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The Rational Distance Problem for

Isosceles Triangles with one Rational Side

Roy Barbara and Antoine Karam

Abstract For a triangle ∆, let (P) denote the problem of the existence of points

in the plane of ∆, that are at rational distance to the 3 vertices of ∆. Answer to

(P) is known to be positive in the following situation:

∆ has one rational side and the square of all sides are rational.

Further, the set of solution-points is dense in the plane of ∆ (see [3]).

The reader can convince himself that the rationality of one side is a reasonable

minimum condition to set out, otherwise problem (P) would stay somewhat hazy

and scattered. Now, even with the assumption of one rational side, problem (P)

stays hard. In this note, we restrict our attention to isosceles triangles, and provide

a complete description of such triangles for which (P) has a positive answer.

1. The Results

An isosceles triangle with one rational side has one of the forms (λ,θ ,λ) or

(θ , 2λ,θ) with λ ∈ Q and θ ∈ R. Since problem (P) is invariant by a rational

re-scaling, it suffices to focus on triangles of one of the forms (1,θ , 1) or (θ , 2,θ).∗

Our main results are:

Theorem 1.1. Let ∆ = (1,θ , 1) be an isosceles triangle with θ ∈ R, 0 ≤ θ ≤ 2.

Then, answer to (P) is positive if and only if θ 2 has the form

θ 2 = 2
�

1+ pq±
p

(1− p2)(1− q2)
�

for some rational numbers p, q with −1≤ p, q ≤+1.

Theorem 1.2. Let ∆ = (θ , 2,θ) be an isosceles triangle with θ ∈ R, θ ≥ 1. Then,

answer to (P) is positive if and only if the main altitude Φ =
p

θ 2 − 1 has the form

Φ =±
p

(p2 − 1)(1− q2)±
p

r2 − p2q2

Key words and phrases. Rational Distance Problem; Isosceles Triangles.
∗Note that for triangles (1,θ , 1), the apex will always be disregarded and problem (P) in this case rather

asks for points other than the apex.
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for some rational numbers p, q, r with p ≥ 1 ≥ q ≥ 0, r ≥ pq, and where the right

member is nonnegative.

Regarding either triangles (1,θ , 1) or triangles (θ , 2,θ), we say that θ is

“suitable” if answer to (P) is positive for the triangle (1,θ , 1), respectively (θ , 2,θ).

Here are the first properties or consequences of Theorems 1.1 and 1.2, that will

be enlightened in Section 4.

(1) The suitable real numbers θ are algebraic numbers of degree at most 4.

(2) Regarding triangles (1,θ , 1), an effective procedure allows to deciding

whether a given algebraic real number (of degree ≤ 4) is suitable or not.

(3) Given a suitable θ , an effective procedure allows to construct one

(possibly more) solution-point to (P).

(4) In contrast with the result in [3], when (P) has a positive answer, the set of

solution-points is not in general dense in the plane of ∆. More precisely,

when θ 2 is irrational, the solution-points lie all on the union of two lines.

2. Proof of Theorem 1

Properties Q1 and Q2 are easily checked.

(Q1) Set Z = {z ∈ R, z = pq ±
p

(1− p2)(1− q2), p,q ∈ Q, −1 ≤ p,q ≤ +1}.
Then,

(i) For z ∈ Z we have −1≤ z ≤ +1.

(ii) Z is closed by opposite [z ∈ Z⇒−z ∈ Z].
(Q2) Let ∆ = ABC be a triangle with AB = AC = 1. Let M be a point in the plane

of ∆, M 6= A. Set R = MA, S = MB, T = MC . Define u = 1

2
(R2 − S2 + 1) and

v = 1

2
(R2 − T 2 + 1). Then, u2 ≤ R2 and v2 ≤ R2.

We also need the following three lemmas:

Lemma 2.1. Let∆= ABC be a triangle with AB = AC = 1 and BC = θ (0≤ θ ≤ 2).

