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Eigenvalues of Geometric Operators Under
the List’s Flow

Bingqing Ma*

Abstract We consider the evolution equation of eigenvalues of the operator
—A + ¢S under the (normalized) List’s flow. As an application, we derive
monotonicity formulas for eigenvalues of —A + %S .

1. Introduction

Let (M",g(t)) be a compact Riemannian manifold, g(t) be a solution to the
following List’s flow which was introduced by B. List [4]:

0

—g=—-2Ric+2adp ®dy,

atg ¥ P 1.1
¢ =Ap,

where a > 0 is a constant, ¢ = ¢(t) is a smooth function on M™ and A denotes
the Laplacian given by g(t). The motivation to study the system (1.1) stems from
its connection to general relativity. Denote by S;; =R;; — ap;p; a symmetric two-
tensor. Then (1.1) becomes

0 25

_gi‘:_ ijo

oty ! (1.2)
pr=Ap.

Throughout this paper, we will use the Einstein summation convention freely.
Let S = g"S;; =R — a|Vy|* be the trace of the two-tensor S;;. In [5], List proved
that the functional

E=| (S+IVf»edv,
Mﬂ
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is nondecreasing along (1.2). If we define

u(g) =infE(g, f),

where the infimum is taken over all smooth function f satisfying

f e*deg =1,

then u(g) is the lowest eigenvalue of the operator —A+%S and the nondecreasing
of the functional E implies the nondecreasing of u(g). Therefore, studying the
eigenvalues of the geometric operator —A + ¢S is a very powerful tool for the
understanding of Riemannian manifolds. For the research of eigenvalues of such
geometric operator under the Ricci flow (for example, see [2, 1, 8, 7, 3]).

The rest of this paper is organized as follows: In Section 2, we first derive
the evolution of a geometric operator under the general geometric flow. As
applications, we obtain the monotonicity formula of eigenvalues of —A + %S
along the List’s flow; in Section 3, we study the evolution of a geometric operator
under the normalized geometric flow. We also obtain the monotonicity formula of
eigenvalues of —A + %S along the normalized List’s flow.

2. Evolution Under the List’s Flow

We consider the metric evolves by

o

agl] ZVU. (21)
Then %gii = —vY and %dVg = 7dV,, where v = g"v;; denotes the trace of v;;.
Let A be a eigenvalue of the operator

c

(—A—Ev)f:)\f 2.2)
with

J f2dv, =1, (2.3)

where c is a constant.

Lemma 2.1. If A is an eigenvalue of the operator —A — %v, f s the eigenvalue
corresponding to A, that is,

A c
(o)

and the metric evolves by (2.1), then we have

i)t: {[vijf“_ E@f}ﬁ [vii Af'—lvav]f}dV (2.4)
dt . Y20t 2 < ‘
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Proof. Since we can define

A:J nf[—A— %v}fdvg :f n [lvﬂz—%vfz]dvg, (2.5)

where f satisfies (2.3). Hence,

/ TRV / ¢ /2 ¢ 2/
¥= | [ +2vrvr - gvrt- 2oy |ay,

+ V2= Svp2| Lav (2.6)
n 2 2 & ’
Applying

f 2VFVfIdV, = —f 2f'AfdV,

:f 2f’()\f +%vf)

—2 (fz)’dVg+%J v(f2)dv,

Mmn n

and

2V v v

:f f ()Lf + %vf) ~dV, - % FYFIVV,

MTI
A 2 ¢ 2.2 1
=3 f vdVg+Z fov dVg_E fVfvvdv,
Mﬂ n Mﬂ

into (2.6) yields
/ ij 2v/ ¢ 172 x 2 1
A= |:—Vljflfj+2.(f ) —EVf +Ef V—EfoVV]dVg
ij C o 1
= n —v fifj—ivf —ifoVv dVv,

+)LJ n [(fz)’—l— %fzv] dv,

ij c /r2 1
= [—ijifj_a"f _Efvav}dvg’

where the last equality used

J n [(fz)’+ %f%}dvg =0
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from (2.3). Using integrating by parts again, we complete the proof of the
lemma. O

Lemma 2.2. As in Lemma 2.1, let v;; = —2S;;, then the evolution of the eigenvalue
of the operator —A + ¢S under the List’s flow satisfies:

d y )
—2A=(4c—2) | SUffdv,+4c| SUffdv,
dt Mmn mn

+2cf ISijlzfdeg + 2caf |A<p|2f2dVg

—(4c —2)a (Ap)fVeVfdV,. 2.7
MTI

Proof. By the definition of S;; and the contracted Bianchi indentity, we have
Sijj =Ryj;—aleip;)

