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1. Introduction
Kleene theorem [9], a breakthrough in the study of automata theory which establishes a
connection between the class of recognizable languages and the class of rational languages.
Later, Myhill [14] introduced the notion of syntactic monoid — a monoid associated to each
language and in 1960, Schutzenberger established an equivalence between finite state automata
and finite semigroups. So it is quite relevant to study the connection between the algebraic
properties of semigroups and the combinatorial properties of recognizable languages. It is
well-known that the structure of algebraic systems like semigroups, rings, algebras, etc. can be
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predicted by the behaviour of its idempotents. So it is necessary to analyse the nature of the set
of idempotents in an algebraic system to determine its structure. For an orthodox semigroup
the set of idempotents forms a subsemigroup, but this fact cannot be extended to determine
the structure of semigroups in general, but in the year 1972, Nambooripad [12] introduced the
notion of biordered set to study the structure of regular semigroups. Since the structure of a
semigroup is fully determined by its idempotents, the language recognised by the idempotents
and in particular by the biordered set have significant role in the theory of formal languages. In
fact, the languages recognised by biordered sets are known as biordered set languages [15] is
developed as a combined approach of the theory of formal languages and the theory of biordered
sets. Note that the regular languages in biordered set languages arises from finite biordered
sets. In this paper we introduce the notion of a deterministic finite automata which accepts
biordered set languages and discuss some of its properties.

2. Preliminaries
We briefly give some basic definitions and results which are required in the sequel and we refer
the reader [5,7,8,12,13] for its detailed information, otherwise it is specified. A non-empty set
S together with a binary operation ∗ is called a semigroup if the operation ∗ is associativeȦn
element e ∈ S with x∗ e = x = e∗ x for all x ∈ S is called the identity element for ∗ on S. We
usually denote the identity element by the notation 1. A semigroup with identity element is
called a monoid. A non-empty subset T of S is called a subsemigroup if for x1, x2 ∈ T implies
x1∗ x2 ∈ T . A submonoid is a subsemigroup with the identity element. Let (S,∗) and (S′,∗′) be
semigroups. A map ϕ : S → S′ is called a homomorphism if for all x, y ∈ S, (x∗ y)ϕ= (xϕ)∗′ (yϕ).
If (M,∗) and (M′,∗′) are two monoids with identity elements 1M and 1M′ respectively then
ϕ : M → M′ is called a homomorphism if we have the additional property (1M)ϕ= 1M′ . The direct
product S×S′ is a semigroup under the operation (s1, s′1) · (s2, s′2)= (s1 ∗ s2, s′1 ∗′ s′2), known as
the direct product of S and S′. An element a ∈ S is called an idempotent if a∗a = a. For a finite
set X , let TX be the set of all maps from X into X , which is a monoid under the operation
composition of functions and known as the transformation monoid on X .

The notion of biordered sets was initiated by Nambooripad [12], he proved that the set
of idempotents E(S) of a regular semigroup S is a biordered set and later Easdown [3]
proved the same for arbitrary semigroup. A set together with a partial binary operation is
known as a partial algebra and the domain of the partial binary operation is denoted by DE .
Then DE is a relation on E, and (e, f ) ∈ DE if and only if the product e f ∈ E. On E, define
ωr = {(e, f ) : f e = e} and ωl = {(e, f ) : e f = e}. Recall that for any relation ρ on E the inverse ρ−1

of ρ is ρ−1 = {( f , e) : (e, f ) ∈ ρ}.

Definition 2.1 ([12]). Let E(S) be the set of idempotents of a semigroup S. Then the partial
algebra (E,∗) satisfying

e∗ f ∈ {e ρ f or eρ−1 f : ρ =ωr or ρ =ωl} for e, f ∈ E (2.1)

is called a biordered set and e∗ f is undefined otherwise.
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Several authors used the concept of biordered sets to study the structure of semigroups. For
instance in [4] Easdown et al. proved that periodic elements of any free idempotent generated
semigroup is contained in its subgroups and Dandon and Gould [2] proved that if E is a
biordered set with trivial products then the free idempotent generated semigroup over E is
abundant and has solvable word problem whenever E is finite. In [16] Szendrei outlined the
various developments of structure theory of regular semigroups, especially using biordered sets.