Suppose that θ 2 ∈ Q. Then, there are (infinitely many) points M in the plane of ∆,

M 6= A, such that MA, MB, and MC are all rational numbers.

Proof. Set w = ∠BAC , a = cos w, b = sin w. By the law of cosines, a = 1− θ 2

2
.

Since θ 2 ∈ Q, then a ∈Q. For ψ ∈ Q−{a,±1}, set x =
ψ2−1

2(ψ−a)
. Then, x ∈Q−{0}.

Let M be on the axis
−→
AB with AM = x . As x 6= 0, then M 6= A. Since MA= |x | and

MB = |x − 1|, then, MA, MB ∈Q.

Now, using Pythagoras, we may write:

MC
2
= (x − a)2 + b2 = x2 − 2ax + a2 + b2 = x2 − 2ax + 1

=
ψ4− 4aψ3 + 4a2ψ2+ 2ψ2 − 4aψ+ 1

4(ψ− a)2
=

�

ψ2 − 2aψ+ 1

2(ψ− a)

�2

.

Hence, MC ∈ Q. �
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Lemma 2.2. Let p,q ∈ Q with p + q 6= 0 and |p − q| 6= 2. Then, there are rational

numbers R,S, T, R 6= 0, such that

R2 − S2 + 1

2R
= p and

R2 − T 2 + 1

2R
= q .

Proof. The following values will do:

R=
4− (p− q)2

4(p+ q)
,

S =
4+ 2pq− 3p2 + q2

4(p+ q)
,

T =
4+ 2pq+ p2 − 3q2

4(p+ q)
. �

Lemma 2.3. Let∆= ABC be a non-degenerated isosceles triangle with AB = AC = 1

and w = ∠BAC, 0< w < π. Set a = cos w.

Then, the following statements are equivalent:

(i) There is a point M in the plane of ∆, M 6= A, such that MA, MB, MC are all

rational numbers.

(ii) There are rational numbers R, S, T , R 6= 0, such that, if u = R2−S2+1

2
and

v = R2−T 2+1

2
, we have

R2a2 + u2 + v2 = R2 + 2auv . (1)

Proof. Set b = sin w > 0. Consider a x-y system such that A(0,0), B(1,0), and

C(a, b).

(i)⇒(ii): Let M(u,ρ) be a solution-point to (P), M 6= A. Set R = MA, S = MB,

T = MC . Then, R,S, T ∈Q, R> 0. By Pythagoras we may write:

u2 +ρ2 = R2,

(u− 1)2 +ρ2 = S2,

(u− a)2 + (ρ− b)2 = T 2 .

From the first two relations we get 2u = R2 − S2 + 1. Set also 2v = R2 − T 2 + 1.

With u2+ρ2 = R2, a2+ b2 = 1, the third equation yields R2+1−2ua−2ρb = T 2.

Hence, 2ua+ 2ρb = 2v, so ρb = v − ua. Therefore, ρ2 b2 = (v− ua)2, that is,

(R2 − u2)(1− a2) = (v − ua)2.

Rearranging, we get (1).

(ii)⇒(i): Suppose (1) satisfied with some R,S, T ∈ Q, R 6= 0, and with u =
(R2−S2+1)

2
, v =

(R2−T 2+1)

2
. Rewrite (1) as (R2− u2)(1− a2) = (v− ua)2, that is,

(R2 − u2)b2 = (v− ua)2. (2)
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Since b2 > 0 and the right member in (2) is nonnegative, we get R2−u2 ≥ 0. Define

ρ0 =
p

R2 − u2 ∈ R+. (2) becomes (ρ0 b)2 = (v − ua)2, hence ±ρ0 b = v − ua. Let

ρ ∈ {±ρ0} such that ρb = v − ua. We then have:

u2 +ρ2 = R2 , (3)

ρb = v − ua . (4)

Consider the point M(u,ρ). Since MA2 = R2 > 0, then, M 6= A and MA ∈ Q.

