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1. Introduction
Data analytics is the process of analysing data to derive useful insights and make decisions
from the information they contain. This is the era where a soaring population has an easier
access to electronic gadgets. Thus data is increasing in volume with a great magnitude making
it an asset to obtain information. Due to this reason, many organizations use data analytics
to make better business solutions thus increasing their revenue. Moreover, data has become
an expensive asset because of the fact that organizations require highly sophisticated tools to
collect data from various sources and process the same to be ready for analyses.

Data broadcasting is the process of distributing data from one or more source nodes to other
nodes. The efficiency of the data broadcasting network relies on its performance under fault
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tolerant conditions. We propose that graph theoritical tools, namely, toughness and maximum
extension of a t-tough set can identify the nodes prone to faults and provide a fault propagation
warning.

Toughness is a measure to estimate the closeness of the vertices of a graph. Chvátal [4]
introduced and coined the definition of toughness of a graph as follows:

Definition 1. Toughness [4] of a graph G is defined as the real number τ> 0 such that it is the
minimum of the ratio of the number of vertices in the cutset S to the number of components in
G \ S taken over all possible cutsets S of G.

τ=min
|S|

ω(G \ S)
, for all S ⊂V . (1.1)

For a connected graph G, the upper bound and lower bound of τ(G) are governed by the
following theorems:

Theorem 1 ([4]). If G is not complete, then τ≤ κ
2 .

Theorem 2 ([8]). For a connected graph G, τ≥ κ
∆ .

Whereas, for a connected planar graph the following theorem defines the upper bound and
lower bound of τ(G):

Theorem 3 ([9]). If G is a connected planar graph of connectivity κ, then
κ

2
−1< τ(G)≤ κ

2
.

We have introduced and characterized the extension of a t-tough set of a graph and hence
the maximum extension of the same.

Definition 2. A t-tough set [6] of a connected graph G, denoted as St, is defined as a cutset
S ⊂V (G) which satisfies the following equation:

t = |S|
ω(G \ S)

, t ≥ τ .

Definition 3. For a connected graph G, a t′-tough set St′ is called an extension [6] of a t-tough
set St if whenever t′ ≤ t, S ⊆ S′.

(i) If t′ = t, then St′ is called a weak extension of St.

(ii) If t′ < t, then St′ is called a strong extension of St.

Definition 4. A tm-tough set Stm is called a maximum extension of a t-tough set St if there
does not exist a t0-tough set St0 such that t0 ≤ tm ≤ t and St0 ⊃ Stm ⊃ St.

1.1 Literature Survey
An extensive study on the toughness of various graphs in available in literature. Chvátal [4]
investigated the toughness of complete graphs, product of complete graphs and complete
bipartite graphs. Kevin [7] derived the toughness of generalised Petersen graphs and established
all of its tough sets. The toughness of split graphs and a polynomial time algorithm to generate
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the same were determined by Woeginger [12,14]. The toughness of cubic graphs was investigated
by Goddard [10]. Cynthia et al. [5] investigated the toughness of cyclic split graphs and
generalised prism graphs. The toughness and extension of certain t-tough sets of the mesh
graphs were established by Cynthia et al. [6].

In this paper, we investigate the toughness and maximum extension of certain t-tough sets
of the bloom graph Bm,n, m ≥ 3, n ≥ 3.

Definition 5. The bloom graph [15] Bm,n, m ≥ 3, n ≥ 3 is defined as follows:

V (Bm,n)= {vi j | 0≤ i ≤ m−1, 0≤ j ≤ n−1} .

Two distinct vertices vi1 j1 and vi2 j2 are adjacent if and only if

(i) i2 = i1 +1 and j1 = j2,

(ii) i1 = i2 = 0 and j1 +1≡ j2(mod n),

(iii) i1 = i2 = m−1 and j1 +1≡ j2(mod n),

(iv) i2 = i1 +1 and j1 +1≡ j2(mod n).

v0 0 v0 1 v0 2 v0 3

v1 0 v1 1 v1 2 v1 3

v2 0 v2 1 v2 2 v2 3

v3 0 v3 1 v3 2 v3 3

v4 0 v4 1 v4 2 v4 3

Figure 1. Bloom graph B5,4

2. Toughness and τ-Tough Sets of B3,n, n≥ 3
The toughness of bloom graph B3,3 is 1.5. The cutset and components of B3,3 are illustrated as
follows:

v0 0 v0 1 v0 2

v1 0 v1 1 v1 2

v2 0 v2 1 v2 2

(a)

v0 0 v0 1 v0 2

v2 0 v2 1 v2 2

(b)

Figure 2. (a) Cutset S of the Bloom graph B3,3; (b) Components of B3,3 \ S
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Theorem 4. Let Bm,n, m ≥ 3, n > 3 be the bloom graph on mn vertices. Then, the minimum
toughness of the bloom graph B3,n, n > 3 is given by

τ(B3,n)= 2 .

Proof. Consider the bloom graph B3,n, n > 3. The bloom graph is planar [15] and it is easy to
verify that κ(Bm,3)= 4. Therefore, theorem 1 and theorem 3 imply that

1< τ(B3,n)≤ 2 . (2.1)

We claim that the bound for τ(B(3,n)) is sharp at 2. Equation (2.1) imply that

τ(B3,n)> 1 .

Therefore, there exists a τ-tough set S of B3,n, such that

|S| ≥ nb3
2
c

which implies

τ(B3,n)> nb3
2c

3n−nb3
2c−n

.

By the adjacency of vertices in B3,n, for every

v1 j ∈V (B3,n) .

We have

(v0 j,v1 j), (v0 j−1,v1 j), (v2 j,v1 j), (v2 j+1,v1 j) ∈ E(B3,n) .

Therefore, let

S = {vi j | i = 0,2,0≤ j ≤ n−1} .

v0 0 v0 1 v0 2 v0 3 v0 4 v0 5

v1 0 v1 1 v1 2 v1 3 v1 4 v1 5

v2 0 v2 1 v2 2 v2 3 v2 4 v2 5

(a)

v1 0 v1 1 v1 2 v1 3 v1 4 v1 5

(b)

Figure 3. (a) Cutset S of the Bloom graph B3,6; (b) Components of B3,6 \ S

Clearly, |S| = 2n and B3,n \ S yields n components. Hence,
|S|

ω(B3,n \ S)
= 2 . (2.2)

We claim that τ(B3,n)= 2. Suppose τ(B3,n) 6= 2, then it is possible to find a cutset of B3,n, say S0,
such that |S0| < |S| and ω(B3,n \ S0)≤ω(B3,n \ S) and

|S0|
ω(B3,n \ S0)

< 2 .