Hall [6] introduced the concept of variety for regular semigroups, a class of regular
semigroups, closed under homomorphic image, regular subsemigroups and direct products
and Broekteeg [1] introduced the concept of variety of regular biordered set and proved that if
S, S′ are semigroups, then E(S)×E(S′) is the biordered subset of S×S′.

For a finite alphabet A, a word is a finite sequence of letters in A. There exist a unique word
of length zero, called empty word and is denoted by 1. For each alphabet A, let A+ be denote
the set of all non-empty words over A and A∗ = A+∪ {1}. Then A∗(A+) is a monoid(semigroup)
under the operation concatenation, called the free monoid(free semigroup) over A. A language
over A is a subset of A∗. A language L is recognizable if there exist a finite monoid M and a
homomorphism ϕ : A∗ → M such that L = Pϕ−1 where P ⊆ M. Let L ⊆ A∗ be a language. The
syntactic congruence of L in A∗ is the relation PL defined on A∗ by uPLv if and only if for all
x, y ∈ A∗ xuy ∈ L ⇔ xvy ∈ L. The quotient monoid M(L)= A∗/PL is called the syntactic monoid
of L. The canonical homomorphism from A∗ to M(L) is called the syntactic homomorphism of
L and we denote the syntactic homomorphism of a language L by ηL. A deterministic finite
automaton is a 5-tuple A = (Q, A,δ, i,F) where Q is a finite set called set of states, A is the
input alphabet, δ : Q× A →Q is called the transition function, i ∈Q is called the initial state
and F ⊆ Q is called the set of final(terminal) states. Let A = (Q, A,δ, i,F) be a deterministic
finite automaton. For each u ∈ A∗, the assignment q 7→ δ(q,u) defines a function from Q into
itself, denoted by µu. The monoid generated by {µa : a ∈ A} is called the transition monoid of
the automaton, denoted by Tr(A)= 〈µa : a ∈ A〉 and Tr(A) is a submonoid of the transformation

monoid TQ . For a transformation µ=
(

1 2 . . . n
a1 a2 . . . an

)
in TQ , we denote it by µ= (a1,a2, . . . ,an)

wherever we used in the sequel.
Let A= (QA, A,δA, iA,FA) and B= (QB, A,δB, iB,FB) be two deterministic finite automata

where QA and QB are disjoint. Define the automaton C =A∪B as the union of A and B by
C= (QC, A,δC, iC,FC) where QC =QA∪QB , iC = {iA, iB}, FC = FA∪FB and δC(qC,a)= δA(qA,a)
or δC(qC,a) = δB(qB,a) for a ∈ A. The language recognized by the automaton C is L(C) =
L(A)∪L(B). Let A= (Q, A,δ, i,F) be a deterministic finite automaton. Its complement is denoted
by Ac and defined by Ac = (Q, A,δ, i,Q−F), so that L(Ac)= A∗−L(A). Let A= (QA, A,δA, qA,FA)
and B= (QB, A,δB, qB,FB) be two deterministic finite automata. Define an automaton C=A×B
as the product of A and B by C = (QC, A,δC, qC,FC) where QC = QA ×QB, qC = (qA, qB),
FC = FA ×FB and δC(qC,a)= (δA(qA,a),δB(qB,a)) for a ∈ A.

We say that a language L is syntactically closed if for all u,v ∈ L, uPLv where PL is the
syntactic congruence of L and that L is an elementary language if there exist a monoid M and
a morphism ϕ : A∗ → M such that L = eϕ−1 where e is an idempotent in M. In [11] we proved
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that every idael language is an elementary language. If L is syntactically closed then there is a
syntactic morphism ηL : A∗ → M(L) such that LηL is singleton. Since L is recognised by M(L)
it follows that L = LηLη

−1
L , so that L = {m}η−1

L for some m ∈ M(L).

Theorem 2.2 ([10]). Let L ⊆ A∗ be a language. Then L is an elementary language if and only if
L is a subsemigroup of A∗ and L is syntactically closed.

Definition 2.3 ([15]). A language L ⊆ A∗ is said to be a biordered set language if there exist
a monoid M and a surjective homomorphism ϕ : A∗ → M such that L = Eϕ−1 where E is a
biordered subset of E(M).

