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1. Introduction
Almost symmetric numerical semigroups were studied by Barucci and Fröberg in 1997 ([1]). Goto
et al. [5] gave the duplication of numerical semigroup. Rosales and García-Sánchez [8] calculated
the half of the numerical semigroup. In 2012, Strazzanti calculated the type of the duplication
of numerical semigroup with relative ideals. Moscariello introduced the RF(Row-Factorization)
matrices which is very useful in the classification of almost symmetric numerical semigroups in
2016 ([7]). The gluing of numerical semigroups was given in the thesis of Rosales [9]. In this
study, we present duplication and gluing of almost symmetric numerical semigroups with
RF-matrices.
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2. Basic Definitions
Most of the definitions can also be found in [8] or [2].

Definition 2.1. A numerical semigroup S and a semigroup ideal E ⊆ S produces a new
numerical semigroup, denoted by S∞b E (where b is any odd integer belonging to S), such that

S = {x ∈N : 2x ∈ S∞b E}

i.e.

S = S∞bE
2

.

This new semigroup is called the numerical duplication of S with respect to E and b.

Definition 2.2. Let N is the set of non-negative integers and S ⊂N. If S is closed under the
addition in N and 0 ∈ S and N\S is finite then S is called a numerical semigroup, for all
s1, s2, . . . , sn ∈ S it is denoted by

S = 〈s1, s2, . . . , sn〉 =
{

n∑
i=1

sixi : xi ∈N
}

and the following is correct

(s1, s2, . . . , sn)= 1⇔N\S is finite.

Example 2.3. Let S = 〈3,5〉 = {3x1 +3x2 : x1, x2 ∈N}= {0,3,5,6,8,9,10, · · · }
(i) 0 ∈ S,

(ii) for all s1, s2 ∈ S, there is x1, x2, y1, y2 ∈ N such that s1 = 3x1 +5x2, s2 = 3y1 +5y2 and
x+ y= 3(x1 + y1)+5(x2 + y2) ∈ S,

(iii) N\S = {1,2,4,7} is finite so S is a numerical semigroup.

Definition 2.4. Let the numerical semigroup S is given by

S = 〈s1, s2, . . . , sn〉
then

(i) the number m(S)= s1 is called the multiplicity of S,

(ii) the number e(S)= n is called the embedding dimension of S [8].

Definition 2.5. Let S is a numerical semigroup the largest integer that is not in S is called the
frobenius number of S and denoted by F(S) ([8]), i.e.

F(S)=max(N\S)

or

F(S)=max{x ∈Z : x ∉ S} .

Definition 2.6. The positive elements that is not in S and is denoted by G(S). The elements of
gaps is called genus of S and g(S)= |G(S)|.
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Example 2.7. S = 〈8,13,15,19〉 = {0,8,13,15,16,19,21,23,24,26,27,28,29,30,31,32,34, · · · },
G(S)= {1,2,3,4,5,6,7,9,10,11,12,14,17,18,20,22,25,33}, the set of gaps,
F(S)= 33, the largest number that is not in S,
m(S)= 8, multiplicity,
e(S)= 4, embedding dimension,
g(S)= 18, the number of elements of gaps.

Definition 2.8. PF(S) is the set of Pseudo-Frobenius number of S,

PF(S)= {x ∉ S | x+ s ∈ S, for every s ∈ S\{0}}

= {x ∉ S | x+ni ∈ S, for every i = 1,2, . . . , e} .

Definition 2.9. A numerical semigroup S is almost symmetric ([6,7]) if for every x ∈Z\S such
that F(S)− x ∉ S we have {x,F(S)− x}⊆PF(S).

Definition 2.10. If f ∈ PF(S), then f + ni ∈ S, for every i = 1, . . . , e, hence there exist
ai1,ai2, . . . ,aie ∈N such that

f +nt =
e∑

j=1
αi jn j .

Nevertheless, αii > 0 would imply f ∈ S; thus αii = 0. Thus, for every i, there exist
ai1,ai2, . . . ,aie ∈N such that

f =
e∑

j=1
αi jn j and aii =−1 .

Let S = 〈n1,n2, . . . ,ne〉 be a numerical semigroup and f ∈PF(S).

We say that A = (ai j) ∈ Me(Z) is an RF-matrix (Row-Factorization matrix) for f if aii =−1 for
every i = 1,2, . . . , e, ai j ∈N if i 6= j and for every i = 1,2, . . . , e

e∑
j=1
αi jn j = f .

If S is almost symmetric and f ∈ PF(S)\{F(S)}, there exists an RF-matrix for both f and
F(S)− f . In general, this matrix is not unique.