1
= 5(5 +alVe?); —aleip))

1
= Es,i —a(Ap)yp;
which shows that
1
EAS =S tal(Ap)e];

=Sij’ji+a|A<,0|2+an0VA<p. (2.8)
On the other hand, under the List’s flow (1.2), we have (see [4]) S, = AS +
2|S;;|* + 2alAy|?. Putting v = —2S into (2.4) gives
d N
EA = f n [—2SYf;; +cf (AS +2IS;;1* + 2alAp[?)]fdV,

+J [—2S;; ;fi +Sifilf dV,
= J [—2SYf;;f 4+ c(AS)f? + 2¢]S;;1*f2 + 2calAp[*f21dV,

+2a [ (Ap)yfifdV,. (2.9)

MYI
By virtue of (2.8),

c| (AS)f?dV,=2c | [S;;i+alAp)+aVeVAplfidv,
mn mn

=4cf Sij(fif + fif)dVy —4ca | (Ap)pififdV,. (2.10)

Mmn
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Thus, inserting (2.10) into (2.9) completes the proof of Lemma 2.2. g

From the Lemma 2.2, we obtain the following result for the special geometric
flow:

Lemma 2.3. Let (M",g(t)), t € [0,T) be a solution to the List’s flow (1.2) with
Sij= %gij. Then the evolution of the eigenvalue of the operator —A + ¢S satisfies:

d 4¢* , ., 2—4c_ ., 4 )

dt
+ | [2calaplPf?+ a2 —4c)(Ap)VFVefldV,. (2.11)
M
Proof. Using (2.8), we obtain from (2.9)
ix = | [=2SUf.f+c(AS)f?+2c|S;;I>f2 +2calAp|*f21dV,
dt J J ¢

Mmn

+2a | (Ap)pififdv,

Mn
= {—ZSijfijf +2c[Sij,ji+a|Acp|2+achVA<p]f2
MTI

+2¢|S;17f2 + 2cal AP £2 + 2a(A@) g, ;£ }dV,
= J { - 2Sijfijf +4cS;;(fiif +fifi)+ 2c[alAp)* +aVeVAp]f?

2¢ 5o 222
+75f +2calAp|“f =+ 2a(Ap)yfif rdV,

:J {4Cn_ 2S(Af)f + %SIV}‘IZ +2c[alAp]? + aVeVAp]f?

2¢ 5o 222
+75f +2calAp|*f =+ 2a(Ap)yfif rdV,

4c—2 4c ) 5 9
= " S(ch—lf)f+;S|Vf| +2c[alApl*+aVeVAplf
2¢ 5.2 2,2
+75f +2calAp|*f =+ 2a(Ap)yfif rdV,
4c? 2—4c 4c
:f [752f2+TASf2+75|Vf|2}dvg

+ | {2caVeVApf2+dcalApPf2+2a(Ap),fif }dV,. (2.12)
Mn
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By integrating by parts, we obtian

n

J 2caV<,0VA<,of2dVg = J [—2calAp|*f? — dca(Ap)p;fif 1dV,.
Therefore, we obtain (2.11) from (2.12). We complete the proof of Lemma 2.3. [
From the Lemma 2.2, we obtain the following result by letting ¢ = % directly:

Theorem 2.1. Let (M", g(t)), t €[0,T) be a solution to the List’s flow (1.2). Then
the evolution of the eigenvalue of the operator —A + %S satisfies:

i _ ijr e 12£2 272
dtk_ [28Vfifj +1Si;|I°f * + alAp|°f71dV,. (2.13)

Remark 2.1. In particular, taking a = 2, Theorem 2.1 becomes the Theorem 1.10
in [6].

On the other hand, the nonnegativity of the operator S;; is preserved by the
List’s flow, hence, we have the following result from Theorem 2.1:

Corollary 2.2. If S;;(g(0)) = 0, then the eigenvalue of the operator —A + %S are
nondecreasing under the List’s flow.

Let ¢ = % in (2.11). We obtain

Theorem 2.3. Let (M",g(t)), t € [0,T) be a solution to the List’s flow (1.2) with
Sij= %gij. Then the evolution of the eigenvalue of the operator —A + %S satisfies:
d Leoea, 2 2 272
—A= [=S°f"+ =SIVfI"+ alAp|*f=]dV,. (2.14)
dt . n n
Hence, the following result is clear:
Corollary 2.4. Let (M",g(t)), t € [0,T) be a solution to the following List’s flow
(1.2) with S;; = %gij and S > 0. Then the eigenvalue of the operator —A + %S are
nondecreasing.