Since MB2 = (u − 1)2 + ρ2 = R2 + 1 − 2u = S2, then, MB ∈ Q. Finally, from

MC2 = (u− a)2 + (ρ − b)2 = R2 + 1− 2ua− 2ρb = R2 + 1− 2ua− 2(v − ua) =

R2 + 1− 2v = T 2, we get MC ∈ Q. �

Note that a related characterization is to appear in [2].

We now are ready to prove Theorem 1:

Let ∆= ABC be a triangle with AB = AC = 1 and BC = θ , 0≤ θ ≤ 2.

Set w = ∠BAC , a = cos w, b = sin w.

If ∆ is degenerated (θ = 0 or 2), as quickly seen, both parts (i) and (ii) hold.

From now on, we assume ∆ non-degenerated. Thus, 0 < θ < 2, 0 < w < π,

and b = sin w > 0.

(i)⇒(ii): Assume that (P) has a positive answer. By Lemma 2.3, there are R,S, T ∈
Q, R 6= 0, such that relation (1) holds with u = R2−S2+1

2
and v = R2−T 2+1

2
.

It follows that a is a zero of the trinomial in t

R2 t2 − 2uvt + (u2 + v2 − R2) = 0 .

Hence,

a =

�

u

R

��

v

R

�

±

È

�

1−
�

u

R

�2��

1−
�

v

R

�2�

.

Set p = ( u

R
) and q = ( v

R
). Then p,q ∈ Q. According to (Q2), u2 ≤ R2, v2 ≤ R2, that

is, p2,q2 ≤ 1, where a = cos w = pq ±
p

(1− p2)(1− q2). By (Q1), −a has the

same form than a. For convenience, we rather put

−a = − cos w = pq±
p

(1− p2)(1− q2)

By the law of cosines, θ 2 = 2(1− a). Hence,

θ 2 = 2
�

1+ pq±
p

(1− p2)(1− q2)
�

where p,q ∈Q, −1≤ p, q ≤+1.

(ii)⇒(i): Suppose that θ 2 = 2
�

1+ pq ±
p

(1− p2)(1− q2)
�

for some p,q ∈ Q,

−1 ≤ p,q ≤ +1. Since θ 2 = 2(1− a), we get −a = pq ±
p

(1− p2)(1− q2). By

(Q1), −(−a) has the same form than −a. For convenience, we rather set:

a = cos w = pq±
p

(1− p2)(1− q2) (5)
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where p,q ∈Q, −1≤ p, q ≤+1. Therefore (a− pq)2 = (1− p2)(1−q2) and hence

a2 + p2 + q2 = 1+ 2apq . (6)

• If p+ q = 0, then p2 = q2, so a = −p2±
p

(1− p2)2 =−p2 ± (1− p2).

Hence a = cos w ∈Q. Hence θ 2 = 2(1− a) ∈Q. Lemma 2.1 gives the result.

• We assume now p+ q 6= 0.

Claim |p− q| 6= 2: Otherwise, if |p− q|= 2 and since p,q ∈ [−1,+1], we would

get {p,q}= {±1}, and hence by (5),

a = cos w =−1,

that is w = π, a contradiction.

Now, we apply Lemma 2.2. There are R,S, T ∈Q, R 6= 0, such that:

p =
R2 − S2+ 1

2R
and q =

R2 − T 2 + 1

2R

Set u = 1

2
(R2−S2+1) and v = 1

2
(R2−T 2+1). We have p = u

R
and q = v

R
. Replacing

p and q respectively by u

R
and v

R
in (6) yields

R2a2 + u2 + v2 = R2 + 2auv

which is relation (1). Lemma 2.3 achieves the proof. �

3. Proof of Theorem 2

We need two lemmas:

Lemma 3.1. Let ∆ = ABC be a triangle with AB = AC = θ and BC = 2 (θ ∈ R,

θ ≥ 1). Suppose that θ 2 ∈ Q. Then,

(i) There are (infinitely many) points in the plane of ∆, that are at rational

distance to the 3 vertices of ∆.