Example 2.11. Let S = 〈6,7,9,10〉 = {0,6,7,9,10,12,13,14,15,16,17, · · · },
F(S)= 11 ,

G(S)= N\S = {1,2,3,4,5,8,11} ,

n1 = 6, n2 = 7, n3 = 9, n4 = 10 .

Let take f = 8 ∈ PF(S) and let try to write RF-matrices of f . Firstly, we find the numbers
a12,a13,a14 ∈N such that,

8= a116+a127+a139+a1410 ,
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where a11 =−1 from the equality,

8= (−1).6+2.7+0.9+0.10

We find a12 = 2, a13 = 0, a14 = 0.
Hence, first row of the RF-matrices is found for f = 8PF(S).
In a similar manner, the numbers is found a21 = 1, a23 = 1, a24 = 0 such that

8= 1.6+ (−1).7+1.9+0.10 ,

where a21 =−1.
This gives the second row of the matrix go on in this way, RF-matrix of f = 8 ∈PF(S)

−1 2 0 0
1 −1 1 0
0 1 −1 1
0 0 2 −1

 .

Also, if we consider,

8= 3.6+0.7+0.9+ (−1).10 .

Then alternative the RF-matrices of f turns to
−1 2 0 0
1 −1 1 0
0 1 −1 1
3 0 0 −1

 .

This proves that RF-matrices are not unique.

Proposition 2.12. Let f , f ′ ∉PF(S) and f + f ′ ∉ S. Take RF( f )= A = (ai j) and RF( f ′)= B = (bi j)
in this case, for all i 6= j, ai j = 0 or bi j = 0 in particular if RF

(
F(S)

2

)
= (ai j) then, for all i 6= j,

ai j = 0 or a ji = 0.

Proof. See [2].

Proposition 2.13. A set E ⊆ Z is said to be a relative ideal of S if S+E ⊆ E (i.e. s+ t ∈ E for
every s ∈ S and t ∈ E) and there exist s ∈ S such that S+E = {s+ t : t ∈ E} ⊆ S. Relative ideals
contained in S are simply called ideals.
If E and F are relative ideals of S then

E+F = {t+u : t ∈ E,u ∈ F} and E−F = {z ∈Z : z+u ∈ E, for all u ∈ F}

are both relative ideals of S.
One can always shift a relative ideal E adding to it an integer x

x+E = {x+ e : e ∈ E} .

Definition 2.14. The basic ideal is generated by are ideal element if Z ∈Z, then

z+ s = {z+ s : s ∈ S}

is the basic ideal generated by the element Z.
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Generally, the generation of an ideal E by e1, e2, . . . , en means that

E = (e1, e2, . . . , en)= (e1 +S)∪ (e2 +S)∪ . . .∪ (en +S). ([3])

Definition 2.15. Set 2S = {2s : s ∈ S} and 2E = {2t : t ∈ E}. Let b ∈ S be an add integer. Then, we
define the numerical duplication S∞b E of S with respect to E and b as the following subset
of N

S∞b E = 2S∪ (2E+b) .

Proposition 2.16. The following properties hold for S∞b E;

(i) f (S∞b E)= 2 f (E)+b,

(ii) g(S∞b E)= g+ g(E)+m(E)+ b−1
2

.

Proof. See [3].

3. The Duplication of Numerical Semigroups With RF -matrices
The numerical duplication of a numerical semigroup has been studied by Anna and
Strazzanti [3]. In this section, the duplication of numerical semigroups is given by RF-matrices.

Remark 3.1. If the numerical semigroup S is generated minimally by s1, s2, . . . , sn and ideal E
is generated minimally by e1, e2, . . . , em then, the numerical duplication of S with respect to E
and b is generated by 2s1,2s2, . . . ,2sn,2e1 +b, . . . ,2em +b.

Example 3.2. Let S = 〈3,7,11〉 = {0,3,6,7,9, · · · },
1+S = {1,4,7,8,10, · · · },

2+S = {2,5,8,9,11, · · · },

E = (1+S)∪ (2+S)= {1,2,4,5,7, · · · },

2E = {2,4,8,10,14,16,18, · · · }.
Let b = 3 ∈ S

2E+b = {5,7,11,13,17,19,21, · · · },

2S = {0,6,12,14,18,20,22, · · · },

S∞b E = 2S∪ (2E+b)− {0,5,6,7,11,12,13,14,17, · · · }
Generators are 6,14,22,5,7.
Let write the RF-matrix of PF(S∞b E)= {15}.
By giving the −1 value to the variables x, y, z,w and q in the equation 6x+5y+7z+14w+22q = 15,
separately. For instance, give −1 to the x and the other numbers satisfy the equation and this
gives the first row of the RF-matrix.
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As a result, RF-matrix for PF(S∞b E)= {15} is the following:

A =


−1 1 2 0 0
0 −1 3 0 0
0 0 −1 0 1
0 0 1 −1 1
3 0 3 0 −1

 .

