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1. Introduction
In 2006, Mustafa and Sims [9] introduced a new notion of generalized metric space (L,G) called
G-metric space.

Definition 1.1 ([9]). Let L be a nonempty set, and G : L3 → R+ be a function satisfying
the following properties:

(1) G(l,m,n)= 0, if l = m = n,

(2) 0<G(l, l,m), for all l,m ∈ M, with l 6= m,

(3) G(l, l,m)≤G(l,m,n), for all l,m,n ∈ M, with n 6= m,

(4) G(l,m,n)=G(l,n,m)=G(m,n, l)= . . . (symmetry in all three variables),

(5) G(l,m,n)≤G(l,a,a)+G(a,m,n), for all l,m,n,a ∈ M, (rectangular inequality).
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Then the function G is called a generalized metric, or, more specifically, a G-metric on L.
The pair (L,G) is called a G-metric space.

Definition 1.2 ([7]). For a G-metric space (L,G), a mapping T : L → L is called a contraction
mapping on L if for any real number λ with 0≤λ< 1, the following inequality holds:

G(Tl,Tm,Tn)≤λG(l,m,n), for all l,m,n ∈ L.

Remark 1.3. It can be easily seen that the geographical distance between the images of any
three points of a given set is contracting by a uniform factor λ< 1.

Example 1.4. Let L = R3 be a set equipped with standard G-metric G (i.e. G(l,m,n) =
|l1 − l2|+ |l2 − l3|+ |m1 −m2|+ |m2 −m3|+ |n1 −n2|+ |n2 −n3| for all l,m,n ∈ L) and T :R3 →R3

be the mapping defined as Tl = 5
8 l for all l ∈ R3. Then T is a contraction on L as G(l,m,n) =

5
8 {|l1 −m1 −n1|+ |l2 −m2 −n2|+ |l3 −m3 −n3|}= 5

8G(l,m,n).

Theorem 1.5 ([9]). Let (L,G) be a complete G-metric space and T be the contraction mapping
defined on L. Then T possesses a unique fixed point l in L, i.e., Tl = l.

Theorem 1.6 ([8]). Let (L,G) be a complete G-metric space and T be the self mapping defined
on L which satisfy the condition

G(Tl,Tm,Tn)≤αG(l,Tl,Tl)+βG(m,Tm,Tm)+γG(n,Tn,Tn)+δG(l,m,n)

for all l,m,n ∈ L and α, β, γ, δ non-negative with α+β+γ+δ< 1. Then T admits a unique fixed
point in L.

Definition 1.7 ([1]). Let Ψ be the family of all functions ψ : [0,+∞) → [0,+∞) satisfying
the following properties:

(1)
+∞∑
p=1

ψp(t)<+∞ for every t > 0, where ψp is the pth iterate of ψ;

(2) ψ is nondecreasing.

Definition 1.8 ([2]). A mapping B : [0,∞)2 →ℜ is called C-class function if it is continuous and
satisfies the following conditions:

(1) B(x, y)≤ x for all x, y ∈ [0,∞);

(2) B(x, y)= x implies that either x = 0 or y= 0;

Let us consider:

Φ1 = {φ1 : [0,∞)→ [0,∞) is a continuous and non-decreasing function such that φ1(m)= 0

if and only if m = 0},

Φ2 = {φ2 : [0,∞)→ [0,∞) is a continuous function such that φ2(0)= 0 and φ2(m)> 0 for m > 0},
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Φ3 =
{
φ3 : [0,∞)→ [0,∞) is a Lebesgue-integrable function, summable on each compact

subset of R+, non-negative, and such that for each ε> 0,
∫ ε

0
φ(t)dt > 0

}
.

2. Main Results
Theorem 2.1. Let (L,G) be a G-metric space and h be a self map on L be a mapping satisfying

φ1

(∫ G(hx,hy,hz)

0
φ(t)

)
dt ≤ B

(
φ1

(∫ N(x,y,z)

0
φ(t)dt

)
,φ2

(∫ N(x,y,z)

0
φ(t)dt

))
, (2.1)

where B is a C-class function φ1 ∈Φ1, φ2 ∈Φ2, φ ∈Φ3 and

N(x, y, z)=max{G(x, y, z),G(x,hx,hx),G(y,hy,hy),G(z,hz,hz)}. (2.2)

Then h has a unique fixed point.