Theorem 2.4 ([15]). Let L ⊆ A∗ be a biordered set language, M be a monoid and ϕ : A∗ → M be
a surjective morphism such that L = Lϕϕ−1 and Lϕ⊆ E(M). Then Lϕ is a biordered subset of
E(M).

3. Elementary Automata
Here we consider a basic type of automata termed as elementary automata which leads to
the notion of nice automata. First, we give a charecterisation for syntactically closed regular
language.

Proposition 3.1. Let L ⊆ A∗ be a language. Then L is a regular syntactically closed language if
and only if there exist a deterministic finite automaton A accepting L such that µu =µv for all
u,v ∈ L where µu,µv ∈Tr(A).

Proof. Assume that L is a regular syntactically closed language. Then there exist a finite
monoid M and a homomorphism ϕ : A∗ → M such that L = m0ϕ

−1 for some m0 ∈ M. Construct a
deterministic finite automaton A= (M, A,δ,1, {m0}) where M is the set of states, 1(the identity
element in M) is the initial state, {m0} the only final state and δ : M × A∗ → M is defined by
δ(m,w)= m · (wϕ) for m ∈ M and w ∈ A∗. Then

L(A)= {w ∈ A∗ : δ(1,w)= m0}

= {w ∈ A∗ : 1· (wϕ)= m0}

= {w ∈ A∗ : wϕ= m0}

= m0ϕ
−1 = L

and if u ∈ L, then uϕ= m0, so that

(m)µu = δ(m,u)= m · (uϕ)= m ·m0 = m · (vϕ)= δ(m,v)= (m)µv

for all v ∈ L and all m ∈ M. Thus µu =µv for all u,v ∈ L.
Conversely, if A is a deterministic finite automaton accepting L such that µu = µv for all

u,v ∈ L, then for x, y ∈ A∗ we have µxuy = µxµuµy = µxµvµy = µxvy, implies that xuy ∈ L if and
only if xvy ∈ L for all u,v ∈ L. Thus L is syntactically closed.
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It follows from Proposition 3.1 that a deterministic finite automaton A accepting a
syntactically closed regular language has single terminal state. But the converse need not be true
in general. For example, consider the deterministic finite automaton A= ({1,2,3,4}, A,δ,1, {2})
over the alphabet A = {a,b} with the transition function δ is given by the following transition
diagram:

1start 2

3 4

a

b

a,ba

b
a,b

Here L(A)= {a,ba} and note that ba ∈ L(A), but bba 6∈ L(A), that is, L(A) is not syntactically
closed.

We have seen that a language L ⊆ A∗ is an elementary language if L = eφ−1 where
φ : A∗ → M is the monoid morphism and e ∈ E(M), so that the elementary language is
syntactically closed and the Proposition 3.1 ensures that the existence of a deterministic
finite automaton which accepts the elementary language. The following result provides a
characterization for such automata.

Proposition 3.2. Let L ⊆ A∗ be a language. Then L is an elementary regular language if and
only if there exist a deterministic finite automata A with only one final state q f (say) accepting L
such that the following holds:

(i) µu =µv for all u,v ∈ L,

(ii) δ(q f ,u)= q f for all u ∈ L.

Proof. Assume that L is a elementary regular language, by Theorem 2.2 that L is syntactically
closed as well as a subsemigroup of A∗. Since L is syntactically closed, there is an automaton
A with one final state q f (say) accepting L such that µu =µv for all u,v ∈ L by Proposition 3.1.
Since L is a subsemigroup of A∗, we have uv ∈ L for all u,v ∈ L. If v ∈ L, then δ(q0,v) = q f .
So δ(q f ,u) = δ(δ(q0,v),u) = δ(q0,vu) = q f for all u ∈ L. This is equivalent to the condition
(q f )µu = q f for all u ∈ L.

Conversely, assume that there is a deterministic finite automaton A with only one final
state q f accepting L and satisfying (i) and (ii). By Proposition 3.1, L is a syntactically closed
language. Also if u,v ∈ L, then

δ(q0,uv)= δ(δ(q0,u),v))= δ(q f ,v)= q f .

So uv ∈ L and hence L is a subsemigroup of A∗. Thus by Theorem 2.2 we have that L is an
elementary language.