3. Evolution under the Normalized List’s Flow

In this part, we consider the metric evolves by

d r
agij =Vij — Egij: 3.1
here r = 24 g ¢h f v =g"v;. Then £ gV = —(vJ —Zg") and
where r = v, is the average of v = g"v;;. Then =—g" = —(v ~8"”) an

%dVg = %(v — r)dV,. Clearly, under the normalized geometric flow, the volume
of (M", g(t)) is a constant for all t. Let A be a eigenvalue of the operator

(—A—%v)fz)tf (3.2)

with f f deg = 1. By taking derivative of (3.2), we derive easily that
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Lemma 3.1. If A is an eigenvalue of the operator —A — %v, f s the eigenvalue
corresponding to A, that is,

(—A—%v)fz)tf
and the metric evolves by (3.1), then we have
d?t— ij cov + [ v lv v +r|v [2tdV,. (3.3)
dt_nvijzatff v’jfizfvfnf g

Lemma 3.2. As in Lemma 3.1, let v;; = —2S;;, then the evolution of the eigenvalue

e
of the operator —A + ¢S under the normalized List’s flow

d _ (s 7
Egij__ ij_;gij > (3.4)
P =Ap

satisfies:

P - ,
El:(4c—2) Sllfijfdvg+4cj §7fif;dV
MY[

+ ZCJ ISijlzfdeg —|—2caf IAgolzfdeg

n

n

—(4c—2)a (Ap)fVeVfdV, — %F%, (3.5)

Mn

Proof. Under the assumption of the lemma, (3.1) becomes

d i

It has been shown that (see Lemma 1.4 in [4])
o R=2A(S—T Pagrs 21S ’ 2R .| S r
a - ( —r)+g g - qs_ngs ’rp+ pr qs_;gqs

= 2AS — 28,

2

2
= AS +2alA¢* +2aVeVAp + 2R;;S;; — —FR, 3.7)
n

where the last equality used (2.8). Hence,

5, 5, T
ES = ER_ Za(S” - Eg”)npinpj —2aVpVAp
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0 . 7
= ——R—2aS¢;p; + 20— |Vy|* —2aVpVAY
n

at
s 2. 2
=AS +2|Sl-j| — —iS+2alAp|®. (3.8)
n
Now, inserting Vi = =255, v=-28 and r = —27 into (3.3) gives

d

.. 2
EA :J ) { —2S;ifiif +cS'fA4+[-2SY ifi +Sif:1f — ;f|vf|2}dVg

2.

. 2
+J { [_ 257 if; +Sifi]f - ;’N”|Vf|2}dvg' (3.9)
Applying

c| (as)f?dv, =4CJ Sii(fiif +fif))dVy —4ca | (Ap)pififdV,

MYI MYI
into (3.9) gives

d .
—A:(4c—2) Sljfljfdvg +4Cf

n Siffifjdvg+2cj ISi;1f2dV,
Mn

n n

+2caf |A<p|2f2dVg—(4c—2)a (Ap)fVeVfdV,

Mmn

2
——F | (VfP+cSfdV,
n Mn

=(4c—-2) | SYf;fdv, +4cf

M"

SUfif;dV, +2cf IS;;*£2dV,

n n

2
+2caf IAQPf2dV, — (4c —2)a | (AQ)fVeVfdV, — ;m. (3.10)

Mmn

O
From the Lemma 3.2, we obtain the following result by letting ¢ = % directly:

Theorem 3.1. Let (M", g(t)), t € [0, T) be a solution to the normalized List’s flow
(3.4). Then the evolution of the eigenvalue of the operator —A + %S satisfies:

i _ i g j2r2 2.2 2
dtl_ [2SYfif; +1Si|1°f “ + alAp|“f71dV, nrl. (3.1D)

Corollary 3.2. Let (M", g(t)), t € [0, T) be a solution to the normalized List’s flow
(3.4). Then the evolution of the eigenvalue of the operator —A + %S satisfies:
d 27t 27t

E(eT)L) =en f n [2SYf,f; + 1S 12 + alAp*£2]dV,. (3.12)
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In particular; if S;;(g(t)) = 0, then %(e%l) > 0 and hence e™ A is nondecreasing.
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