Since, S is the largest cutset of B3,n satisfying eq. (2.2), we have the following two cases:
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Case (i). S0 ⊂ S
Then, there exists atleast one vertex vi j ∈ S such that vi j ∉ S0. Without loss of generality,
let vi j ' v0 j . Then, by the adjacency of vertices in B3,n, P3 ' v1 j − v0; j − v0, j+1 and n−2
trivial vertices are the component of B3,n \ S0. Therefore,

|S0|
ω(B3,n \ S0)

= 2n−1
n−2

> 2 .

The components of B3,n \S are trivial and the vertices of B3,n \S are adjacent to exactly 2
vertices in {vi j | i = 2,0≤ j ≤ n−1} and {vi j | i = 0,0≤ j ≤ n−1}, respectively. Hence, it is
not possible to construct S0. The minimal cutset S0 ⊂ S is of the form

S0 = {v0 j−1,v0 j,v2 j,v2 j+1}

and
|S0|

ω(B3,n \ S0)
= 2

Case (ii). S0 6⊂ S
Then, there exists atleast one vertex vi j ∈ S0 such that vi j ∉ S. Since, S is the larget
cutset, |S0| < |S| and

|S0|
ω(B3,n \ S0)

< |S|
ω(B3,n \ S)

.

We have ω(B3,n \ S0)<ω(B3,n \ S). Therefore,

2≤ω(B3,n \ S0)< n .

Then, n < |S0| < 2n. Then, the argument that such an S0 does not exist is similiar to the
previous case.

2.1 τ-Tough Sets of B3,n, n≥ 3
In this subsection, we exhibit the 2-tough sets of B3,n. Since, B3,n is 4-regular, κ= 4 and τ= 2,
there exists 2-tough sets S2 such that |S2| = 4.

Denote the 2-tough set on 4 vertices using S4l
2 , 1≤ l ≤ 5. Then,

S41
2 = {v0 j,v0 j+k,v2 j+1,v2 j+k+1 | 1≤ j ≤ n−1, 1≤ k ≤ n−1},

S42
2 = {v0 j,v1 j+2,v2 j+1,v2 j+3 | 1≤ j ≤ n−1, 1≤ k ≤ n−1},

S43
2 = {v0 j,v1 j−1,v2 j+1,v2 j−1 | 1≤ j ≤ n−1, 1≤ k ≤ n−1},

S44
2 = {v0 j,v1 j+1,v0 j+2,v2 j+3 | 1≤ j ≤ n−1, 1≤ k ≤ n−1},

S45
2 = {v0 j,v1 j+2,v0 j+2,v2 j+1 | 1≤ j ≤ n−1, 1≤ k ≤ n−1},

generates all possible 2-tough sets of cardinality 4.
For each graph B3,n \ S4l

2 , 1≤ l ≤ 5 and d(vi j)= 2 if and only if vi j is adjacent to atmost one
pair of vertices from S4l

2 in B3,n where vi j ∈ V (B3,n \ S4l
2 ). Then, 2-tough sets of cardinality 6

can be generated including the two vertices adjacent to vi; j in the corresponding S4l
2 . Using the

same argument for the graph B3,n, 2-tough sets of cardinality 8,10,12, . . . ,2n can be generated.
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3. Toughness and τ-Tough Sets of Bm,n, m> 3, n= 3,4
Theorem 5. Let Bm,n, m ≥ 3, n ≥ 3 be the bloom graph on mn vertices. Then, the minimum
toughness of the bloom graph Bm,n, m > 3, n = 3,4 is given by

τ(Bm,n)=
{

n(m−1)
n(m−3)+4 m odd,

n(m−2)
n(m−1)+2 m even.

Proof. Consider the bloom graph Bm,n, m > 3, n = 3,4. The bloom graph is planar [15] and it is
easy to verify that κ(Bm,3)= 4. Therefore, Theorem 1 and Theorem 3 imply that

1< τ(Bm,n)≤ 2 . (3.1)

Case 1: When m odd
We claim that the bound for τ(Bm,n) is sharp at n(m−1)

n(m−3)+4 .
Equation (3.1) imply that

τ(Bm,n)> 1

Therefore, there exists a τ-tough set S of Bm,n, such that

|S| ≥ nbm
2
c

which implies

τ(Bm,n)> nbm
2 c

mn−nbm
2 c−n

. (3.2)

Consider,

S = {vi j | i = 1,3,5, . . . ,m−2, 0≤ j ≤ n−1} . (3.3)

Clearly, |S| = nbm
2 c and Bm,n \ S yields mn−nbm

2 c−2n+2 components.

v0 0 v0 1 v0 2 v0 3

v1 0 v1 1 v1 2 v1 3

v2 0 v2 1 v2 2 v2 3

v3 0 v3 1 v3 2 v3 3

v4 0 v4 1 v4 2 v4 3

(a)

v0 0 v0 1 v0 2 v0 3

v2 0 v2 1 v2 2 v2 3

v4 0 v4 1 v4 2 v4 3

(b)

Figure 4. (a) Cutset S of the Bloom graph B5,4; (b) Components of B5,4 \ S

Therefore,
|S|

ω(Bm,n \ S)
= nbm

2 c
mn−nbm

2 c−2n+2
. (3.4)
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Moreover, S defined in eq. (3.3) is the only cutset of Bm,n which satisfies eq. (3.4). By
contrary, consider the following cutset with nbm

2 c vertices.

S1 = {vi j | i = 0,2,4, . . . ,m−3, 0≤ j ≤ n−1} .

Bm,n \ S1 yields mn−nbm
2 c−2n+1 components. Therefore,

ω(Bm,n \ S1)<ω(Bm,n \ S) .

It can be similarly proved for other cutsets with cardinality nbm
2 c by showing that they

are analogous to S1.
Then, eqs. (3.1), (3.2) and (3.4) imply that

1≤ nbn
2 c

mn−nbm
2 c−2n+2

< τ(Bm,n)≤ 2 .

As m increases, eq. (3.4) tends to 1. Therefore,

τ(Bm,n)= nbm
2 c

mn−nbm
2 c−2n+2

.