Example 3.3. Let A = {a,b} and A= ({1,2}, A,δ,1, {2}) be a deterministic finite automaton with
the transition function δ given by the following transition diagram:
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1start 2
a

b a,b

Then clearly L(A)= b∗aA∗ and δ(1,bnaw)= δ(δ(1,bn),aw)= δ(1,aw)= 2 and δ(2,bnaw)= 2 for
all w ∈ A∗ and n ∈N where bnw ∈ L(A). That is, µu = µv for all u,v ∈ L(A). Also δ(2,u)= 2 for
all u ∈ L(A). Thus L(A) is an elementary language by Proposition 3.2. But we can observe that
not every deterministic finite automaton recognizing elementary language have single terminal
state. For example consider the deterministic finite automaton A= ({1,2,3,4}, A,δ,1, {2,4}) over
the alphabet A = {a,b} whose transition function δ is given by the following transition diagram:

1start

3

2

4

a

b

a,b

a

b

a,b

Here we can see that L(A)= b∗aA∗ which is an elementary language, but A has two terminal
states.

The above discussion leads to the following definition.

Definition 3.4. An automaton A is said to be an elementary automaton if L(A) is an elementary
language and A has only one terminal state.

Example 3.5. Consider a deterministic finite automaton A = ({1,2,3}, A,δ,1, {1}) where A =
{a,b} with the transition function δ is given by the following transition diagram:

1start 2 3
a

b

a

b

a,b

Here L(A) = (ab)∗, that is, L(A) = {w ∈ A∗ : δ(1,w) = 1} = {(1,3,3)}η−1 where η : A∗ →
Tr(A) is the transition homomorphism and we have the transition semigroup as Tr(A) =
{(2,3,3), (3,1,3), (3,3,3), (1,3,3), (3,2,3)}, so that L(A) is an elementary language accepted by A

with single terminal state. Thus A is an elementary automaton.
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Remark 3.6. It follows from the definitions that the union of elementary automata need not
be an elementary automaton and the complement of an elementary automaton need not be an
elementary automaton, but the product of elementary automata is an elementary automaton.

Theorem 3.7. Minimal automaton accepting an elementary language is an elementary
automaton.

Proof. Let L ⊆ A∗ be an elementary language. We see that from Proposition 3.2 that there
exist a deterministic finite automaton A with single terminal state and L(A) = L. Since the
minimization of an automaton does not increases the number of terminal states, the minimal
automaton of A is an elementary automaton.

4. Nice Automata
In this section, we consider a class of automata whose transition semigroup contains biordered
set, termed as nice automata and discuss its properties and its relation with elementary
automata.

Definition 4.1. Let A= (Q, A,δ, i,F) be a deterministic finite automaton and let L(A)= L. We
say that the automaton A is a nice automaton if Lµ is a biordered subset of E(Tr(A)) where
µ : A∗ →Tr(A) is the transition homomorphism of A and Tr(A) is the transition monoid of A.

It follows from the definition of elementary automata that every elementary automaton is a
nice automaton.

Example 4.2. Let A = {a,b} and let A= ({1,2,3}, A,δ,1, {2,3}) be an automaton with δ given by
the following transition diagram:

1start 2 3
a

a

b

a,b

b

We can see that L(A)= a+∪a+bA∗∪bA∗ and its transition semigroup is Tr(A)= 〈µa,µb〉 where
µa = (2,2,3) and µb = (3,3,3). If w ∈ L(A), then w = an, w = ambu or w = bu′ for n,m ∈N and
u,u′ ∈ A∗, so that δ(1,w)= 2 or δ(1,w)= 3 and if η : A∗ →Tr(A) is the transition homomorphism
given by a 7→µa, b 7→µb, then

L(A)= {w ∈ A∗ : δ(1,w)= 2 or δ(1,w)= 3}

= {w ∈ A∗ : δ(1,w)= 2}∪ {w ∈ A∗ : δ(1,w)= 3}

= (µa)η−1 ∪ (µb)η−1

= {µa,µb}η−1,
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it follows that L(A)η= {µa,µb} where {µa,µb} is a biordered subset of Tr(A), hence A is a nice
automaton.

