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1. Introduction
Let H represent a separable, complex and infinite dimensional Hilbert space and B(H) denote
the algebra of all bounded linear operators acting on H. We denote by A∗, σ(A), R(A) and
ker(A) the adjoint, the spectrum, the range and the kernel of an operator A ∈B(H), respectively.

For an arbitrary A ∈B(H), we have: |A|2 = (A∗A) (the absolute value of A) and [A∗, A] =
|A|2 −|A∗|2 = A∗A− AA∗ (the self commutator of A).

A ∈B(H) is called:

• normal if: |A|2 = |A∗|2,

• hyponormal if: |A∗|2 ≤ |A|2; let [HN] denote the hyponormal operators class,

• co-hyponormal if: |A|2 ≤ |A∗|2. In other words, A is co-hyponormal if A∗ is hyponormal,
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• quasihyponormal if: A∗(|A|2−|A∗|2)A ≥ 0; let [QH] denote the quasihyponormal operators
class.

In [7], Caradus introduced and studied the Drazin inverse for bounded linear operators.
The Drazin inverse is useful in different fields, including: difference and differential equations,
Markov chains and Cauchy problems ([3], [6]).

Definition 1. Let A ∈B(H). A is Drazin invertible if there exists a unique operator AD ∈B(H)
(AD is the Drazin inverse of A), verifying:

AAD = AD A, AD AAD = AD , Av+1AD = Av, for some v ∈N.

The index of A, denoted by ind(A), is the smallest number v ∈N satisfying the previous equation.
Let B(H)D denote the set of all Drazin invertible operators in B(H).

It is known that if A is invertible then ind(A)= 0, i.e., AD = A−1. If ind(A)= 1, then AD = A‡

(group inverse). If A is nilpotent, then it is Drazin invertible, AD = 0 and ind(A)= p, where p
denotes the nilpotent power of A.

For A ∈B(H), it was observed that AD satisfies (A∗)D = (AD)∗ and (Ak)D = (AD)k for k ∈N.
An operator A is called finite if it satisfies:

∥AX − X A− I∥ ≥ 1, ∀ X ∈B(H).

Williams [20] proved that finite operators class, denoted by F(H), contains every normal and
hyponormal operators. Mecheri [16], and Messaoudene [8] have generalized William’s results to
more classes containing normal and hyponormal operators classes.

The classes of operators introduced above are related to some well-known theorems in
operator theory, such as the classical Fuglede-Putnam theorem. Since the papers of Fuglede
[11] and then Putnam [19], there have been many extensions of this theorem to nonnormal
operators (see [2], [1], [4], [12], [18]).

This theorem reads as follows:

Theorem 2 ([13]). Let A,B ∈B(H) be normal operators. If AX = XB for some X ∈B(H), then
A∗X = XB∗.

In this paper, new classes of operators denoted by [DH] and [DQH], called D-hyponormal
and D-quasi-hyponormal operators, respectively, associated with a Drazin invertible operator
are introduced. Some properties of these operators are given. A D-hyponormal operator is proved
to be finite. An investigation of extensions of the Fuglede-Putnam theorem for D-hyponormal
operators is given.

2. Preliminaries
Lemma 3 ([6]). For A,B ∈B(H)D , the following properties hold.

(a) AB ∈B(H)D if and only if BA ∈B(H)D . Moreover

(AB)D = A[(BA)D]2B and ind(AB)≤ ind(BA)+1.
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(b) If A is idempotent, then AD = A.

(c) If AB = BA, then (AB)D = ADBD = BD AD , BAD = ADB and BD A = ABD .

(d) If BA = AB = 0, then AD +BD = (A+B)D .

Remark 4. Let A ∈B(H)D . Then:
(1) Aπ = I − AAD is the spectral idempotent of A that corresponds to {0}.

(2) A = A1⊕ A2, where A1 is invertible and A2 is nilpotent, is the matrix form of A according
to the decomposition H=R(Aπ)⊕ker(Aπ) (R(Aπ) is the closure of R(Aπ)).

Lemma 5 ([6]). If A ∈B(H)D and B ∈B(K)D with ind(A)= m and ind(B)= n, then T =
(
A C
0 B

)
is also Drazin invertible and

TD =
(
AD X
0 BD

)
,

where

X =
n−1∑
i=0

(AD)i+2CBiBπ+ Aπ
m−1∑
i=0

A iC(BD)i+2 − ADCBD . (2.1)

Definition 6 ([9]). Let A ∈B(H)D . A is called:
(1) D-normal if: AD A∗ = A∗AD .

(2) D-quasi-normal if: AD A∗A = A∗AAD .

Let [DN] and [DQN] denote the classes constituting of D-normal and D-quasi-normal
operators.