(ii) The main altitude Φ =
p

θ 2 − 1 can be put in the form

Φ =
p

(p2− 1)(1− q2) +
p

r2 − p2q2,

with p,q, r ∈Q, p ≥ 1≥ q ≥ 0, r ≥ pq.

Proof. Let O be the midpoint of BC .

Case 1. T is degenerated (θ = 1,Φ = 0): Both parts (i) and (ii) are obvious.

Case 2. T is non-degenerated (θ > 1,Φ > 0): Since Φ2 = θ 2 − 1 ∈ Q and Φ > 0,

set φ2 = f , f ∈ Q, f > 0. Select a positive integer N such that N f ≥ 2

(infinite choice). For (i), let M be one of the two points on BC such that

MO = N f − 1

4N
. Then, MB, MC ∈ Q and MA2 = MO2+OA2 = MO2+Φ2 =

(N f − 1

4N
)2+ f = (N f + 1

4N
)2, so MA∈ Q. For (ii), the values p = N f − 1

4N
,

q = 1 and r = N f + 1

4N
will do. �
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Lemma 3.2. Let e ∈Q and α,β ∈Q−{0}. Suppose that
�

e

β
−β
�

=

�

e

α
−α
�

+ 4 . (7)

Then, for some p,q ∈Q, p 6=±1, q 6= 1 (if e 6= 0, q 6=±1) such that

α+ β =±2p(1− q) ,

αβ = (p2 − 1)(1− q)2 ,

e = (p2 − 1)(1− q2) .

Proof. (7) clearly shows that α 6= β . Set γ = αβ and δ = α − β . Then,

γ,δ ∈ Q − {0}. From (7) we get e(
α−β
αβ
) = 4 − (α − β). That is, e δ

γ
= 4 − δ.

Hence,

e = γ

�

4−δ
δ

�

. (8)

Now, α and −β are the roots of t2 − δt − γ = 0. Therefore, the discriminant must

be a rational square, say δ2 + 4γ= ε2, ε ∈ Q.

We have

γ =
ε2 −δ2

4
(9)

α and −β are in some order δ+ε

2
and δ−ε

2
. In all cases, we have

α+ β =±ε (10)

Set p = ε

δ
and q = 1− δ

2
. Then:

δ = 2(1− q) (11)

and

ε = 2p(1− q) (12)

From (11) we easily get

4− δ
δ
=

1+ q

1− q
(13)

Finally,

• From (10) and (12) we obtain α+β = ±2p(1− q).

• Using (9), (12), and (11), we may write

αβ = γ=
ε2 − δ2

4
=

4p2(1− q)2− 4(1− q)2

4
= (p2 − 1)(1− q)2.

• From (8), this latter, and (13), we may write

e = γ

�

4−δ
δ

�

= (p2 − 1)(1− q)2
1+ q

1− q
= (p2− 1)(1− q2). �
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We now are ready to prove Theorem 2:

Let ∆ = ABC be a triangle with AB = AC = θ and BC = 2 (θ ∈ R, θ ≥ 1). Let

Φ =
p

θ 2 − 1 be the main altitude. Let O be the midpoint of BC . Consider the x-y

axes with origin O, where
−→
OC defines the x-axis and

−→
OA the y-axis. We have the

coordinates:

A(0,Φ), B(−1,0), and C(1,0).

(ii)⇒(i): Suppose that Φ = µ+ ν , µ = ±
p

(p2 − 1)(1− q2), ν = ±
p

r2 − p2q2, as

in (ii).

Consider any of the points M(±pq,µ). We may write

MA2 = p2q2+ (Φ− µ)2 = p2q2+ ν2 = r2,

MB2 = (±pq+ 1)2 + µ2 = p2q2± 2pq+ 1+ (p2 − 1)(1− q2)

= p2 ± 2pq+ q2 = (p± q)2,

and similarly

MC2 = (p∓ q)2.

It follows that MA, MB and MC are all rational distances.