Proposition 4.3. Let L ⊆ A∗ be a language. Then L is a regular biordered set language if and
only if every deterministic finite automaton accepting L is a nice automaton.

Proof. Let L ⊆ A∗ be a regular biordered set language. Then there is a monoid M and a
homomorphism φ : A∗ → M such that L = Eφ−1 where E is a biordered subset of E(M). Then
the automaton A = (Q, A,δ, i,F) constructed as in the proof of Proposition 3.1, recognizes L,
hence A is a nice automaton.

Conversely, assume that the deterministic finite automaton A is a nice automaton such
that L(A)= L. Then L is regular and Lη is a biordered subset of E(Tr(A)). Since L = (Lη)η−1, it
follows that L is a regular biordered set language.

Corollary 4.4. L ⊆ A∗ is a regular biordered set language if and only if the minimal automaton
of L is a nice automaton.

Definition 4.5. If M is finite, we call such language L as finitely bsl.

By Kleene theorem [9], we can see that if the language L is finitely bsl then it is a regular
biordered set language.

Proposition 4.6. Let L ⊆ A∗ be a language. Then L is finitely bsl if and only if LηL is a finite
biordered subset of E(M(L)).

Proof. Suppose that L is finitely bsl, then by Definition 4.5 Lφ is a finite biordered subset of
E(M). Let ηL : A∗ → M(L) be the syntactic morphism. Since L is regular we have M(L) is finite.
Then there exist a morphism ψ : M → M(L) such that ηL =φψ. Thus LηL = L(φψ)= (Lφ)ψ is a
finite subset of E(M(L)) because Lφ is a finite biordered subset of E(M)). Hence LηL is a finite
biordered subset of E(M(L)).

Conversely, let LηL be a finite biordered subset of E(M(L)) where ηL : A∗ → M(L) be the
syntactic morphism. Hence L is a finitely bsl, follows from the Definition 4.5.

Proposition 4.7. Let L ⊆ A∗ be a language and let A be a deterministic finite nice automaton
such that L(A)= L. Then L is finitely bsl.

Proof. Suppose that A is a deterministic finite nice automata such that L(A)= L. So Tr(A) is
finite and Lη is a finite biordered subset of E(Tr(A)) where η : A∗ → Tr(A) is the transition
homomorphism of A. Then we can find a finite monoid M such that ψ : Tr(A)→ M is a morphism.
If φ : A∗ → M is a surjective morphism, then Lφ= L(ηψ−1)= (Lη)ψ−1 is a finite biordered subset
E(M), hence L is finitely bsl.
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Proposition 4.8. Let L ⊆ A∗ be finitely bsl if and only if {µw : w ∈ L(A)} is a finite biordered
subset of E(Tr(A)) where A is a nice automaton.

Proof. Suppose that L ⊆ A∗ is finitely bsl. By Proposition 4.6 there exist a deterministic nice
automaton A such that L(A) = L. So in particular L(A) is a regular biordered set language.
Since a biordered set language is the union of elementary languages [10], we have that for
u ∈ L(A), then u belongs to some elementary language L′ and so u2 ∈ L′. By Proposition 3.2 we
can see that µu2 =µu . Since µu2 =µuµu , we have µu is an idempotent in Tr(A) for each u ∈ L(A),
hence {µw : w ∈ L(A)} is a finite subset of E(Tr(A)). Again, since L(A)= {µw : w ∈ L(A)}η−1 where
η : A∗ → Tr(A) is the transition homomorphism of A and L(A) is a biordered set language, it
follows from Theorem 2.4 that {µw : w ∈ L(A)} is a biordered subset of E(Tr(A)).

Conversely, let {µw : w ∈ L(A)} is a finite biordered subset of E(Tr(A)) where A is a nice
automaton. It follows from Proposition 4.6 we have L(A)= L is finitely bsl.

Theorem 4.9. Let A be a deterministic finite automaton. Then A is a nice automaton if and
only if L(A)=⋃n

i=1 L i for some n ∈N where each L i is an elementary language with L i ∩Ł j =;,
i 6= j and {µu : u ∈ L i, i = 1,2, . . . ,n} is a biordered subset of Tr(A).