Proof. Suppose that x0 ∈ L. Choose a point x1 ∈ L such that x1 = hx0.
In general, choose xn+1 such that xn+1 = hxn for n = 0,1,2, . . . .
Suppose that xn 6= xn+1 for each integer n > 1, then from (2.1)

φ1

(∫ G(xn,xn+1,xn+1)

0
φ(t)dt

)
≤ B

(
φ1

(∫ N(xn−1,xn,xn)

0
φ(t)dt

)
,φ2

(∫ N(xn−1,xn,xn)

0
φ(t)dt

))
, (2.3)

where from (2.2),

N(xn−1, xn, xn)=max{G(xn−1, xn, xn),G(xn−1,hxn−1,hxn−1),G(xn,hxn,hxn),G(xn,hxn,hxn)}

=max{G(xn−1, xn, xn),G(xn, xn+1, xn+1)}. (2.4)

If max{G(xn−1, xn, xn),G(xn, xn+1, xn+1)}=G(xn, xn+1, xn+1).
From (2.3) and (2.4), we have

φ1

(∫ G(xn,xn+1,xn+1)

0
φ(t)dt

)
≤ B

{
φ1

(∫ G(xn,xn+1,xn+1)

0
φ(t)dt

)
,φ2

(∫ G(xn,xn+1,xn+1)

0
φ(t)dt

)}
. (2.5)

Thus by definition of B ∈ C, we get
either

φ1

(∫ G(xn,xn+1,xn+1)

0
φ(t)dt

)
= 0

or

φ2

(∫ G(xn,xn+1,xn+1)

0
φ(t)dt

)
= 0.

From definition of φ1 and φ2 it is possible only if∫ G(xn,xn+1,xn+1)

0
φ(t)dt = 0.

This is a contraction to our hypothesis.
Thus N(xn−1, xn, xn)=G(xn−1, xn, xn), this implies

φ1

(∫ G(xn,xn+1,xn+1)

0
φ(t)dt

)
≤ Bφ1

(∫ G(xn−1,xn,xn)

0
φ(t)dt

)
,φ2

(∫ G(xn−1,xn,xn)

0
φ(t)dt

)
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≤φ1

(∫ G(xn−1,xn,xn)

0
φ(t)dt

)
.

Since φ1 is continuous and non-decreasing, therefore∫ G(xn,xn+1,xn+1)

0
φ(t)dt ≤

∫ G(xn−1,xn,xn)

0
φ(t)dt,

thus
{∫ G(xn,xn+1,xn+1)

0 φ(t)dt
}

is monotone decreasing and lower bounded sequence.
Therefore, there exist r̂ ≥ 0 such that

lim
n→∞

∫ G(xn,xn+1,xn+1)

0
φ(t)dt = r̂. (2.6)

Suppose that r̂ > 0. Taking lim
n→∞ on both sides of equation (2.5) and using (2.6), we get

φ1(r̂)≤ B((φ1(r̂),φ2(r̂)),

implies from definition of B ∈ C that
either

φ1(r̂)= 0

or

φ2(r̂)= 0.

From definition of φ1 and φ2, we get r̂ = 0.
Hence from equation (2.6), we obtain

lim
n→∞

∫ G(xn,xn+1,xn+1)

0
φ(t)dt = 0, (2.7)

implies

lim
n→∞G(xn, xn+1, xn+1)= 0. (2.8)

Now, we will prove that {xn} is a Cauchy sequence.
Let, if possible, it is not.
Therefore, for an ε > 0, there exists two subsequences {xm(p)} and {xn(p)} of {xn} with m(p) <
n(p)< m(p+1) such that

G(xm(p), xn p, xn p)≥ ε, G(xm(p), xnp−1, xnp−1)< ε. (2.9)

Consider

φ1

(∫ ε

0
φ(t)dt

)
≤φ1

(∫ G(xm(p),xn p,xn p)

0
φ(t)dt

)
≤ B

{
φ1

(∫ N(xm(p)−1,xn(p)−1,xn(p)−1)

0
φ(t)dt

)
,φ2

(∫ N(xm(p),xn p,xn p)

0
φ(t)dt

)}
. (2.10)

Using (2.2)

N(xm(p)−1, xn(p)−1, xn(p)−1)

=max{G(xm(p)−1, xn(p)−1, xn(p)−1),G(xm(p)−1,hxm(p)−1,hxm(p)−1),

G(xn(p)−1,hxn(p)−1,hxn(p)−1),G(xn(p)−1,hxn(p)−1,hxn(p)−1)}
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=max{G(xm(p)−1, xn(p)−1, xn(p)−1),G(xm(p)−1, xm(p), xm(p)),G(xn(p)−1, xn(p), xn(p))}. (2.11)

Thus∫ N(xm(p)−1,xn(p)−1,xn(p)−1)

0
φ(t)dt

=
∫ max{G(xm(p)−1,xn(p)−1,xn(p)−1),G(xm(p)−1,xm(p),xm(p)),G(xn(p)−1,xn(p),xn(p))}

0
φ(t)dt

=max
{∫ G(xm(p)−1,xn(p)−1,xn(p)−1)

0
φ(t)dt,

∫ G(xm(p)−1,xm(p),xm(p))

0
φ(t)dt,

∫ G(xn(p)−1,xn(p),xn(p))

0
φ(t)dt

}
.

