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1. Introduction
There are several algebraic structures which defined with a standard operator, for instance,
BCK-algebra [10] and BCI-algebra. Prabpayak and Leerawat [6, 7] introduced the algebraic
structure KU-algebra and studied some of its properties. Vorster [9] considered interior operators
in category theory. This leads to fundamental applications in category theory and topology [8],
[2] and [1].

In this paper, the notation of an interior KU-algebra is introduced. A number of questions
regarding this notation with the composition are investigated. Moreover, a relation between
two interior KU-algebras is introduced and provided a connection between this relation and
composition. Also, some properties of interior KU-algebras are presented. Then, an interior
positive implicative KU-algebra is defined and proved several related results. After that, the
concept of interior ideals in KU-algebras and some of its properties are presented.

http://doi.org/10.26713/cma.v14i1.1737
https://orcid.org/0000-0001-7998-3975


472 On the Structure of Interior KU-algebras and KU-ideals: A. Almuhaimeed

2. Preliminaries
In this section, some definitions and results are introduced that will be used in later sections.

Recall that a nonempty set X with a binary operation ∗ is called a KU-algebra if, for
r, s, t ∈ X , the following conditions hold:
(KU1) (r∗ s)∗ [(s∗ t)∗ (r∗ t)]= 0.

(KU2) r∗0= 0.

(KU3) 0∗ r = r.

(KU4) r∗ s = 0= s∗ r implies that r = s.
A relation ≤ defined on X as follows:

r ≤ s if and only if s∗ r = 0 .

Thus, the above conditions can be rewritten as follows:
(KU1′) (s∗ t)∗ (r∗ t)≤ r∗ s.

(KU2′) 0≤ r.

(KU3′) 0∗ r = r.

(KU4′) r ≤ s, s ≤ r implies that r = s.

Any KU-algebra satisfies the following properties:

Theorem 1 ([3]). If X is a KU-algebra, then, for r, s, t ∈ X , the following axioms hold:
(i) if r ≤ s, then s∗ t ≤ r∗ t.

(ii) r∗ (s∗ t)= s∗ (r∗ t).

(iii) ((s∗ r)∗ r)≤ s.

(iv) ((s∗ r)∗ r)∗ r = s∗ r.

Definition 1 ([6,7]). A nonempty subset M of a KU-algebra X is called a KU-ideal of X if it
satisfies the following conditions:

(i) 0 ∈ M.

(ii) s∗ t ∈ M, s ∈ M implies that t ∈ M, for all r, s, t ∈ M.

3. Interior KU-algebras
In this section, the main concept in this paper and some related results are introduced.

Definition 2. Let X be a KU-algebra and I : X → X be a map. The pair (X , I) is called an
interior KU-algebra if it satisfies the following conditions:

(i) I(r)≤ r, for all r ∈ X .

(ii) I2(r)= I(r), for all r ∈ X .

(iii) r ≤ s implies that I(r)≤ I(s), for all r, s ∈ X .
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A straightforward example of an interior KU-algebra is the identity map. We present the
following examples:

Example 1. (i) Consider the KU-algebra (X ,∗) which presented by Table 1:

Table 1

∗ 0 1 2 3

0 0 1 2 3

1 0 0 0 2

2 0 2 0 1

3 0 0 0 0

Define the map I1 : X → X by

I1(0)= 0, I1(1)= 2, I1(2)= 2, I1(3)= 3.

Then (X , I1) is an interior KU-algebra.

(ii) Consider the KU-algebra (X ,∗) presented by Table 1. Define the map I2 : X → X by

I2(0)= 0, I2(1)= 1, I2(2)= 1, I2(3)= 3.

Then (X , I2) is not an interior KU-algebra as I2(2)≰ 2.

Consider a KU-algebra X . Let I(X ) be the set of all interior KU-algebras. Define an operation
as following:

(X , I j)⋇ (X , Ik)= (X , I j ⊛ Ik), for all (X , I j), (X , Ik) ∈ I(X ),

such that (I j ⊛ Ik)(r)= I j(r)∗ Ik(r) for all r ∈ X . Note that I0(r)= 0 for all r ∈ X .

We are able to prove the following theorem:

Theorem 2. Let X be a KU-algebra. Then (I(X ),⋇, (X , I0)) is a KU-algebra.

Proof. Straightforward of the above definition.

Now, a natural question appears: Is the composition of two interior KU-algebra an interior
KU-algebra? However, the statement need not be true and we provide a counterexample:

Example 2. Let X be the KU-algebra described in Example 1. Consider the two interior
KU-algebras I1, I2 defined as following:

I1(0)= 0, I1(1)= 2, I1(2)= 2, I1(3)= 3.