On simplifying,

τ(Bm,n)= n(m−1)
n(m−3)+4

. (3.5)

Case 2: When m even
We claim that the bound for τ(Bm,n) is sharp at n(m−2)

n(m−1)+2 .
Equation (3.1) imply that

τ(Bm,n)> 1 .

Therefore, there exists a τ-tough set S of B3,n, such that

|S| ≥ mn
2

. (3.6)

which implies

τ(Bm,n)>
mn
2

mn− mn
2

Consider the following cutset:

S = {vi j | i = 1,3,5, . . . ,m−1, 0≤ j ≤ n−1} .

Clearly, |S| = mn
2 and Bm,n \ S yields mn

2 −n+1 components.
Therefore,

|S|
ω(Bm,4 \ S)

=
mn
2

mn
2 −n+1

.

Also, cutsets of Bm,n analogous to S satisfy the following equation:

1≤
mn
2

mn
2 −n+1

< τ(Bm,n)≤ 2 .

We claim that it is possible to find a cutset S1 such that |S1| < |S| and
|S1|

ω(Bm,n \ S1)
< |S|
ω(Bm,n \ S)

.
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We attain S1 by excluding some vertices from S. Let

S1 = {vi j | i = 1,3,5, . . . ,m−3, 0≤ j ≤ n−1} . (3.7)

v0 0 v0 1 v0 2 v0 3

v1 0 v1 1 v1 2 v1 3

v2 0 v2 1 v2 2 v2 3

v3 0 v3 1 v3 2 v3 3

v4 0 v4 1 v4 2 v4 3

v5 0 v5 1 v5 2 v5 3

v6 0 v6 1 v6 2 v6 3

v7 0 v7 1 v7 2 v7 3

(a)

v0 0 v0 1 v0 2 v0 3

v2 0 v2 1 v2 2 v2 3

v4 0 v4 1 v4 2 v4 3

v6 0 v6 1 v6 2 v6 3

v7 0 v7 1 v7 2 v7 3

(b)

Figure 5. (a) Cutset S1 of the Bloom graph B8,4; (b) Components of B8,4 \ S1

Clearly, |S1| < |S|. Also,

|S1|
ω(Bm,n \ S1)

=
n(m−2)

2

mn− n(m−2)
2 −3n+2

<
mn
2

mn
2 −n+1

implies that S1 is a contradiction to eq. (3.6). Therefore, if S is a τ - tough set of Bm,n,
then

|S| ≥ n(m−2)
2

.

By contradiction, suppose it is possible to find a cutset S0 such that |S0| < |S1| < |S|.
Consider,

S0 = {vi j | i = 1,3,5,7, . . . ,m−5, 0≤ j ≤ n−1} .

It can be observed that
mn
2

mn
2 −n+1

> |S0|
ω(Bm,n \ S0)

=
n(m−4)

2

mn− n(m−4)
2 −4n+1

>
n(m−2)

2

mn− n(m−2)
2 −3n+2

.

Hence,

1<
n(m−2)

2

mn− n(m−2)
2 −3n+2

≤ τ(Bm,n) .

On simplifying,

1< n(m−2)
n(m−1)+2

≤ τ(Bm,n) .
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As m increases, n(m−2)
n(m−1)+2 tends to 1. Therefore,

τ(Bm,n)= n(m−2)
n(m−1)+2

.

3.1 τ-Tough Sets of B(m,n), m> 3, n= 3,4
Case (i). When m odd

Since, S defined in eq. (3.3) is the only cutset satisfying eq. (3.5), the τ-tough set of B(m,n),
m > 3, n = 3,4 is given by

Sτ = {vi j | i = 1,3,5, . . . ,m−3, 0≤ j ≤ n−1}.

Case (ii). When m even
Since, S defined in eq. (3.7) is a cutset attaining τ(Bm,n),

S1
τ = {vi j | i = 1,3,5, . . . ,m−3, 0≤ j ≤ n−1}

is a τ-tough set of Bm,n, m even, n = 3,4. Since m is even, it is possible to find a cutset
analogous to S such that it attains τ(Bm,n), say S2

τ . Then,

S2
τ = {vi j | i = 2,4,6, . . . ,m−2, 0≤ j ≤ n−1}.

4. Toughness and τ-Tough Sets of Bm,n, m≥ 4, n> 4, m odd
Theorem 6. Let Bm,n, m ≥ 3, n ≥ 3 be the bloom graph on mn vertices. Then, the minimum
toughness of the bloom graph Bm,n, m ≥ 4, n > 4, m odd is given by

τ(Bm,n)=


n(m−1)

n(m−3)+4 n ≤ m,
n(m+1)−2
n(m−1)−2 n > m, n odd,
m+1
m−1 n > m, n even.

Proof. Consider the bloom graph Bm,n, m < n−1, n > 4. The bloom graph is planar [15] and it
is easy to verify that κ(Bm,3)= 4. Therefore, Theorem 1 and Theorem 3 imply that

1< τ(Bm,n)≤ 2 . (4.1)

Therefore, there exists a τ-tough set S of Bm,n, such that

|S| ≥ nbm
2
c

which implies

τ(Bm,n)> nbm
2 c

mn−nbm
2 c−n

(4.2)

Consider,

S = {vi j | i = 1,3,5, . . . ,m−2, 0≤ j ≤ n−1} . (4.3)

Clearly, |S| = nbm
2 c and Bm,n \ S yields mn−nbm

2 c−2n+2 components. Therefore,

|S|
ω(Bm,n \ S)

= nbm
2 c

mn−nbm
2 c−2n+2

. (4.4)
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Moreover, S defined in eq. (4.3) is the only cutset of Bm,n which satisfies eq. (4.4). By contrary,
consider the following cutset with nbm

2 c vertices.

S1 = {vi j | i = 0,2,4, . . . ,m−3, 0≤ j ≤ n−1} .

Then, Bm,n \ S1 yields mn−nbm
2 c−2n+1 components. Therefore,

ω(Bm,n \ S1)<ω(Bm,n \ S) .

It can be similarly proved for other cutsets with cardinality nbm
2 c by showing that they are

analogous to S1.
Then, eq. (4.1), eq. (4.2) and eq. (4.4) imply that

1≤ nbm
2 c

mn−nbm
2 c−2n+2

< τ(Bm,n)≤ 2 .