Example 3.3. Let S = 〈4,7,13〉 and E = (0,2), b = 7,

S∞b E = {0,7,8,11,14,15,16,19,21,22,23, · · · }.
Generators are 8,14,26,7 and RF-matrix for PF(S∞b E)= {20} is

−1 2 1 0 0
0 −1 0 2 0
1 0 −1 1 0
0 1 0 −1 1
0 2 0 1 −1

 .

4. The Gluing of Numerical Semigroups With RF -matrices
In this section, it will be studied the gluing of numerical semigroups via RF-matrices.
The concept of gluing has been given by Rosales and García-Sánchez in ([8]).

Definition 4.1. Let S1, S2 be numerical semigroups, d1 ∈ S2 and d2 ∈ S1 if d1 and d2 are
coprime then,

S = d1S1 +d2S2 = {d1x+d2 y : x ∈ S1, y ∈ S2}

is a numerical semigroup. We say that S is glued by S1 and S2.
Assume that S is glued by S1 and S2 then,

F(S)= d1F(S1)+d2F(S2)+d1d2 .

holds.

Theorem 4.2. Let S1 = 〈n1, . . . ,ns1〉, S2 = 〈n′
1, . . . ,n′

s2
〉 be numerical semigroups and put

S = d1S1 +d2S2, where d1 ∈ S2, d2 ∈ S1. Assume f1 ∉ S1 (resp. f2 ∉ S2) and f1 +d2 ∈ S1 (resp.
f2+d1 ∈ S2), f = d1 f1+d2 f2 ∉ S. Further, if we write f1+d2 =∑

i aini and f2+d1 =∑
i a′

in
′
i then

we have

RF(F)=
(
RF( f1) N2

N1 RF( f2)

)
,

where N1 (resp. N2) is an s2× s1-matrix (resp. s1× s2-matrix) whose i j-entry is ai (resp. a′
i) for

each i, j. Further,

detRF( f )= − f (detRF( f1)) · (detRF( f ))
f1 f2

.

Therefore, if RF( f1)= (−1)s1+1 f1 and RF( f2)= (−1)s2+1 f2 then RF( f )= (−1)s1+s2+1 f .

Proof. See [4].
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Example 4.3. Take S1 = 〈6,7〉 and S2 = 〈8,9〉, let examine the gluing of these two numerical
semigroups.
For S1 = 〈6,7〉, F(S1)= 29.
For S2 = 〈8,9〉, F(S2)= 55.
Now, let us find the gluing of S1 and S2. Choose p and q such that,

p = 13 ∈ S1 −〈6,7〉 and q = 17 ∈ S2 −〈8,9〉 .

Therefore, it is clear that p = 13= 1.6+1.7 and q = 17= 1.8+1.9.
Thus, it is obtained

S = 〈17.6,17.7,13.8,13.9〉
= 〈102,117,104,117〉 .

From Definition 4.1, Frobenius number is F(S)= 1429.
Now, let us find the RF-matrices of S1 and S2.
For S1 = 〈6,7〉, take n1 = 6, n2 = 7,29 ∈PF(S1).
Write αii =−1 and

∑2
j=1 ai jn j = 29, i.e.,

a11n1 +a12n2 = 29 ,

a21n1 +a22n2 = 29

in particular

(−1) ·6+ (5) ·7= 29,

(6) ·6+ (−1) ·7= 29 .

So, the RF-matrix of PF(S1)= 29 is(−1 5
6 −1

)
.

For S2 = 〈8,9〉, let us take n1 = 8,n2 = 9 are generators. 55 ∈ PF(S2) and setting αii =−1 and∑2
j=1 ai jn j = 55 the equations, similarly, we obtain the RF-matrix of 55 ∈PF(S2) is(−1 7

8 −1

)
.

Therefore, from Theorem 4.2, the RF-matrix of S is

RF(1429)=
(
RF(29) M1

M2 RF(55)

)
,

RF(185)=


−1 5 1 1
6 −1 1 1
1 1 −1 7
1 1 8 −1

 .
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5. Conclusion
In this study, we represent the numerical duplication of a numerical semigroups that was
examined by Anna and Strazzanti in 2012 [3] with the help of RF-matrices. Also, we give
the gluing of the numerical semigroups via RF-matrices this was firstly introduced by
A. Moscariello [7]. He use it to prove that the upper bound of the type of almost symmetric
semigroup of embedding dimension four is three.
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