I2(0)= 0, I2(1)= 1, I2(2)= 0, I2(3)= 3.

Then I1 ◦ I2 is not an interior KU-algebra as (I2 ◦ I1)2(3)= 0 ̸= (I2 ◦ I1)(3)= 2.
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Consider the interior KU-algebra I1 described above. If i denotes the identity map, then

Table 2

∗ 0 1 2 3

I1 ◦ i 0 2 2 3

i ◦ I1 0 2 2 3

Note that the composition of two interior KU-algebra need not be commutative in general.
For instance, see Example 2.

In the case that the composition is commutative, we can prove the following theorem:

Theorem 3. Let (X , I j) and (X , Ik) be two interior KU-algebras in which I j ◦ Ik = Ik ◦ I j . Then
(X , I j ◦ Ik) is an interior KU-algebra.

Proof. (i) Since I j, Ik are interior KU-algebras, we obtain

I j(r)≤ r and Ik(r)≤ r, for all r ∈ X .

Thus, we have

(I j ◦ Ik)(r)= I j(Ik(r))≤ Ik(r)≤ r.

(ii) By hypothesis

I j ◦ Ik = Ik ◦ I j, I2
j (r)= I j(r), I2

k(r)= Ik(r).

This implies that

(I j ◦ Ik)2(r)= ((I j ◦ Ik)◦ (I j ◦ Ik))(r)

= (I j ◦ (Ik ◦ I j)◦ Ik)(r)

= (I j ◦ (I j ◦ Ik)◦ Ik)(r)

= ((I j ◦ I j)◦ (Ik ◦ Ik))(r)

= (I2
j ◦ I2

k)(r)

= I2
j (I

2
k(r))

= I2
j (Ik(r))

= I j(Ik(r))

= ((I j ◦ Ik)(r).

(iii) If r, s ∈ X such that r ≤ s, then

(I j ◦ Ik)(r)= I j(Ik(r))

≤ I j(Ik(s))

≤ (I j ◦ Ik)(s).

Hence (X , I j ◦ Ik) is an interior KU-algebra.
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Now, we define a relation on interior KU-algebras as follows:

Consider two interior KU-algebras (X , I j) and (X , Ik). Write I j ⋖ Ik, if I j(r) ≤ Ik(r) for all
r ∈ X . Now, prove the following theorem:

Theorem 4. Let (X , I j) and (X , Ik) be two interior KU-algebras. Then

I j ⋖ Ik if and only if I j ◦ Ik = I j.

Proof. Suppose that I j ⋖ Ik . Then, by definition, I j(r)≤ Ik(r) for all r ∈ X that I j is an interior
KU-algebra, it implies that

I j(r)= I2
j (r)

= I j(I j(r))

≤ I j(Ik(r))

= (I j ◦ Ik)(r).

We also have

(I j ◦ Ik)(r)= I j(Ik(r))

≤ Ik(Ik(r))

= I2
k(r)

= Ik(r)

≤ r .

Thus

(I j ◦ Ik)(r)= I j(Ik(r))

= I2
j (Ik(r))

= I j(I j(I2
k(r)))

≤ Ik(r) .

Therefore,

I j ◦ Ik = I j .

Now, assume that I j ◦ Ik = I j . It implies that

I j(r)= (I j ◦ Ik)(r)

= I j(Ik(r))

≤ Ik(r)

and so I j ⋖ Ik as required.

For a KU-algebra X , we introduce the following definition:

Definition 3. A KU-algebra X is called a bounded KU-algebra if there exists an element 1 ∈ X
in which r ≤ 1 for all r ∈ X . We can write r∗1=¬r.
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Now, we are able to present some properties of interior KU-algebras.

Theorem 5. Let X be a KU-algebra, (X , I) an interior KU-algebra and r, s, t ∈ X . Then
(i) r∗ I(s)≤ I(r)∗ I(s).

(ii) I(r∗ s)≤ I(r)∗ s.

(iii) I(0)= 0.

(iv) (r∗ s)∗ I(t)≤ I(r∗ s)∗ I(t).

(v) (I(r)∗ s)∗ I(t)≤ (r∗ s)∗ I(t).

(vi) I(¬r)≤¬I(r).

(vii) I(¬r∗¬s)≤ s∗ r.

Proof. (i) By Theorem 1.

(ii) I(r∗ s)≤ r∗ s ≤ I(r)∗ s.

(iii) Since I(0)≤ 0, then we obtain

0∗ I(0)= 0= I(0)∗0 .

Thus by (KU4), I(0)= 0.

(iv) Using by Theorem 1.