These classes were firstly introduced by Dana and Yousefi [9]. From the definitions above,
we can easily verify that:

[N]⊂ [DN]⊂ [DQN].

Definition 7. Let λ ∈C. If there exists a normed sequence {xn} ∈H verifying lim
n

(A−λI)xn = 0,
then λ is said to be in the approximate spectrum σa(A) of A. If in addition, lim

n
(A−λI)∗xn = 0,

then λ belongs to the approximate reduced spectrum σar(A) of A.

3. D-hyponormal Operators
Definition 8. Let A ∈B(H)D . A is D-hyponormal if:

A∗AD − AD A∗ ≥ 0.

The class of D-hyponormal operators is denoted by [DH].

D-hyponormal operators provide an extension of hyponormal operators because in general
the D-hyponormal operator is different from hyponormal operator.
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Example 9. Let A =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 1

 ∈B(C4). Then:

A∗ =


0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0

 , AD =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 .

Hence, A ∈ [DH] but it is not hyponormal.

In the next remark we give a condition that [DH] class coincide with [HN] class.

Remark 10. Let A ∈ [DH]. If ind(A)≤ 1, then A ∈ [HN].

Proposition 11. Let A ∈ [DH]. Then A∗ is D-co-hyponormal operator.

Proof. Since A is a D-hyponormal operator, then:

A∗AD ≥ AD A∗ =⇒ (A∗AD)∗ ≥ (AD A∗)∗

=⇒ (AD)∗A ≥ A(AD)∗.

Hence, A∗ is a D-co-hyponormal operator.

Proposition 12. If S, A ∈ B(H)D such that S is unitary equivalent to A and if A is D-
hyponormal operator, then so is S.

Proof. Let A ∈ [DH] and S ∈ B(H)D which is unitary equivalent to A. Thus there exists a
unitary operator U ∈B(H) satisfying S =U∗AU . So S∗ =U∗A∗U and SD =U∗ADU .

We have:

S∗SD =U∗A∗UU∗ADU

=U∗A∗ADU

≥U∗AD A∗U

≥U∗ADUU∗A∗U

= SDS∗.

Thus, S∗SD −SDS∗ ≥ 0.

Theorem 13. If A, A∗ are two D-hyponormal operators, then A is a D-normal operator.

Proof. First let A∗ ∈ [DH]. Then A(A∗)D ≥ (A∗)D A. Since (A∗)D = (AD)∗, we have

A(AD)∗ ≥ (AD)∗A =⇒ (A(AD)∗)∗ ≥ ((AD)∗A)∗

=⇒ AD A∗ ≥ A∗AD .

On the other hand, A ∈ [DH] implies A∗AD ≥ AD A∗. Hence A∗AD = AD A∗, which completes
the proof.
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Recall that a pair (A,B) ∈ B(H)2 is called a doubly commuting pair if (A,B) satisfies
BA = AB and A∗B = BA∗.

Theorem 14. Let A,B ∈ [DH]. If (A,B) is a doubly commuting pair, then the following assertions
hold.

(1) AB is D-hyponormal.

(2) If BA = AB = 0, then A+B is D-hyponormal operator.

Proof. (1) Since BA = AB and A∗B = BA∗, it follows that:

(AB)∗(AB)D = A∗B∗ADBD = A∗ADB∗BD

≥ AD A∗BDB∗

= ADBD A∗B∗

= (AB)D(AB)∗.

Hence, AB is D-hyponormal.

(2) Under the assumptions that A and B are D-hyponormal, it follows by taking into account
the statements of Lemma 3 that:

(A+B)∗(A+B)D = (A∗+B∗)(AD +BD)

= A∗AD + A∗BD +B∗AD +B∗BD

≥ AD A∗+BD A∗+ ADB∗+BDB∗

= (A+B)D(A+B)∗.

Hence, A+B is D-hyponormal.

Proposition 15. If A,B ∈ [DH], then (A⊕B) ∈ [DH] and (A⊗B) ∈ [DH].

Proof. Let A,B ∈ [DH], then:

(A⊕B)∗(A⊕B)D = (A∗⊕B∗)(AD ⊕BD)

= A∗AD ⊕B∗BD

≥ AD A∗⊕BDB∗

= (AD ⊕BD)(A∗⊕B∗)

= (A⊕B)D(A⊕B)∗.

Hence (A⊕B) is of class [DH]. Now, for x1, x2 ∈H:

(A⊗B)∗(A⊗B)D(x1 ⊗ x2)= (A∗⊗B∗)(AD ⊗BD)(x1 ⊗ x2)

= A∗AD x1 ⊗B∗BD x2

≥ AD A∗x1 ⊗BDB∗x2

= (AD ⊗BD)(A∗⊗B∗)(x1 ⊗ x2)

= (A⊗B)D(A⊗B)∗(x1 ⊗ x2).