Proof. Let A be a nice automaton. Then L(A) is a regular language and {µw : w ∈ L(A)} is a
finite biordered subset of E(Tr(A)). Let {e1, e2, . . . , en} be the enumeration of {µw : w ∈ L(A)}, we
have L(A)= {µw : w ∈ L(A)}η−1 = {e1, e2, . . . , en}η−1 = (∪n

i=1e i
)
η−1 =∪n

i=1L i , where L i = e iη
−1 and

L i ∩Ł j =; for i 6= j, if not w ∈ L i and w ∈ L j implies that e i = wη= e j , a contradiction to the
fact that {e1, e2, . . . , en} be the enumeration of {µw : w ∈ L(A)}. Thus L(A) is the disjoint union of
elementary languages.

Conversely, let L(A) be the disjoint union of elementary languages and {µu : u ∈ L i, i =
1,2, . . . ,n} is a biordered subset of Tr(A). If {e1, e1, . . . , en} is the enumeration of {µu : u ∈ L i, i =
1,2, . . . ,n} then we have, L(A)= {e1, e2, . . . , en}η−1. Thus L(A) is finitely bsl, so that A is a nice
automaton by Proposition 4.8.

Theorem 4.10. Any automaton accepting finitely bsl is a nice automaton.

Proof. Let L be a finitely bsl and let L = L(A) for some automaton A. Since L is a regular
biordered set language, it follows from Theorem 2.4 that any monoid M recognizing L recognizes
it by a biordered subset of E(M). In particular, L is recognized by a finite biordered subset of
E(Tr(A)). Without loss of generality we assume that E(Tr(A))= {e1, e2, . . . , em} and if L i = (e i)η−1

for i = 1,2, . . . ,n, then L =
m⋃

i=1
L i where η : A∗ → Tr(A) is the transition homomorphism of A.

Since each L i is an elementary language, it is syntactically closed and hence by Proposition 3.1
we have µu = µv for all u,v ∈ L i and hence it follows from Theorem 4.9 that A is a nice
automaton.
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Theorem 4.11. Let A be a nice automaton. Then

(i) L(A)=
n⋃

i=1
L i with L i ∩L j =; if i 6= j and n ∈N.

(ii) There exist an elementary automaton A= (Q, A,δ, i, { f i}) accepting L i .

(iii) The automaton A′ = (Q, A,δ, i, { f1, f2, . . . , fn}) accepts L(A). In particular A and A′ are
equivalent.

Proof. (i) Suppose A is a nice automaton. By Proposition 4.7, L = L(A) is finitely bsl. So
there exist a finite monoid M and a homorphism φ : A∗ → M such that L(A)= Eφ−1 where
E is a biordered subset of E(M). If E = { f1, f2, . . . , fn}, then as in the proof of Theorem 4.9

we have L(A)=
n⋃

i=1
L i where L i ∩L j =; if i 6= j and L i = f iφ

−1 for i = 1,2, . . . ,n.

(ii) Let Ai = (Q, A,δ, i, { f i}) be an automaton with Q = M, i = 1 (the identity in M) and
δ : M × A∗ → M be defined by δ(m,w) = m · (wϕ). Then Ai is an elementary automaton
and L(Ai)= L i for each i = 1,2, . . . ,n.

(iii) We have

L(A′)= {w ∈ A∗ : δ(1,w) ∈ { f1, f2, . . . , fn}}

= {w ∈ A∗ : 1 · (wϕ) ∈ { f1, f2, . . . , fn}}

= {w ∈ A∗ : wϕ ∈ { f1, f2, . . . , fn}}

= {w ∈ A∗ : wϕ ∈ E}= Eϕ−1 = L(A)

Since L(A′)= L(A), both A and A′ are equivalent.

From the above theorem, we see that A′ =
n⋃

i=1
Ai and that A′ is equivalent to A. We call

this decomposition as the elementary decomposition of the nice automaton A. But Theorem 4.9
shows that every nice automaton admits an elementary decomposition.

5. Operations on Nice Automata
Here we consider the operations on deterministic finite nice automata such as their union,
complement and product.