(v) Since I(r)≤ r, by Theorem 1 we have, r∗ s ≤ I(r)∗ s. Hence

(I(r)∗ s)∗ I(t)≤ (r∗ s)∗ I(t)

by Theorem 1.

(vi) By definition, I(¬r)= I(r∗1). Then by the second property, we obtain

I(r∗1)≤ I(r)∗1=¬I(r).

Hence I(¬r)≤¬I(r).

(vii) I(¬r∗¬s)≤¬r∗¬s = (r∗1)∗ (s∗1)≤ s∗ r.

We define a positive implicative KU-algebra as follows:

Definition 4 ([4,5]). A KU-algebra X is called positive implicative if the following condition
satisfied:

(t∗ r)∗ (t∗ s)= t∗ (r∗ s), for all r, s, t ∈ X .

Example 3. Consider the KU-algebra (X ,∗) presented in Example 1. Let I be the interior
KU-algebra defined as follows:

I3(0)= I3(1)= I3(2)= 0, I1(3)= 3.

Then, it clear that I3 is a positive implicative interior KU-algebra.

Note that if (X , I) is an interior positive implicative KU-algebra, then X need not be positive
implicative. As an example, consider I3 in Example 3. Then I3 is positive implicative while X is
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not as

(2∗1)∗ (2∗3)= 2 ̸= 0= 2∗ (1∗3).

Remark 1. Let X be a KU-algebra.
(i) It is not true in general that for r, s, t ∈ X :

I((t∗ r)∗ (t∗ s))= I(t∗ (r∗ s)).

For instance, check the interior KU-algebra I1 in Example 1. We have

I1((2∗1)∗ (2∗3)) ̸= I(2∗ (1∗3)).

(ii) It is not true in general that for r, s ∈ X :

I(r∗ s)= I(r∗ (r∗ s)).

In Example 1, we obtain

I(2∗1)= 2 ̸= 0= I(2∗ (2∗1)).

We provide now a condition which makes the above statements true.

Theorem 6. Let (X , I) be a positive implicative KU-algebra. Then for r, s, t ∈ X , we have

I((t∗ r)∗ (t∗ s))= I(t∗ (r∗ s))

and

I(r∗ s)= I(r∗ (r∗ s)).

Proof. Since (X , I) is a positive implicative KU-algebra, the result hold.

4. Interior Ideals
This section begins with the following definition:

Definition 5. Let (X , I) be an interior KU-algebra. Then a subset M of X is called an interior
ideal in (X , I) if M is an ideal of X that satisfies:

I(r) ∈ M ⇒ r ∈ M, for all r ∈ X .

Example 4. Consider the KU-algebra (X ,∗) which presented by Table 3:

Table 3

∗ 0 1 2 3 4

0 0 1 2 3 4

1 0 0 1 3 4

2 0 0 0 3 4

3 0 0 0 0 4

4 0 0 0 0 0
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Define the map I : X → X by

I(0)= I(1)= I(2)= I(3)= 0, I(4)= 4.

Then (X , I) is an interior KU-algebra. Let M = {0,1,2,3}. Then M is an ideal of X . It is clear
that M is an interior ideal in (X , I). However, the zero ideal is not an interior ideal.

Theorem 7. The intersection of interior ideals in an interior KU-algebra is an interior ideal.

Proof. The intersection of interior ideals satisfies the condition in Definition 5.

Note that the union of interior ideals in an interior KU-algebra need not be an interior ideal.
This is clear from the fact that the union of ideals need not be an ideal.

Theorem 8. Let (X , I) be an interior KU-algebra. If M is a subset of X in which

0 ∈ M,

r∗ (r∗ s) ∈ Mt ⇒ r∗ s ∈ M, for all r, s ∈ X , for all t ∈ M,

I(r) ∈ M ⇒ r ∈ M, for all r ∈ X ,

then M is a positive implicative interior ideal in (X , I).

Proof. Let r, s, t ∈ X such that s∗ t ∈ M and s ∈ M. Then

t = 0∗ (0∗ t) ∈ Mt.

By hypothesis, t = 0∗ t ∈ M. Thus M is an interior ideal in (X , I). In order to see that M is
positive implicative, we may assume that t∗ (r∗ s) ∈ M and t∗ r ∈ M. Then, by Theorem 1, we
have

t∗ (r∗ s)= r∗ (t∗ s) ∈ M.

Note that 0∗ (0∗ r) ∈ Mt implies that r = 0∗ r ∈ M. As M is an ideal and r ∈ M, we obtain
t∗ s ∈ M. Therefore, M is a positive implicative interior ideal in (X , I).
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