(i)⇒(ii): Suppose that some point M(x0, y0) lying in the plane of ∆ satisfies

MB = R ∈ Q, MC = S ∈ Q, and MA= r ∈ Q. Set y2
0
= e and (Φ− y0)

2 = f . The

pythagorean relations are

(x0 + 1)2 + e = R2 , (14)

(x0 − 1)2 + e = S2 , (15)

x2
0
+ f = r2 . (16)

Subtracting (14) and (15) gives 4x0 = R2 − S2. Hence, x0 ∈ Q. From x0 ∈ Q, (14)

and (16), we get e, f ∈ Q. Hence, y0 = ±
p

e, Φ− y0 = ±
p

f , with e, f ∈ Q+. In

particular,

Φ = y0 ±
p

f =±
p

e±
p

f . (17)

• If e = 0, then Φ2 = f , so θ 2 = Φ2− 1= f − 1 ∈Q. In this case, Lemma 3.1 gives

the result.

• From now on, we assume that e > 0.

Rewrite (14) and (15) as:

e = (R− (x0 + 1))(R+ (x0 + 1)), (18)

e = (S− (x0− 1))(S+ (x0− 1)). (19)

Set α = S − (x0 − 1) and β = R− (x0+ 1). Clearly, as e 6= 0, α,β ∈Q−{0}.
Subtracting R+ (x0+ 1) = e

β
and R− (x0 + 1) = β yields 2x0 + 2= e

β
− β .

Similarly, S+ (x0 − 1) = e

α
and S− (x0− 1) = α yield 2x0 − 2= e

α
−α.
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Summing and subtracting these two relations provide

4x0 = (α+ β)

�

e−αβ
αβ

�

, (20)

�

e

β
−β
�

=

�

e

α
−α
�

+ 4 . (21)

From (21) and Lemma 3.2, we deduce the existence of p,q ∈ Q, p,q 6= ±1, such

that

α+ β =±2p(1− q),

αβ = (p2 − 1)(1− q)2,

e = (p2 − 1)(1− q2).

Using this and (20), we may write:

4x0 =±2p(1− q)

�

(p2− 1)(1− q2)− (p2 − 1)(1− q)2

(p2 − 1)(1− q)2

�

= ±4pq .

Hence, x0 =±pq.

Now, by (16), f = r2− x2
0
= r2 − p2q2, and consequently

Φ =±
p

e±
p

f = ±
p

(p2 − 1)(1− q2)±
p

r2 − p2q2 .

Finally and without loss of generality, in such expression of Φ, we may assume

that p, q, r are nonnegative. From f ≥ 0, we get r2 ≥ p2q2, so r ≥ pq. From

e = (p2 − 1)(1− q2) > 0, we see that (p2 − 1) and (q2 − 1) have opposite signs.

Up to a permutation of p and q, we always may assume that p2 − 1 > 0, hence

p2 > 1> q2, so p > 1> q. �

4. First Consequences

• Note that in both Theorems 1.1 and 1.2, a suitable θ satisfies θ 2 = µ ± pν ,

µ,ν ∈ Q, ν ≥ 0. Hence θ must be an algebraic number of degree 1, 2, or 4.

In particular:

◦ If θ is transcendental or has algebraic degree 3 or ≥ 5, θ is not suitable.

◦ If θ has algebraic degree 4, whence θ 2 has also degree 4

(ex. θ = 1

4
(1+
p

3+
p

5)), then θ is not suitable.

◦ If θ 2 ∈Q, then θ is always suitable.

We focus now on the class of algebraic numbers θ of degree 2 or 4 satisfying

θ 2 = a±
p

b, a, b ∈Q, b > 0,
p

b /∈Q .

Theorems 1.1 and 1.2 give a satisfactory answer. Moreover, one may ask whether

a given real number in this class can be recognized as suitable or not by

an effective procedure? At least regarding triangles (1,θ , 1), we answer now

positively:
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• Let θ ∈ R, 0< θ < 2, be given, where θ 2 = a±
p

b, a, b ∈Q, b > 0,
p

b /∈Q.