5.1 Union
Consider the nice automaton A = ({1,2,3}, {a,b},δ,1, {1}) given in Example 3.5 and B =
({4,5,6}, {a,b},δ′,4, {5}) be a deterministic finite automata with transition function δ′ is given by
the following transition diagram:

4start 5 6
b

b

a

a

a,b
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We can easily see that B is a nice automata. Then their union A∪B call it as C where
C = ({1,2,3,4,5,6}, {a,b},∆, {1,4}, {1,5}) is a non deterministic finite automata with transition
semigroup Tr(C)= 〈(2,2,3,6,6,6), (3,1,3,5,5,6)〉 and L(C)= (ab)+∪b+. Let D be its equivalent
deterministic finite automata with

L(D)= L(C)

= {w ∈ A∗ : δ(1,w)= 1,δ(1,w)= 5,δ(4,w)= 1 or δ(4,w)= 5}

= {(3,1,3,5,5,6), (2,3,3,6,6,6), (3,3,3,5,5,6)}η−1

where η : A∗ →Tr(D) is the transition homomorphism. We can see that the set {(3,1,3,5,5,6),
(2,3,3,6,6,6), (3,3,3,5,5,6)} is not a subset of E(Tr(D)) due to (3,1,3,5,5,6) not being an
idempotent, so that C is not a nice automaton. Thus the operation union is not closed in
the class of nice automata.

5.2 Complement
Consider the nice automaton A given in Example 3.5, then its complement is given by the
automaton Ac = ({1,2,3}, {a,b},δ,1, {2,3}) and the respective transition semigroup is Tr(Ac) =
Tr(A)= {(2,3,3), (3,1,3), (3,3,3), (1,3,3), (3,2,3)}. But

L(Ac)= {w ∈ A∗ : δ(1,w)= 2,δ(1,w)= 3}

= {(2,3,3), (3,1,3), (3,3,3), (3,2,3)}η−1

= (Tr(A)− {(1,3,3)})η−1

where η : A∗ → Tr(Ac) is the transition homomorphism and we can see that the set
{Tr(A)−{(1,3,3)}} is not a biordered subset of E(Tr(Ac)) and so Ac is not a nice automaton. Thus
the operation complement is not closed in the class of nice automata.

5.3 Product
Let A1 = (Q1, A,δ1, i1,F1) and A2 = (Q2, A,δ2, i2,F2) be two deterministic finite nice automata
over the alphabet A. Then L(A1) is finitely bsl, {µA1

w : w ∈ L(A1)} is a biordered subset
of E(Tr(A1)) and L(A2) is also finitely bsl, {µA2

w : w ∈ L(A2)} is a biordered subset of
E(Tr(A2)). The product automaton is C = (Q1 ×Q2, A, {i1, i2},δ,F1 ×F2) where δ

(
(q1, q2),a

) =(
δ1(q1,a),δ2(q2,a)

)
for (q1, q2) ∈Q1 ×Q2 and a ∈ A. Here L(C) is regular since

L(C)= {w ∈ A∗ : δ
(
(i1, i2),a

) ∈ F1 ×F2}

= {w ∈ A∗ : δ1(i1,w) ∈ F1 and δ2(q2,w) ∈ F2}

= {w ∈ A∗ : w ∈ L(A1) and w ∈ L(A2)}

= L(A1)∩L(A2)

and

{µCw : w ∈ L(C)}= {µCw : w ∈ L(A1)∩L(A2)}

= {(µA1
w ,µA2

w ) : w ∈ L(A1)∩L(A2)}

= {µA1
w : w ∈ L(A1)}× {µA2

w : w ∈ L(A2)}
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is a finite biordered subset of E(Tr(B1))×E(Tr(B2)) = E
(
Tr(B1)×Tr(B2)

) ≡ E
(
Tr(C)

)
. Thus C

is a nice automaton, hence the class of nice automata is closed under the operation product.
We summarize these facts in the following theorem.

Theorem 5.1. The class of nice automata is closed under the operation product.

6. Conclusion
The equivalence between finite automata and recognisable languages is well-known. The concept
of nice automata is introduced in this paper and it is equivalent to the class of biordered set
languages. Nice automaton has a decomposition into elementary automata and the class of nice
automata is closed only under product but not under union and complement. Since the class of
nice automata contains several interesting class of automata such as the class of syncronizing
automata, its study has several applications in theoretical computer science.