Thus (A⊗B) is of class [DH].
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Theorem 16. If A ∈ [DH], then

A =
(
A1 A2
0 A3

)
on H=R(AD)⊕ker(AD),

where A1 is of class [HN] and Ak
3 = 0 (k = ind(A)).

Proof. Suppose A ∈ [DH], then ker(AD)= ker(A∗D). If R(AD) is not dense and A has the matrix
representation:

A =
(
A1 A2
0 A3

)
on H=R(AD)⊕ker(AD), then(

A1 0
0 0

)
= P AP = P A = AP,

(P denotes the orthogonal projection onto R(AD)). Thus

P A∗ADP =
(
A∗

1 AD
1 0

0 0

)
and P AD A∗P =

(
AD

1 A∗
1 0

0 0

)
.

Since A ∈ [DH], P A∗ADP ≥ P AD A∗P implies A∗
1 AD

1 ≥ AD
1 A∗

1 . Hence A1 ∈ [DH]. Furthermore,
by Remark 4, A1 is invertible. So, by Remark 10, A1 ∈ [HN].

Let x =
(
x1
x2

)
∈H. Then

〈AD
3 x2, x2〉 = 〈(AD − ADP)x, (I −P)x〉

= (I −P)x, AD∗(I −P)x〉
= 0.

So, AD
3 = 0. Hence A3 is a nilpotent operator.

Lemma 17. If A ∈ [DH], then the restriction A|M of A to a closed subspace M of H reducing A
is also of class [DH].

Proof. Let P denote the orthogonal projection of H onto M with A1 = A|M. Now we can write
the matrix representation of A as:

A =
(
A1 A2
0 A3

)
on H=M⊕M⊥.

Then (
A1 0
0 0

)
= AP = P AP.

Since A ∈ [DH], we have:

A∗AD − AD A∗ ≥ 0.

Hence(
A∗

1 0
A∗

2 A∗
3

)(
AD

1 X
0 AD

3

)
−

(
AD

1 X
0 AD

3

)(
A∗

1 0
A∗

2 A∗
3

)
≥ 0.
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Therefore,(
A∗

1 AD
1 − AD

1 A∗
1 − X A∗

2 E
F A∗

3 AD
3 − AD

3 A∗
3

)
≥ 0,

for some operators E,F and X is defined by (2.1). Hence

A∗
1 AD

1 − AD
1 A∗

1 ≥ X A∗
2 ≥ 0.

This implies that A1 = A|M ∈ [DH].

Proposition 18. Let A ∈ [DH]. If (A−λ)x = 0, λ ̸= 0, then (A−λ)∗x = 0, for some x ∈H.

Proof. If x = 0, then the proof is obvious. If x ̸= 0, let M = span{x}. Hence M is an invariant
subspace of A. Suppose

A =
(
λ A2
0 A3

)
on H=M⊕M⊥. (3.1)

Let Q be the orthogonal projection of H onto M, where A|M = λ. Hence A1 = AQ =QAQ and
A∗

1 =QA∗ =QA∗Q.
For the proof, it suffices to show that A2 = 0 in (3.1).
Since A ∈ [DH],

Q(A∗AD − AD A∗)Q ≥ 0,(
λ
λ

0
0 0

)
=Q(A∗AD)Q ≥Q(AD A∗)Q =

(
λ
λ
+ X A∗

2 0
0 0

)
.

Thus A2 = 0.

Lemma 19 ([16]). Let A ∈B(H). If σar(A) ̸=φ, then A is finite.

Lemma 20. If A ∈ [DH], then σar(A) ̸=φ.

Proof. Let A be a D-hyponormal operator, we have: σar(A)⊂σa(A). Since σa(A) is never empty,
it suffices to prove that σa(A)⊂σar(A).

Let λ ∈σa(A), then there is a normed sequence {xn} ∈H satisfying: lim
n

(A−λI)xn = 0. Using
Proposition 18 we obtain lim

n
(A−λI)∗xn = 0 and λ ∈σar(A). This completes the proof.

Theorem 21. Let A ∈ [DH], then A ∈F(H).

Proof. Let A ∈ [DH]. Then σar(A) ̸=φ by Lemma 20 and so A is finite by Lemma 19.

Let C2(H) denote the Hilbert-Schmidt operators class. C2(H) is itself a Hilbert space with
the inner product:

〈A,B〉 = tr(AB∗)= tr(B∗A)

where tr(.) denotes trace (.).
For given operators A,B ∈ B(H), the operator K defined on C2(H) via the formula

KX = AXB has been studied in [4].
From the basic property of Hilbert-Schmidt norms, we have: K∗X = A∗XB∗. Moreover,

KD X = AD XBD , where KD is the Drazin inverse of K.
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Lemma 22. If A ∈ [DH] and B ∈ [DN], then K ∈ [DH].

