
Communications in Mathematics and Applications
Vol. 12, No. 3, pp. 665–676, 2021
ISSN 0975-8607 (online); 0976-5905 (print)
Published by RGN Publications http://www.rgnpublications.com

DOI: 10.26713/cma.v12i3.1621

Research Article

Channel Assignment of Triangular and Rhombic
Honeycomb Networks Using Radio Labeling
Techniques
S. Gomathi* and P. Venugopal
Department of Mathematics, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, India

Received: May 12, 2021 Accepted: August 10, 2021

Abstract. A radio labeling of a graph G = (V ,E) is a function f : V (G)→ N such that d(u,v)+| f (u)−
f (v)| ≥ 1+diam(G), where d(u,v) represents the shortest distance between the vertices u and v and
diam(G) is the diameter of G. The span of a radio labeling f is defined as sp( f )=max{| f (u)− f (v)| :
u,v ∈V (G)}. A radio number of G is the minimum span of all the radio labelings of G and is denoted
by rn(G). The radio number is used to optimize the assignment of frequency bands to channels
in wireless communication networks. The honeycomb network is considered to be one of the most
important network for placement of base stations in wireless communications networks. In this paper,
the upper and lower bounds for the radio number of two well-known topologies of honeycomb network
namely triangular and rhombic honeycomb networks are obtained. These bounds were graphically
represented for easy understanding of the minimum and maximum spectrum needed for effective
communication in a network.
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1. Introduction
In a telecommunication network, the most interesting and challenging problem is the channel
assignment problem. Mostly, the channel assignment problem has been studied only for
connected, finite, simple, and undirected graphs. The major constraint of a channel assignment
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problem is to design a communication network in such a way that the interference between
any two transmitters is avoided or minimized [4, 5]. This problem can be converted into a
graph theoretic problem where the transmitters are represented by vertices and the adjacent
transmitters are connected by edges. The problem in graph theory is to assign, each vertex a
non-negative integer or different colors in such a way that the adjacent vertices receive different
integers or colors [12]. The process of assigning integers to the vertices or edges or both based on
certain conditions,known as graph labeling. The graph labeling has wide range of applications in
coding theory, x-ray crystallography, radar, astronomy, circuit design, communication networks,
and so on [10].

The channel assignment problem was introduced by William Hale [12] in 1980. This problem
motivated Griggs and Yeh [11], to introduce a new graph labeling technique called L(2,1)
labeling or distance two labelings. Chartrand et al. [8] introduced another labeling technicques
known as Radio labeling, even though the radio labeling problem looks simple, it has been
proved that finding the radio number of an arbitrary network is an NP-complete problem
[1, 14]. Ali and Marinescu-Ghemeci [3] has obtained the bounds of radio number of some
ladder-related graphs. The radio number of caterpillar related graphs was studied by Kang
et al. [15]. Li et al. [19] investigated the optimal radio labeling of complete m-ary trees. The
radio number of extended mesh was studied by Yenoke [30]. Bharathi Rajan and Yenoke [24]
investigated the radio number of uniform theta graphs. Vaidya and Vihol [29] has obtained the
radio labeling for some cycle related graphs. Ali et al. [2] computed the radio labeling associated
with zero divisor graph of a commutative ring. Sooryanarayana et al. [27] studied the radio
number of kth-transformation graphs of a Path. Bantva [9] obtained a lower bound for the
radio number of certain graphs. Kchikech et al. [17] has found out radio k-labeling of trees.
Cada et al. [7] has obtained radio labeling of distance graphs. Radio number for corona of
paths and cycles were studied [21]. The three well-known topologies in wireless communication
networks are honeycomb, square and hexagonal grids. The most studied topology so far is
the hexagonal grid [16, 22, 26]. However, the honeycomb grid appears to be more convenient
than the hexagonal and square grid [6]. Honeycomb networks are better in terms of degree,
diameter, and the total number of links, cost, and bisection width than mesh connected planar
graphs. The communication in the honeycomb network is proved to be more cient compare to
other networks [5]. It is widely used in computer graphics [18], cellular phone base stations
[22], image processing, and in chemistry as the representation of benzenoid hydrocarbons
[20]. Stojmenovic [28] has studied the topological properties of honeycomb networks, routing
in honeycomb networks and honeycomb torus networks. Honeycomb networks can be built
from hexagons in various ways by recursively building using the hexagon tessellation [20].
Parhami [23] gave a unified formulation for the honeycomb and the diamond networks. Channel
assignment in basic honeycomb networks has been reported in literature [16, 28]. Two well-
known topologies of honeycomb networks are rhombic and triangular honeycomb networks
[13, 28]. In this paper, the upper bound and lower bound for radio number of rhombic and
triangular honeycomb networks were studied.
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2. Radio Number of Triangular Honeycomb Network
In this section, the bounds of the radio number of triangular honeycomb network is studied.