For Bm,n \ S it is clear that for S∪ {vi j} where, vi j ∈ {vi j | i = 2,4,6, . . . ,m−3, 0≤ j ≤ n−1}, we
have

|S∪ {vi j}|
ω(Bm,n \ S∪ {vi j})

= nbm
2 c+1

mn−nbm
2 c−2n+1

> |S|
ω(Bm,n \ S)

.

Then, depending on the vertices that can be included in S, we have the following cases:

Case (i): When, n ≤ m

Subcase (i): n odd
Without loss of generality, let

S0 = S∪ {vi j | i = 0,m−1, j = 0,2,4, . . . ,n−3} .

Then, n ≤ m implies that
|S0|

ω(Bm,n \ S0)
= nbm

2 c+n−1
mn−nbm

2 c−n+1
> nbm

2 c
mn−nbm

2 c−2n+2

v0 0 v0 1 v0 2 v0 3 v0 4

v1 0 v1 1 v1 2 v1 3 v1 4

v2 0 v2 1 v2 2 v2 3 v2 4

v3 0 v3 1 v3 2 v3 3 v3 4

v4 0 v4 1 v4 2 v4 3 v4 4

(a)

v0 0 v0 1 v0 2 v0 3 v0 4

v2 0 v2 1 v2 2 v2 3 v2 4

v4 0 v4 1 v4 2 v4 3 v4 4

(b)

Figure 6. (a) Cutset S of the Bloom graph B5,5; (b) Components of B5,5 \ S

Also, including every pair of independent vertices from {vi j | i = 0, j = 0,2,4, . . . ,n−3}
and {vi j | i = m−1, j = 0,2,4, . . . ,n−3} respectively increases the ratio of number of
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vertices in S to the number of components in Bm,n \ S in the ratio 2 : 1. Hence,

τ(Bm,n)= nbm
2 c

mn−nbm
2 c−2n+2

.

On simplifying,

τ(Bm,n)= n(m−1)
n(m−3)+4

. (4.5)

Subcase (ii): n even
Without loss of generality, let

S0 = S∪ {vi j | i = 0,m−1, j = 0,2,4, . . . ,n−2} .

Then, n ≤ m implies that
|S0|

ω(Bm,n \ S0)
= nbm

2 c+n
mn−nbm

2 c−n
> nbm

2 c
mn−nbm

2 c−2n+2
.

Also, including every pair of independent vertices from {vi j | i = 0, j = 0,2,4, . . . ,n−2}
and {vi j | i = m−1, j = 0,2,4, . . . ,n−2} respectively increases the ratio of number of
vertices in S to the number of components in Bm,n \ S in the ratio 2 : 1. Hence,

τ(Bm,n)= nbm
2 c

mn−nbm
2 c−2n+2

.

On simplifying,

τ(Bm,n)= n(m−1)
n(m−3)+4

. (4.6)

v0 0 v0 1 v0 2 v0 3 v0 4 v0 5

v1 0 v1 1 v1 2 v1 3 v1 4 v1 5

v2 0 v2 1 v2 2 v2 3 v2 4 v2 5

v3 0 v3 1 v3 2 v3 3 v3 4 v3 5

v4 0 v4 1 v4 2 v4 3 v4 4 v4 5

v5 0 v5 1 v5 2 v5 3 v5 4 v5 5

v6 0 v6 1 v6 2 v6 3 v6 4 v6 5

(a)

v0 0 v0 1 v0 2 v0 3 v0 4 v0 5

v2 0 v2 1 v2 2 v2 3 v2 4 v2 5

v4 0 v4 1 v4 2 v4 3 v4 4 v4 5

v6 0 v6 1 v6 2 v6 3 v6 4 v6 5

(b)

Figure 7. (a) Cutset S of the Bloom graph B7,6; (b) Components of B7,6 \ S

Case (ii): When n > m

Subcase (i): n odd
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Without loss of generality, let

S0 = S∪ {vi j | i = 0,m−1, j = 0,2,4, . . . ,n−3}. (4.7)

v0 0 v0 1 v0 2 v0 3 v0 4 v0 5 v0 6

v1 0 v1 1 v1 2 v1 3 v1 4 v1 5 v1 6

v2 0 v2 1 v2 2 v2 3 v2 4 v2 5 v2 6

v3 0 v3 1 v3 2 v3 3 v3 4 v3 5 v3 6

v4 0 v4 1 v4 2 v4 3 v4 4 v4 5 v4 6

(a)

v2 0 v2 1 v2 2 v2 3 v2 4 v2 5 v2 6

v0 1 v0 3 v0 5 v0 6

v4 1 v4 3 v4 5 v4 6

(b)

Figure 8. (a) Cutset S0 of the Bloom graph; B5,7, (b) Components of B5,7 \ S0

Then, n > m implies that
|S0|

ω(Bm,n \ S0)
= nbm

2 c+n−1
mn−nbm

2 c−n+1
< nbm

2 c
mn−nbm

2 c−2n+2
.

Since, the components of Bm,n \ S0 are isomorphic to K1,

τ(Bm,n)= nbm
2 c+n−1

mn−nbm
2 c−n+1

.

On simplifying,

τ(Bm,n)= n(m+1)−2
n(m−1)−2

.

Subcase (ii): n even
Without loss of generality, let

S0 = {vi j | i = 1,3,5, . . . ,m−2, 0≤ j ≤ n−1}∪ {vi j | i = 0,m−1, j = 0,2,4, . . . ,n−2}
(4.8)

n > m implies that
|S0|

ω(Bm,n \ S0)
= nbm

2 c+n
mn−nbm

2 c−n
< nbm

2 c
mn−nbm

2 c−2n+2
.

Since, the components of Bm,n \ S0 are isomorphic to K1,

τ(Bm,n)= nbm
2 c+n

mn−nbm
2 c−n

.