Acknowledgement
The authors are thankful to the anonymous referees for their valuable comments on an earlier
version of the paper.

Competing Interests
The authors declare that they have no competing interests.

Authors’ Contributions
All the authors contributed significantly in writing this article. The authors read and approved
the final manuscript.

References
[1] R. Broeksteeg, Concept of variety for regular biordered sets, Semigroup Forum 49 (1994), 335 –

348, DOI: 10.1007/BF02573495.

[2] Y. Dandan and V. Gould, Free idempotent generated semigroups over bands and biordered sets
with trivial products, International Journal of Algebra and Computation 26 (2016), 473 – 507,
DOI: 10.1142/S021819671650020X.

[3] D. Easdown, Biordered sets come from semigroups, Journal of Algebra 96(2) (1985), 581 – 591,
DOI: 10.1016/0021-8693(85)90028-6.

[4] D. Easdown, M. Sapir and M. Volkov, Periodic elements of the free idempotent generated semigroup
on a biordered set, International Journal of Algebra and Computation 20 (2010), 189 – 194,
DOI: 10.1142/S0218196710005583.

[5] S. Eilenberg, Automata, Languages and Machines, Vol. A, Academic Press, London (1974).

[6] T. E. Hall, Identities for existence varieties of regular semigroups, Bulletin of Australian
Mathematical Society 40 (1989), 59 – 77, DOI: 10.1017/S000497270000349X.

[7] P. M. Higgins, Techniques of Semigroup Theory, The Clarendon Press, New York (1992).

Communications in Mathematics and Applications, Vol. 12, No. 3, pp. 773–785, 2021

http://doi.org/10.1007/BF02573495
http://doi.org/10.1142/S021819671650020X
http://doi.org/10.1016/0021-8693(85)90028-6
http://doi.org/10.1142/S0218196710005583
http://doi.org/10.1017/S000497270000349X


On Automata Accepting Biordered Set Languages and its Properties: P. R. Kumar and J. Nainan 785

[8] J. M. Howie, Fundamentals of Semigroup Theory, Oxford University Press, London (1995).

[9] S. C. Kleene, Representation of events in nerve nets and finite automaton, in: Automata
Studies, C. E. Shannon and J. McCarthy (editors.), Princeton University Press, (1956), 3 – 41,
DOI: 10.1515/9781400882618-002.

[10] P. R. Kumar, Biorder relations in languages, in: Proceedings of the Symposium of Graph Theory
and Applications, Kochi, Kerala (1991), pp. 99 – 104.

[11] P. R. Kumar and J. Nainan, On biordered set languages and ideal languages, in: Proceedings of the
International Conference on Semigroups, Algebras and Applications, Thiruvananthapuram, Kerala,
(2015), pp. 57 – 63.

[12] K. S. S. Nambooripad, Structure of regular semigroup – I, Memoirs of the American Mathematical
Society 22(224) (1979), DOI: 10.1090/memo/0224.

[13] J. E. Pin, Mathematical Foundations of Automata Theory, (2020), URL: https://www.irif.fr/
~jep//PDF/MPRI/MPRI.pdf.

[14] M. O. Rabin and D. Scott, Finite automata and their decision problems, IBM Journal of Research
and Development 3(2) (1959), 114 – 125, DOI: 10.1147/rd.32.0114

[15] A. R. Rajan and P. R. Kumar, Biordered set languages, Indian Journal of Pure and Applied
Mathematics 27(4) (1996) 343 – 355.

[16] M. B. Szendrei, Structure theory of regular semigroups, Semigroup Forum 100(1) (2020), 119 –
140, DOI: 10.1007/s00233-019-10055-8.

Communications in Mathematics and Applications, Vol. 12, No. 3, pp. 773–785, 2021

http://doi.org/10.1515/9781400882618-002
http://doi.org/10.1090/memo/0224
https://www.irif.fr/~jep//PDF/MPRI/MPRI.pdf
https://www.irif.fr/~jep//PDF/MPRI/MPRI.pdf
http://doi.org/10.1147/rd.32.0114
http://doi.org/10.1007/s00233-019-10055-8

	Introduction
	Preliminaries
	Elementary Automata
	Nice Automata
	Operations on Nice Automata
	Union
	Complement
	Product

	Conclusion
	References