2.1 Construction of Triangular Honeycomb Network
A honeycomb network is formed by joining a collection of hexagons [28]. A triangular honeycomb
network is constructed as follows. Consider a hexagon, which is assumed to be in layer 1. Two
hexagons are added to the bottom of given hexagon in such a way that each of these hexagons
share a common edge with layer 1 hexagon. These two added hexagons are said to form layer
2. This structure constructed is said to of triangular honeycomb network of dimension 1. It is
denoted by THC(1). The first dimension honeycomb network has 3 levels (see Figure 1). In the
similar way, by adding hexagons below the lowermost level, in each dimension, this network can
be constructed up to nth dimension. It is denoted by THC(n). It has (n+2) levels and (n+1)
hexagons in the (n+2)th level.

Figure 1. Different levels of THC(n)

The (n+2) levels of triangular honeycomb network THC(n) are taken as Lk and Lr , where
1≤ k ≤ n+1 and r = n+2. The vertex set in kth level is given by vk, j , 1≤ j ≤ k+1 and vertex
set in rth level is vr, j , 1≤ j ≤ 2r−1. THC(n) has n2 +6n+6 vertices and 3

2 (n2 +5n+4) edges.
Its diameter is 2n+3.

2.2 Lower Bound for THC(n)
The lower bound of radio number of graphs with small diameter can be obtained as follows. In
the triangular honeycomb network THC(n), there are (n+3) pairs u,v such that | f (u)− f (v)| = 1.
From these (n+3) pairs of vertices, only three pair of vertices are considered to apply radio
labeling condition, the remaining are associated to already assigned vertex v for a radio
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labeling f . The lower bound of radio labeling is given by

rn(G)≥ 1+ x+ (n+1)(k−1− x)+Y

where Y = 4n+2, x is the diametric distance vertex and k is the number of vertices in THC(n).

Definition 2.1 ([25]). Let S(v) be the sum of the distance between v and every other vertex in
G. That is S(v)= ∑

u∈G
d(u,v). The minimum distance sum, S(v), ∀ v ∈G is called the median of

G and is given by M(G)=min{S(v) : v ∈G}. The vertex v corresponds to M(G) is said to be the
centre of G.

Theorem 2.1. The radio number of triangular honeycomb network of dimension one,
rn(THC(1))= 28.

Proof. Let G = THC(1) be a triangular honeycomb network of dimension 1. The diameter of
G, diam(G) = 5. In THC(1), the number of vertices, k = 13 and the number of edges is 15.
From Section 2.2, for n = 1, k = 13 the lower bound of G is rn(G)≥ 1+3+ (n+1)(k−1−3)+Y =
4+2(9)+6= 28.

Any radio labeling f of G must satisfy the following radio labeling condition

d(u,v)+| f (u)− f (v)| ≥ diam(G)+1= 6 . (2.1)

The vertices of G are labeled as follows. First, label the centre vertex v7 of G as 1. Next label
the vertex at maximum distance fromv7. The vertices v1,v9 and v11 are at maximum distance.
Without loss of generality, label v1 by applying the radio labeling condition, i.e., f (v1)= 4. From
v1, the vertices v13 and v12 are at maximum distance. Choose v13 and label it by using the
radio labeling condition, i.e., f (v13) = 5. Likewise, the remaining vertices of THC(1) can be
labeled. Starting from v13, the vertices v6, v8, v2, v12 and v3 taken in this order are at distance
4 from each other and are labeled as 7,9,11,13 and 15 in such a way that they satisfy the radio
labeling condition. From v3, the vertex v4 is the unlabeled vertex at maximum distance 3. Take
f (v4)= 18. Starting from v4, label the vertices v11 v9 and v5 taken in this order, which are at
distance 4 from each other. From v5, label the remaining vertex v10 as 28, which is the span
of G.
Hence, rn(THC(1))≤ 28.
Therefore, rn(THC(1))= 28.

Theorem 2.2. The radio number of triangular honeycomb network for all n ≥ 2 is, rn(THC(n))≥
k(n+1)+2.

Proof. Let G = THC(n) be a triangular honeycomb network of dimension n.
From Section 2.1, |V (G)| = n2 +6n+6 and |E(G)| = 3

2 (n2 +5n+4) and its diameter 2n+3.
There are (n+3) pairs of vertices at diametric distance such that | f (u)− f (v)| = 1.
Any radio labeling f of G must satisfy the following radio labeling condition

d(u,v)+| f (u)− f (v)| ≥ diam(G)+1= 2n+4⇒| f (u)− f (v)| ≥ 2n+4−d(u,v) .

Consider any two distinct vertices u,v ∈V (G). Let f be an optimal radio labeling for G. Using
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Definition 2.1, choose the centre vertex, vi of G. Label it as 1, i.e., f (vi) = 1. The remaining
vertices of THC(n) can be labeled by adopting the same technique discoursed in Theorem 2.1.
From Section 2.2, the lower bound of the radio number of G is rn(THC(n))≥ 1+3+ (n+1)(k−
1−3)+Y ≥ (n+1)k+2.