On simplifying,

τ(Bm,n)= m+1
m−1

.
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v0 0 v0 1 v0 2 v0 3 v0 4 v0 5

v1 0 v1 1 v1 2 v1 3 v1 4 v1 5

v2 0 v2 1 v2 2 v2 3 v2 4 v2 5

v3 0 v3 1 v3 2 v3 3 v3 4 v3 5

v4 0 v4 1 v4 2 v4 3 v4 4 v4 5

(a)

v2 0 v2 1 v2 2 v2 3 v2 4 v2 5

v0 1 v0 3 v0 5

v4 1 v4 3 v4 5

(b)

Figure 9. (a) Cutset S0 of the Bloom graph B5,6; (b) Components of B5,6 \ S0

4.1 τ-Tough Sets of B(m,n), m≥ 4, n> 4, m odd
Case (i). When n ≤ m

Since, S defined in eq. (4.3) is the only cutset satisfying eqs. (4.5) and (4.6), the τ-tough
set of B(m,n), m ≥ 4, n ≤ m, m odd is given by

Sτ = {vi j | i = 1,3,5, . . . ,m−2, 0≤ j ≤ n−1} . (4.9)

Case (ii). When n > m

Subcase (i): n odd
Since, S0 defined in eq. (4.7) is a cutset attaining τ(Bm,n) derived in eq. (4.5),

S1
τ = S∪ {vi j | i = 0,m−1, j = 0,2,4, . . . ,n−3},

where

S = {vi j | i = 1,3,5, . . . ,m−2, 0≤ j ≤ n−1}

is a τ-tough set of Bm,n, m ≥ 4, n > m, m odd. Let

V0 = {v0 j | j = 0,2,4, . . . ,n−3},

Vm−1 = {vm−1 j | j = 0,2,4, . . . ,n−3}.

Then,

S1
τ = S∪V0 ∪Vm−1.

Since, S is unique, the remaining τ-tough sets can be obtained with respect to V0

and Vm−1. By the definition of V0 and Vm−1, they are cutsets of the components of
Bm,n isomorphic to cycle graph Cn. In general, cutsets of Cn analogous to V0 and
Vm−1 are as follows:

V ′
0 = {v0 j+2 v0 j+4 . . . v0 j−3 v0 j−1, 0≤ j ≤ n−1}

such that (v0 j+2 v0 j+4 . . . v0 j−3 v0 j−1)(v0 j v0 j+1), 0 ≤ j ≤ n − 1 generates the
components of Cn, namely the trivial components v0 j+2, v0 j+4, . . . , v0 j−3, v0 j−1

and the component (v0 j,v0 j+1) isomorphic to K2. Similarly,

V ′
m−1 = {vm−1 j+2 vm−1 j+4 . . . vm−1 j−3 vm−1 j−1, 0≤ j ≤ n−1}
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such that (vm−1 j+2 vm−1 j+4 . . . vm−1 j−3 vm−1 j−1)(vm−1 j vm−1 j+1), 0 ≤ j ≤ n − 1
generates the cut vertices of Cn, namely, vm−1 j+2, vm−1 j+4, . . . , vm−1 j−3, vm−1 j−1

and the component (vm−1 j,vm−1 j+1) isomorphic to K2.
Hence, following are the τ - tough sets of Bm,n, m ≥ 4, n > m, n odd, m odd:

Sτ = S∪V ′
0 ∪V ′

m−1 . (4.10)

Subcase (ii): n even
Since, S0 defined in eq. (4.8) is a cutset attaining τ(Bm,n) derived in eq. (4.6),

S1
τ = S∪ {vi j | i = 0,m−1, j = 0,2,4, . . . ,n−2},

where

S = {vi j | i = 1,3,5, . . . ,m−2, 0≤ j ≤ n−1}

is a τ-tough set of Bm,n, m ≥ 4, n > m, m odd. Let

V0 = {v0 j | j = 0,2,4, . . . ,n−2},

Vm−1 = {vm−1 j | j = 0,2,4, . . . ,n−2}.

Then,

S1
τ = S∪V0 ∪Vm−1 .

Since, S is unique, the remaining τ-tough sets can be obtained with respect to V0

and Vm−1. By the definition of V0 and Vm−1, they are cutsets of the components of
Bm,n isomorphic to cycle graph Cn. In general, cutsets of Cn analogous to V0 and
Vm−1 are as follows:

V ′
0 = {v0 j,v0 j+2,v0 j+4, . . . ,v0 j−2 | 0≤ j ≤ n−1},

V ′
m−1 = {vm−1 j,vm−1 j+2,vm−1 j+4, . . . ,vm−1 j−2 | 0≤ j ≤ n−1}.

Hence, following are the τ-tough sets of Bm,n, m ≥ 4, n > m, n even, m odd:

Sτ = S∪V ′
0 ∪V ′

m−1 . (4.11)

5. Toughness and τ-Tough Sets of Bm,n, m≥ 4, n> 4, m even
Theorem 7. Let Bm,n, m ≥ 3, n ≥ 3 be the bloom graph on mn vertices. Then, the minimum
toughness of the bloom graph Bm,n, m ≥ 4, n > 4, m even is given by

τ(Bm,n)=


mn

n(m−2)+2 n ≤ m,
n(m+1)−1
n(m−1)−1 n > m, n odd,
m+1
m−1 n > m, n even.

Proof. Consider the bloom graph Bm,n, m < n−1, n > 4. The bloom graph is planar [15] and it
is easy to verify that κ(Bm,3)= 4. Therefore, Theorem 1 and Theorem 3 imply that

1< τ(Bm,n)≤ 2 .

Therefore, there exists a τ tough set S of Bm,n, such that

|S| ≥ mn
2
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which implies

τ(Bm,n)>
mn
2

mn− mn
2

.

Consider the following cutset:

S = {vi j | i = 1,3,5, . . . ,m−1, 0≤ j ≤ n−1}. (5.1)

Clearly, |S| = mn
2 and Bm,n \ S yields mn

2 −n+1 components. Therefore,

|S|
ω(Bm,4 \ S)

=
mn
2

mn
2 −n+1

.

Also, cutsets of Bm,n analogous to S satisfy the following equation:

1≤
mn
2

mn
2 −n+1

< τ(Bm,n)≤ 2 .

From, Bm,n \S it is clear that for S∪{vi j} where, vi j ∈ {vi j | i = 2,4,6, . . . ,m−2, 0≤ j ≤ n−1}, we
have

|S∪ {vi j}|
ω(Bm,n \ S∪ {vi j})

=
mn
2 +1

mn
2 −n

> |S|
ω(Bm,n \ S)

Then, depending on the vertices that can be included in S, we have the following cases:

Case (i): When n ≤ m

Subcase (i): When n odd
Without loss of generality, let

S0 = S∪ {vi j | i = 0, j = 0,2,4, . . . ,n−3}.

v0 0 v0 1 v0 2 v0 3 v0 4

v1 0 v1 1 v1 2 v1 3 v1 4

v2 0 v2 1 v2 2 v2 3 v2 4

v3 0 v3 1 v3 2 v3 3 v3 4

v4 0 v4 1 v4 2 v4 3 v4 4

v5 0 v5 1 v5 2 v5 3 v5 4

(a)

v0 0 v0 1 v0 2 v0 3 v0 4

v2 0 v2 1 v2 2 v2 3 v2 4

v4 0 v4 1 v4 2 v4 3 v4 4

(b)

Figure 10. (a) Cutset S of the Bloom graph B6,5; (b) Components of B6,5 \ S

Then, n ≤ m implies that
|S0|

ω(Bm,n \ S0)
=

mn
2 +bn

2 c
mn
2 −n+bn

2 c
>

mn
2

mn
2 −n+1

.
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Also, including every pair of independent vertices from {vi j | i = 0, j = 0,2,4, . . . ,n−3}
increases the ratio of number of vertices in S to the number of components in Bm,n\S
in the ratio 2 : 1. Hence,

τ(Bm,n)=
mn
2

mn
2 −n+1

.