In field theory one shows that if θ 2 = c ±
p

d, c, d ∈ Q, d ≥ 0, then, c = a

and d = b. Therefore, assuming that θ 2 = (2+ 2pq)±
p

4(1− p2)(1− q2) as in

Theorem 1.1 would imply 2+ 2pq = a and 4(1− p2)(1− q2) = b, that would

lead to p2q2 =
(a−2)2

4
and p2 + q2 =

(a−2)2+4−b

4
. The algorithm is then: Find the

roots t1 and t2 of

f (t) = t2 −
�

(a− 2)2 + 4− b

4

�

t +
(a− 2)2

4
= 0 .

If t1, t2 lie in Q ∩ [0,1] and if t1 and t2 are both rational squares, then θ is

suitable, otherwise θ is not.

• There is an effective procedure to finding solution-points when θ is suitable.

Regarding triangles (1,θ , 1), such algorithm can be extrapolated from

Lemmas 2.1, 2.2, 2.3, Theorem 1.1, and their proofs. Regarding triangles

(θ , 2,θ), this is immediate: If Φ =
p

θ 2 − 1 = ε
p

(p2 − 1)(1− q2) +

ε′
p

r2 − p2q2, ε,ε′ ∈ {±1}, as in Theorem 1.2, solution-points are

M
�

± pq,ε
p

(p2 − 1)(1− q2)
�

.

• Finally,we show that the set of solution-points is not in general dense in the plane

of the triangle. More precisely we prove the following when θ 2 is irrational:

◦ If ∆ = (θ , 2,θ), all solution-points lie on the union of 2 lines that are

parallel to the basis of ∆.

◦ If ∆ = (1,θ , 1), all solution-points lie on the union of 2 concurrent lines at

the apex, that are symmetric through the main altitude.

Let ∆= (θ , 2,θ), θ > 1, where Φ =
p

θ 2 − 1= ε
p

a+ε′
p

b, ε,ε′ ∈ {±1}, a, b ∈
Q, a, b > 0. We assume that, either

p
a and

p
b are non-degenerated and non-

associated radicals (
p

ab /∈ Q), or, that exactly one of
p

a,
p

b is degenerated.

This (most frequent) situation corresponds precisely to the fact that θ 2 is

irrational. In field theory, one then proves the following: If Φ = η
p

c + η′
p

d,

η′η′ ∈ {±1}, c, d ∈ Q, c, d ≥ 0, then we must have (c, d,η,η′) = (a, b,ε,ε′)

or (b, a,ε′,ε). In particular, {ηpc,η′
p

d} = {εpa,ε′
p

b}. Now suppose that

θ is suitable, that is, Φ =
p

θ 2 − 1 = η
p

(p2 − 1)(1− q2) + η′
p

r2 − p2q2,

η,η′ ∈ {±1}, as in Theorem 1.2. By the above property, we must have

η
p

(p2 − 1)(1− q2) ∈ {ε
p

a,ε′
p

b } .

By the proof of Theorem 1.2, any solution-point M(x0, y0) satisfies

x0 =±pq and y0 = η
p

(p2 − 1)(1− q2) .

Hence y0 ∈ {ε
p

a,ε′
p

b}. Therefore, all solution-points lie on the union of the 2

lines:

y = ε
p

a, y = ε′
p

b.
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Let∆= (1,θ , 1), 0< θ < 2, with apex angle ω, a = cosω, and axis of symmetry

Γ. Suppose that θ is suitable whereas θ 2 is irrational. Denote by Σ the set

of solution-points. According to Theorem 1.1, a = p0q0 ±
p

(1− p2
0)(1− q2

0),

p0,q0 ∈Q∩[−1,1], where the radical is non-degenerated as θ 2 = 2(1−a) /∈Q.

Let M(u,ρ) ∈ Σ. Set R = MA, S = MB, T = MC , R,S, T ∈ Q, R > 0.