Proof. Since A∗AD − AD A∗ ≥ 0 and B∗BD −BDB∗ = 0, we have

(K∗KD −KDK∗)X =K∗KD X −KDK∗X

=K∗(AD XBD)−K(A∗XB∗)

= A∗AD XBDB∗− AD A∗XB∗BD

≥ AD A∗XBDB∗− AD A∗XB∗BD

= AD A∗XBDB∗− AD A∗XBDB∗

= 0.

Hence, K ∈ [DH].

Theorem 23. Let A ∈ [DH] and B an invertible D-normal operator. If AX = XB, for some
X ∈C2(H), then A∗X = XB∗.

Proof. Let K be a Hilbert-Schmidt operator defined by KX = AXB−1, for all X ∈C2(H). Since
A ∈ [DH] and B ∈ [DN], by Lemma 22, K is of class [DH]. Moreover,

KX = AXB−1 = XBB−1 = X ,

that is, X is an eigenvector of K. Hence K∗X = X by Proposition 18 and so A∗X = XB∗ as
desired.

Corollary 24. Let A,B ∈ [DN] such that B is invertible. If AX = XB, for some X ∈C2(H), then
A∗X = XB∗.

4. D-quasi-hyponormal Operators
Definition 25. Let A ∈B(H)D . A is D-quasi-hyponormal if:

A∗AAD ≥ AD A∗A .

Let [DQH] denote the class of all D-quasi-hyponormal operators.

Remark 26. Let A ∈B(H)D . A is D-quasi-hyponormal if and only if:

|A|2AD ≥ AD |A|2.

Obviously, [DQH] includes classes of quasihyponormal operators and D-hyponormal
operators, we have:

[HN]⊂ [QH]⊂ [DQH] and [HN]⊂ [DH]⊂ [DQH].

we give some sufficient conditions for a D-quasi-hyponormal operator to be quasi-hyponormal.

Remark 27. Let A ∈ [DQH]. If ind(A)< 1, then A ∈ [HN].

Remark 28. Let A ∈ [DH]. If ind(A)= 1, then A ∈ [QH].
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Theorem 29. If A ∈ [DQH], then the following statements hold.
(1) If S ∈B(H)D and unitary equivalent to A, then S ∈ [DQH].

(2) If M is a closed subspace of H which reduces A, then A|M ∈ [DQH].

(3) If A has a dense range in H, A ∈ [DH].

(4) If B ∈ [DQH] with [A,B]= [A,B∗]= 0, then AB ∈ [DQH].

(5) If B ∈ [DQH] with BA = AB = A∗B = B∗A = 0, then B+ A is of class [DQH].

Proof. (1) and (2) are trivial.

(3) Since A ∈ [DQH], we have for y ∈R(A) : y= Ax, x ∈H,

∥(A∗AD − AD A∗)y∥ = ∥(A∗AD − AD A∗)Ax∥
= ∥(A∗AAD − AD A∗A)x∥
≥ 0.

Hence, A ∈ [DH].

(4) Let A,B ∈ [DQH] such that [A,B] = [A,B∗] = 0. Then, by Lemma 3(c), we get that
[A,BD]= [AD ,B]= [AD ,B∗]= [A∗,BD]= 0. Thus

(AB)∗(AB)(AB)D = B∗A∗ABBD AD = B∗BA∗ABD AD

= B∗BA∗BD AAD = B∗BBD A∗AAD

≥ BDB∗BA∗AAD = BDB∗A∗BAAD

= BDB∗A∗ABAD = BDB∗A∗AADB

≥ BDB∗AD A∗AB = BD ADB∗A∗AB

= (AB)D(AB)∗(AB).

Hence, AB ∈ [DQH].

(5) Let B ∈ [DQH] with BA = AB = A∗B = B∗A = 0. Then:

(B+ A)∗(B+ A)(B+ A)D = (B∗+ A∗)(BBD + AAD)

= B∗BBD + A∗AAD

≥ BDB∗B+ AD A∗A

= (B+ A)D(B+ A)∗(B+ A).

Hence B+ A is of class [DQH].

Proposition 30. The tensor product and the direct sum of two operators in [DQH] are in
[DQH].

Proof. The proof of this proposition is formally the same as the proof of Proposition 15 with
suitable changes and thus we omit the details.
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5. Conclusion
In this paper, we have introduced new classes of operators denoted by [DH] and [DQH],
called D-hyponormal and D-quasi-hyponormal operators, respectively. We have presented some
properties of these operators. We also proved that the Fuglede-Putnam theorem holds for
D-hyponormal operators.
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