On simplifying,

τ(Bm,n)= mn
n(m−2)+2

.

Subcase (ii): When n even
Without loss of generality, let

S0 = S∪ {vi j | i = 0, j = 0,2,4, . . . ,n−2} .

v0 0 v0 1 v0 2 v0 3 v0 4 v0 5

v1 0 v1 1 v1 2 v1 3 v1 4 v1 5

v2 0 v2 1 v2 2 v2 3 v2 4 v2 5

v3 0 v3 1 v3 2 v3 3 v3 4 v3 5

v4 0 v4 1 v4 2 v4 3 v4 4 v4 5

v5 0 v5 1 v5 2 v5 3 v5 4 v5 5

(a)

v0 0 v0 1 v0 2 v0 3 v0 4 v0 5

v2 0 v2 1 v2 2 v2 3 v2 4 v2 5

v4 0 v4 1 v4 2 v4 3 v4 4 v4 5

(b)

Figure 11. (a) Cutset S of the Bloom graph B6,6; (b) Components of B6,6 \ S

Then, n ≤ m implies that
|S0|

ω(Bm,n \ S0)
=

mn
2 + n

2
mn
2 − n

2
>

mn
2

mn
2 −n+1

.

Also, including every pair of independent vertices from {vi j | i = 0, j = 0,2,4, . . . ,n−2}
increases the ratio of number of vertices in S to the number of components in Bm,n\S
in the ratio 2 : 1. Hence,

τ(Bm,n)=
mn
2

mn
2 −n+1

.

On simplifying,

τ(Bm,n)= mn
n(m−2)+2

.

Case (ii): When n > m

Subcase (i): n odd
Without loss of generality, let

S0 = S∪ {vi j | i = 0, j = 0,2,4, . . . ,n−3} . (5.2)
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v0 0 v0 1 v0 2 v0 3 v0 4

v1 0 v1 1 v1 2 v1 3 v1 4

v2 0 v2 1 v2 2 v2 3 v2 4

v3 0 v3 1 v3 2 v3 3 v3 4

(a)

v2 0 v2 1 v2 2 v2 3 v2 4

v0 1 v0 3 v0 4

(b)

Figure 12. (a) Cutset S0 of the Bloom graph B4,5; (b) Components of B4,5 \ S0

Then, n > m implies that
|S0|

ω(Bm,n \ S0)
=

mn
2 +bn

2 c
mn
2 −n+bn

2 c
<

mn
2

mn
2 −n+1

.

Since, the components of Bm,n \ S0 are isomorphic to K1,

τ(Bm,n)=
mn
2 +bn

2 c
mn
2 −n+bn

2 c
.

On simplifying,

τ(Bm,n)= n(m+1)−1
n(m−1)−1

. (5.3)

Subcase (ii): n even
Without loss of generality, let

S0 = S∪ {vi j | i = 0, j = 0,2,4, . . . ,n−2} . (5.4)

v0 0 v0 1 v0 2 v0 3 v0 4 v0 5

v1 0 v1 1 v1 2 v1 3 v1 4 v1 5

v2 0 v2 1 v2 2 v2 3 v2 4 v2 5

v3 0 v3 1 v3 2 v3 3 v3 4 v3 5

(a)

v2 0 v2 1 v2 2 v2 3 v2 4 v2 5

v0 1 v0 3 v0 5

(b)

Figure 13. (a) Cutset S0 of the Bloom graph B4,6; (b) Components of B4,6 \ S0

Then, m < n implies that
|S0|

ω(Bm,n \ S0)
=

mn
2 + n

2
mn
2 −n+ n

2
<

mn
2

mn
2 −n+1

.

Since, the components of Bm,n \ S0 are isomorphic to K1,

τ(Bm,n)=
mn
2 + n

2
mn
2 −n+ n

2
.
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On simplifying,

τ(Bm,n)= m+1
m−1

(5.5)

5.1 τ-Tough Sets of B(m,n), m≥ 4, n> 4, m even
Case (i): When n ≤ m

Since, S defined in eq. (5.1) is a cutset attaining τ(Bm,n),

S1
τ = {vi j | i = 1,3,5, . . . ,m−1, 0≤ j ≤ n−1} .

is a τ-tough set of Bm,n, m ≥ 4, n ≤ m, m even. Since m is even, it is possible to find a
cutset analogous to S such that it attains τ(Bm,n), say S2

τ . Then,

S2
τ = {vi j | i = 0,2,4, . . . ,m−2, 0≤ j ≤ n−1} . (5.6)

Case (ii). When n > m

Subcase (i): n odd
Since, S0 defined in eq. (5.2) is a cutset attaining τ(Bm,n) derived in eq. (5.3),

S1
τ = S∪ {vi j | i = 0, j = 0,2,4, . . . ,n−3},

where

S = {vi j | i = 1,3,5, . . . ,m−1, 0≤ j ≤ n−1}

is a cutset of Bm,n, m ≥ 4, n > m, m even.
Let

V0 = {v0 j | j = 0,2,4, . . . ,n−3} .

Then,

S1
τ = S∪V0 .

Since, S is unique, the remaining τ-tough sets can be obtained with respect to V0.
By the definition of V0, it is the cutset of the component of Bm,n isomorphic to cycle
graph Cn. In general, cutsets of Cn analogous to V0 are as follows:

V ′
0 = {v0 j+2 v0 j+4 . . . v0 j−3 v0 j−1, 0≤ j ≤ n−1}

such that (v0 j+2 v0 j+4 . . . v0 j−3 v0 j−1)(v0 j v0 j+1), 0 ≤ j ≤ n− 1 generates the cut
vertices of Cn, namely, v0 j+2, v0 j+4, . . . , v0 j−3, v0 j−1 and the component (v0 j,v0 j+1)
isomorphic to K2. Hence, following are the generalization of S1

τ :

S1
τ = S∪V ′

0 . (5.7)

Since, m is even, it is possible to find a cutset analogous to S, say S′.