(2.12)
Using (2.9) and triangle inequality, we get

G(xm(p)−1, xn(p)−1, xn(p)−1)≤G(xm(p)−1, xm(p), xm(p))+G(xm(p), xn(p)−1, xn(p)−1)

<G(xm(p)−1, xm(p), xm(p))+ε.
Therefore,

lim
p→∞

∫ G(xm(p)−1,xn(p)−1,xn(p)−1)

0
φ(t)dt ≤

∫ ε

0
φ(t)dt . (2.13)

Taking lim
p→∞ on both sides of (2.10) and using (2.11), (2.12), (2.13), we get

φ1

(∫ ε

0
φ(t)dt

)
≤ B

(
φ1

(∫ ε

0
φ(t)dt

)
,φ2

(∫ ε

0
φ(t)dt

))
.

Again from definition of B ∈ C, we get
either

φ1

(∫ ε

0
φ(t)dt

)
= 0

or

φ2

(∫ ε

0
φ(t)dt

)
= 0.

It is possible only if
∫ ε

0 φ(t)dt = 0.
This is a contraction to our hypothesis, therefore {xn} is a Cauchy sequence, ξ be the limit such
that

lim
n→∞hxn−1 = ξ. (2.14)

Next, we prove that ξ is the fixed point of map h.
That is hξ= ξ, suppose it is not.
Then G(hξ,ξ,ξ)> 0.
Let σ=G(hξ,ξ,ξ).
Consider,

φ1

(∫ σ

0
φ(t)dt

)
=φ1

(∫ G(hξ,ξ,ξ)

0
φ(t)dt

)
≤ B

{
φ1

(∫ N(ξ,xn,xn)

0
φ(t)dt

)
,φ2

(∫ N(ξ,xn,xn)

0
φ(t)dt

)}
, (2.15)
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where

N(ξ, xn, xn)=max{G(ξ, xn, xn),G(ξ,hξ,hξ),G(xn,hxn,hxn),G(xn,hxn,hxn)}. (2.16)

Since,

lim
n→∞G(ξ, xn, xn)= lim

n→∞G(xn, xn+1, xn+1)= 0. (2.17)

Taking lim
n→∞ in (2.15) and by using (2.14), (2.16), (2.17), we get

φ1

(∫ σ

0
φ(t)dt

)
≤ B

{
φ1

(∫ max{G(ξ,hξ,hξ)}

0

)
φ(t)dt,φ2

(∫ max{G(ξ,hξ,hξ)}

0

)
φ(t)dt

}
≤ B

{
φ1

(∫ σ

0
φ(t)dt

)
,φ2

(∫ σ

0
φ(t)dt

)}
. (2.18)

Thus, we obtain
either

φ1

(∫ σ

0
φ(t)dt

)
= 0

or

φ2

(∫ σ

0
φ(t)dt

)
= 0

that is∫ σ

0
φ(t)dt = 0 .

Hence σ= 0 which implies that P(hξ,ξ,ξ)= 0.
Therefore ξ is the fixed point of map h.

3. Applications
For the application purpose some important corollaries have been derived from our main result.
If we put φ(t)= t in Theorem 2.1, we get a new result.

Corollary 3.1. Let (L,G) be a complete G-metric space and h be a self map on L, such that for
each x, y, z ∈ L,

φ1

(∫ G(hx,hy,hz)

0
φ(t)dt

)
≤ B

((∫ N(x,y,z)

0
φ(t)dt

)
,φ2

(∫ N(x,y,z)

0
φ(t)dt

))
,

where N(x, y, z) is given in (2.2), B is a C-class function, φ2 ∈Φ2, φ ∈Φ3.

Corollary 3.2. Let (L,G) be a complete G-metric space and h be a self map on L, such that for
each x, y, z ∈ L,

φ1

(∫ G(hx,hy,hz)

0
φ(t)dt

)
≤λφ1

(∫ N(x,y,z)

0
φ(t)dt

)
, (3.1)

where N(x, y, z) is given in (2.2), λ ∈ (0,1), φ1 ∈Φ1, φ ∈Φ3.
Then h has a unique fixed point.

Communications in Mathematics and Applications, Vol. 12, No. 4, pp. 795–802, 2021



Fixed Point Theorem in G-Metric Space for Auxiliary Functions: P. Bhardwaj and M. Kumar 801

Corollary 3.3. Let (L,G) be a complete G-metric space and h be a self map on L, such that for
each x, y, z ∈ L,

φ1

(∫ G(hx,hy,hz)

0
φ(t)dt

)
≤φ1

(∫ N(x,y,z)

0
φ(t)dt

)
−φ2

(∫ N(x,y,z)

0
φ(t)dt

)
, (3.2)

where N(x, y, z) is given in (2.2), φ1 ∈Φ1, φ2 ∈Φ2 , φ ∈Φ3.
Then h has a unique fixed point.

4. Conclusion
With the aid of new auxiliary functions, some fixed point results are proved for generalized
contractive conditions in the setting of G-metric spaces.
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