By the proofs of Lemma 2.3 and Theorem 1.1 (parts (i)⇒(ii)), we know that

u = 1

2
(R2 − S2 + 1) and that, with v = 1

2
(R2 − T 2 + 1), p = u

R
, and q = v

R
,

we have a = pq ±
p

(1− p2)(1− q2). Consequently, pq±
p

(1− p2)(1− q2) =

p0q0±
p

(1− p2
0)(1− q2

0). Since the latter radical is non-degenerated, one proves

in field theory that pq = p0q0 and (1− p2)(1−q2) = (1− p2
0
)(1−q2

0
), that yields

pq = p0q0 and p2 + q2 = p2
0
+ q2

0
. It is then elementary to see that

p ∈ {±p0,±q0}

Case 1 (p0q0 = 0). p0 = q0 = 0 is impossible since
p

(1− p2
0)(1− q2

0) /∈ Q.

Without loss of generality, assume p0 6= 0 and q0 = 0. Then, p ∈ {0,±p0}.
If p = 0, then u = pR = 0, so the point M(u,ρ) = M(0,ρ) lies on the

y-axis, say L0.

If p = ±p0, the ratios ±
p

1−p2

p
can only take 2 values k1 =

p
1−p2

0

p0

and

k2 = −
p

1−p2
0

p0

. From u2 + ρ2 = R2 and u = pR, we get ρ2 = R2(1− p2),

hence ρ = ±R
p

1− p2, and hence
ρ

u
=
±R
p

1−p2

pR
= ±
p

1−p2

p
∈ {k1, k2}.

It follows that M lies on the union of the two lines L1 : y = k1 x

and L2 : y = k2 x . The reader can check that one (and only one) line,

say L ∈ {L1, L2} is the reflexion of L0 through Γ. Since Σ is closed by

symmetry through Γ, we conclude that Σ ⊆ L0 ⊔ L.

Case 2 (p0q0 6= 0). Since p ∈ {±p0,±q0}, the ratios ±
p

1−p2

p
can only take 4

values:

k1 =

p

1− p2
0

p0

, k2 =−
p

1− p2
0

p0

, k3 =

p

1− q2
0

q0

, k4 = −
p

1− q2
0

q0

.

As noted above,
ρ

u
= ±
p

1−p2

p
, hence

ρ

u
∈ {k1, k2, k3, k4}. Therefore, M

lies on at most the union of the 4 lines L1, L2, L3, L4, with respective

equations

y = k1 x , y = k2 x , y = k3 x , y = k4 x .

Among these 4 lines (for convenience we omit the details), only two

lines, say L, L′ (L ∈ {L1, L2}, L′ ∈ {L3, L4}), are symmetric through Γ.

Since Σ is closed by symmetry through Γ, we conclude that Σ⊆ L ∪ L′.

5. Related Open Problems

Introduce the set Ω = {(p2 − 1)(q2 − 1), p,q ∈ Q, p,q ≥ 0}.
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It can be proved that −1,2, 1

2
/∈ Ω (properties related to the Fermat quartic

equation X 4 − Y 4 = Z2).

On the other hand, a representation of ω ∈ Ω is not in general unique as shown

in the example

−
72

25
=

��

11

5

�2

− 1

���

1

2

�2

− 1

�

= (22 − 1)

��

1

5

�2

− 1

�

.

Apart from 1= (02 − 1)(02 − 1), 1 has infinitely many representations since

1=

��

z

x

�2

− 1

���

z

y

�2

− 1

�

for any pythagorean triple (x , y, z) (x , y , z are positive integers with x2+ y2 = z2).

Questions of interest are:

P1. Is Ω a decidable set? (i.e. is there an effective procedure to determine

whether a given rational number lies or not in Ω?)

P2. Disregarding 1, does an element in Ω have a finite number of

representations?

P3. Which elements in Ω do have a unique representation (up to the order of

the factors)?

P4. For which triangles (1,θ , 1), respectively (θ , 2,θ), is the set of solution-

points to problem (P) a finite set?

P5. Is there an algorithm to decide whether an algebraic number θ ≥ 1 (of

degree ≤ 4) is suitable or not for the triangle (θ , 2,θ)?
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