S′ = {vi j | i = 0,2,4, . . . ,m−2, 0≤ j ≤ n−1}.

Then, the cutset analogous to S0 defined in eq. (5.2) attaining τ(Bm,n) can be obtained
by including the cutset Vm−1 of the component of Bm,n isomorphic to cycle graph Cn.

S2
τ = S′∪Vm−1,
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where

Vm−1 = {v0 j | j = 0,2,4, . . . ,n−3} .

Also, the generalization of S2
τ is as follows:

S2
τ = S′∪V ′

m−1 , (5.8)

where

V ′
m−1 = (vm−1 j+2 vm−1 j+4 . . . vm−1 j−3 vm−1 j−1)(vm−1 j vm−1 j+1), 0≤ j ≤ n−1 .

Hence, S1
τ and S2

τ obtained in eq. (5.7) and eq. (5.8) are the τ-tough sets of Bm,n,
m ≥ 4, n > m, n odd, m even.

Subcase (ii): n even
Since, S0 defined in eq. (5.4) is a cutset attaining τ(Bm,n) derived in eq. (5.5),

S1
τ = S∪ {vi j | i = 0, j = 0,2,4, . . . ,n−2},

where

S = {vi j | i = 1,3,5, . . . ,m−1, 0≤ j ≤ n−1}

is a cutset of Bm,n, m ≥ 4, n > m, m even.
Let

V0 = {v0 j | j = 0,2,4, . . . ,n−2} .

Then,

S1
τ = S∪V0 .

Since, S is unique, the remaining τ-tough sets can be obtained with respect to V0.
By the definition of V0, it is the cutset of the component of Bm,n isomorphic to cycle
graph Cn. In general, cutsets of Cn analogous to V0 are as follows:

V ′
0 = {v0 j | j = 0,2,4, . . . ,n−2} .

Hence, following are the generalization of S1
τ :

S1
τ = S∪V ′

0 . (5.9)

Since, m is even, it is possible to find a cutset analogous to S, say S′.

S′ = {vi j | i = 0,2,4, . . . ,m−2, 0≤ j ≤ n−1}.

Then, the cutset analogous to S0 defined in eq. (5.4) attaining τ(Bm,n) can be obtained
by including the cutset Vm−1 of the component of Bm,n isomorphic to cycle graph Cn.

S2
τ = S′∪Vm−1 ,

where

Vm−1 = {v0 j | j = 0,2,4, . . . ,n−2} .

Also, the generalization of S2
τ is as follows:

S2
τ = S′∪V ′

m−1 , (5.10)

where

V ′
m−1 = {vm−1 j | j = 0,2,4, . . . ,n−2} .
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Hence, S1
τ ans S2

τ obtained in eq. (5.9) and eq. (5.10) are the τ-tough sets of Bm,n,
m ≥ 4, n > m, n even, m even.

6. Maximum Extension of Certain 2-Tough Sets of Bm,n, m≥ 3, n≥ 3
6.1 Maximum Extension of Certain 2-Tough Sets of Bm,n, m> 3, n≥ 3, m odd
In this section, we have investigated the conditions for maximum extension of certain 2-tough
sets of the bloom graph Bm,n, m ≥ 3, n ≥ 3 and later extend the same to any t-tough set such
that t > τ.

Theorem 8. Let Bm,n, m ≥ 3, n ≥ 3 be the bloom graph on mn vertices. Then, every 2 - tough set
of Bm,n m > 3, n ≥ 3, m odd given by

S2 = {vi j,vi j+1,vi+2 j+1vi+2 j+2 | i = 1,3,5, . . . ,m−2, 0≤ j ≤ n−1}

has a maximum extension to a τ-tough set of Bm,n.

Proof. Consider the bloom graph Bm,n m > 3, n ≥ 3, m odd. Without loss of generality, let

S1 = {v1 j,v1 j+1,v3 j+1v3 j+2 | 0≤ j ≤ n−1}, tS1 = 2 .

v0 0 v0 1 v0 2 v0 3 v0 4

v1 0 v1 1 v1 2 v1 3 v1 4

v2 0 v2 1 v2 2 v2 3 v2 4

v3 0 v3 1 v3 2 v3 3 v3 4

v4 0 v4 1 v4 2 v4 3 v4 4

(a)

v0 0 v0 1 v0 2 v0 3 v0 4

v2 0 v2 1 v2 2 v2 3 v2 4

v4 0 v4 1 v4 2 v4 3 v4 4

v1 0 v1 3 v1 4

v3 0 v3 1 v3 4

(b)

Figure 14. (a) 2-tough set S2 ⊂ Sτ of the Bloom graph B5,5; (b) Components of B5,5 \ S2

The components of Bm,n \S1 are {v2 j+1}' K1 and Bm,n[V \{S1∪v2 j+1}]. Then, an extension
of S1 can be obtained by including vertices adjacent to vertices of minimum degree in
Bm,n[V \{S1 ∪v2 j+1}], recursively.
Consider the following tough sets and their corresponding values of toughness:

S2 = {vi j | i = 1,3, 0≤ j ≤ n−1}, tS2 = 2n
n+2

S3 = {vi j | i = 1,3,5, 0≤ j ≤ n−1}, tS3 = 3n
2n+2

S4 = {vi j | i = 1,3,5,7, 0≤ j ≤ n−1}, tS4 = 4n
3n+2

...
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Sbm
2 c = {vi j | i = 1,3,5, . . . ,m−2, 0≤ j ≤ n−1}, t

Sb m
2 c =

nbm
2 c

mn−nbm
2 c−2n+2

Clearly, S1 ⊂ S2 ⊂ S3 ⊂ ·· · ⊂ Sbm
2 c and tS2 > tS3 tS4 > ·· · > t

Sb m
2 c . Hence, Sbm

2 c is an extension
of S1.

Case (i): When m = 3, n ≥ 4
Since, B3,n is 2-tough, S1 is the maximum extension of itself.

Case (ii): When m ≥ 4, n ≥ 4, m odd

Subcase (i): When n ≤ m, the τ-tough set is given by eq. (4.9).

