.12) is equivalent to

A(α)≤ ξ−1

ξ−
(

α2

2α−1
+ (α−1)2

2α−1
M

) , (2.14)

where ξ=λ2/λ1 . Inserting (2.14) into (2.8) yields

λ2 +λ3 +·· ·+λn+1

λ1
≤n+ (M+1)(ξ−1) f (α) , (2.15)

where

f (α)= (α+1)2

(2α−1)ξ− [α2 + (α−1)2M]
.

The minimum of f (α) as a function of α in the range (2.13) is

(M+1)(3ξ+4M+1)
(ξ+M)(ξ−1)
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and this is attained at

α= 2ξ+2M
ξ+2M+1

.

Hence, (2.15) yields

λ2 +λ3 +·· ·+λn+1

λ1
≤n+ (M+1)(ξ−1) f

(
2ξ+2M
ξ+2M+1

)
=n+ (M+1)(3ξ+4M+1)

ξ+M
.

This concludes the proof of theorem.
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