Sτ = {vi j | i = 1,3,5, . . . ,m−2, 0≤ j ≤ n−1}= Sbm
2 c .

Hence, Sτ is the maximum extension of S1.

Subcase (ii): When n > m, n odd, without loss of generality consider the following
τ-tough set obtained from eq. (4.10).

Sτ = {vi j | i = 1,3,5, . . . ,m−2, 0≤ j ≤ n−1}∪ {vi j | i = 0,m−1, j = 0,2,4, . . . ,n−3},

where

τ= n(m+1)−2
n(m−1)−2

.

Clearly, Sbm
2 c ⊂ Sτ and τ< t

Sb m
2 c . Hence, Sτ is the maximum extension of S1.

Subcase (iii): When n > m, n even, without loss of generality consider the following
τ-tough set obtained from eq. (4.11).

Sτ = {vi j | i = 1,3,5, . . . ,m−2, 0≤ j ≤ n−1}∪ {vi j | i = 0,m−1, j = 0,2,4, . . . ,n−2} ,

where

τ= m+1
m−1

Clearly, Sbm
2 c ⊂ Sτ and τ< t

Sb m
2 c . Hence, Sτ is the maximum extension of S1.

Corollary 8.1. Let Bm,n, m ≥ 3, n ≥ 3, m odd be a bloom graph on mn vertices. Then, every
t-tough set St of Bm,n has a maximum extension to Sτ if and only if St ⊆ Sτ.

As a consequence of the corollary, suppose St 6⊆ Sτ for some t ≥ τ. Then,

St ⊆ {vi j | i = 0,2,4, . . . ,m−1, 0≤ j ≤ n−1} .

Let

S′ = {vi j | i = 0,2,4, . . . ,m−1, 0≤ j ≤ n−1} .

Then, every St 6⊆ Sτ has a maximum extension to S′ since it is maximal with respect to the
components of Bm,n \ S′, (i.e.), the components of Bm,n \ S′ are isomorphic to K1.
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6.2 Maximum Extension of Certain 2-Tough Sets of Bm,n, m> 3, n≥ 3, m even
Theorem 9. Let Bm,n, m ≥ 3, n ≥ 3 be the bloom graph on mn vertices. Then, every 2-tough set
of Bm,n m > 3, n ≥ 3, m even given by

S1
2 = {vi j,vi j+1,vi+2 j+1vi+2 j+2 | i = 0,2,4, . . . ,m−2, 0≤ j ≤ n−1},

S2
2 = {vi j,vi j+1,vi+2 j+1vi+2 j+2 | i = 1,3,5, . . . ,m−1, 0≤ j ≤ n−1}

has a maximum extension to a τ-tough set of Bm,n.

Proof. Consider the bloom graph Bm,n m > 3, n ≥ 3, m odd. Without loss of generality, let

S1 = {v0 j,v0 j+1,v2 j+1v2 j+2 | 0≤ j ≤ n−1}, tS1 = 2 .

v0 0 v0 1 v0 2 v0 3 v0 4 v0 5

v1 0 v1 1 v1 2 v1 3 v1 4 v1 5

v2 0 v2 1 v2 2 v2 3 v2 4 v2 5

v3 0 v3 1 v3 2 v3 3 v3 4 v3 5

(a)

v1 0 v1 1 v1 2 v1 3 v1 4 v1 5

v3 0 v3 1 v3 2 v3 3 v3 4 v3 5

v0 2 v0 3 v0 4 v0 5

v2 3 v2 4 v2 5v2 0

(b)

Figure 15. (a) 2-tough set S1 of the Bloom graph B5,6 (b); Components of B5,6 \ S1

The components of Bm,n \S1 are {v1 j+1}' K1 and Bm,n[V \{S1∪v2 j+1}]. Then, an extension
of S1 can be obtained by including vertices adjacent to vertices of minimum degree in
Bm,n[V \{S1 ∪v1 j+1}], recursively.
Consider the following tough sets and their corresponding values of toughness:

S2 = {vi j | i = 0,2, 0≤ j ≤ n−1}, tS2 = 2n
n+1

S3 = {vi j | i = 0,2,4, 0≤ j ≤ n−1}, tS3 = 3n
2n+1

S4 = {vi j | i = 0,2,4,6, 0≤ j ≤ n−1}, tS4 = 4n
3n+1

...

S
m
2 = {vi j | i = 0,2,4, . . . ,m−2, 0≤ j ≤ n−1}, t

S
m
2
=

mn
2

mn
2 −n+1

Clearly, S1 ⊂ S2 ⊂ S3 ⊂ ·· · ⊂ S
m
2 and tS2 > tS3 tS4 > ·· · > t

S
m
2

. Hence, S
m
2 is an extension of S1.

Case (i): When n ≤ m, the τ-tough set is given by eq. (5.6).

Sτ = {vi j | i = 0,2,4, . . . ,m−2, 0≤ j ≤ n−1}= S
m
2

Hence, Sτ is the maximum extension of S1.
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Case (ii): When n > m, n odd, without loss of generality consider the following τ - tough set
obtained from eq. (5.8).

Sτ = {vi j | i = 0,2,4, . . . ,m−2, 0≤ j ≤ n−1}∪ {vi j | i = m−1, j = 0,2,4, . . . ,n−3} ,

where

τ= n(m+1)−1
n(m−1)−1

.

Clearly, S
m
2 ⊂ Sτ and τ< t

S
m
2

. Hence, Sτ is the maximum extension of S1.

Case (iii): When n > m, n even, without loss of generality consider the following τ - tough set
obtained from eq. (5.10).

Sτ = {vi j | i = 0,2,4, . . . ,m−2,0≤ j ≤ n−1}∪ {vi j | i = m−1, j = 0,2,4, . . . ,n−2} ,

where

τ= m+1
m−1

.

Clearly, S
m
2 ⊂ Sτ and τ< t

S
m
2

. Hence, Sτ is the maximum extension of S1.

Similarly, it can be proved that 2-tough set S2
2 has a maximum extension to a τ-tough set of

Bm,n

7. Conclusion
We have proposed toughness to be a measure for measuring the efficiency of the data
broadcasting under fault tolerant conditions and maximum extension of a t-tough set to be
a fault propagation warning. We have investigated and settled the problem of toughness and
maximum extension of all t-tough sets, t ≥ τ, for the bloom graph Bm,n, m ≥ 3, n ≥ 3.
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