Theorem 2.3. The radio number of triangular honeycomb network THC(n) forn ≥ 2 is
rn(THC(n))≤ n3 +23n2 −6n+34.

Proof. Let {v1v2, . . . ,vn2+6n+6} be the vertices of THC(n). These vertices are labeled as follows.
Let f (v1) = 1. The vertex vn2+6n+6 is at a diametric distance from v1, label it as 2, i.e.,
f (vn2+6n+6)= 2. The remaining vertices of THC(n) are labeled by the following mapping:

f (vi)= 2(n+1)(i−1)+2,1< i < n2 +6n+6. (2.2)

Any radio labeling f of G must satisfy the following radio labeling condition:

d(u,v)+| f (u)− f (v)| ≥ diam(G)+1= 2n+4⇒| f (u)− f (v)| ≥ 2n+4−d(u,v) . (2.3)

Claim: The mapping (2.2) is a valid radio labeling.
To prove this, it is enough to show that equation (2.2) satisfies equation (2.3).
Let u,v ∈ THC(n).

Case (i): Suppose d(u,v)= 1.
Clearly from the structure of THC(n), u(= vi+2 or vi+3), v(= vi).
By applying (2.2) in radio labeling condition, we get,

| f (u)− f (v)| = 2(n+1)[i+2−1− (i−1)] = 2(n+1)(2)= 4n+4≥ 2n+3 .

Case (ii): Suppose the vertices u, v lie in the same level and d(u,v)≥ 2.
In this case, u(= vi+1 or vi+2 or vi+3 etc.), v(= vi).
By using (2.2), in radio labeling condition, we get

| f (u)− f (v)| = 2(n+1)[i+1−1− (i−1)]= 2n+2,

by taking u = vi+1.
Suppose u = vi+4 then

| f (u)− f (v)| = 2(n+1)[i+4−1− (i−1)]= 8n+8≥ 2n+4 .

Similarly, the result can be verified for any u ∈ THC(n).

Case (iii): Suppose the vertices u, v are in different levels and d(u,v)≥ 2.
In this case, u(= vi+4 or vi+5 etc.), v(= vi).
By applying mapping in radio labeling condition, we get

| f (u)− f (v)| = 2(n+1)[i+4−1− (i−1)]= 8n+8≥ 2n+4 .

Case (iv): Suppose the vertices u = v1 and v = vn2+6n+6.
In this case, d(u,v)= 2n+3.
By our assumption, | f (u)− f (v)| = 1.
Hence in all the cases, mapping (2.2) satisfies the radio labeling condition (2.3).
Therefore, mapping (2.2) is a valid radio labeling.
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By the mapping, the vertex vn2+6n+6 receives the maximum label and its label is

f (vn2+6n+5)= n3 +23n2 −6n+34,

which is the span of THC(n).
Hence, rn(THC(n))≤ n3 +23n2 −6n+34.

Theorem 2.4. The bounds of radio number of triangular honeycomb network lies between
(n+1)k+2 and n3 +23n2 −6n+34 for n ≥ 2.

Proof. The proof is obvious from Theorem 2.2 and Theorem 2.3.
Hence, (n+1)k+2≤ rn(G)≤ n3 +23n2 −6n+34.

Table 1. Lower and upper bounds of THC(n)

Dimensions (n) 2 3 4 5 6 7 8 9 10

Number of nodes (k) 22 33 46 61 78 97 118 141 166

Lower bound (y) 68 134 232 368 548 778 1064 1412 1828

Upper bound (y) 122 250 442 704 1042 1462 1970 2572 3274

Figure 2. Lower and upper bounds of THC(n)

3. Radio Number of Rhombic Honeycomb Networks
In this section, the bounds of radio number of rhombic honeycomb network have been studied.

3.1 Construction of Rhombic Honeycomb Network
The rhombic honeycomb network (RHC) is constructed by placing hexagonal tessellations inside
a rhombus. The rhombic honeycomb network of dimension n is denoted by RHC(n). The vertices
in each horizontal straight path starting from left to right side of a rhombic structure is said
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to be a level (L) of RHC. There are (2n+2) levels inRHC(n). These levels can be divided into
two sets, say Lk , 1≤ k ≤ n+1 and Lr , n+2≤ r ≤ 2n+2. A rhombic honeycomb mesh network of
first dimension with different levels is shown in Figure 3.

Figure 3. Different levels of RHC(n)

In RHC(n), the number of vertices in the (n+2)th level is same as the number of vertices in
the (n+1)th level, the number of vertices of (n+3)th level is same as the number of vertices
in the nth level and so on. That is the number of vertices in the levels Ln+2,Ln+3, · · ·L2n+2 are
same as the number of vertices in the levels Ln+1,Ln · · ·L1 taken in this order. RHC(n) has
2n2 +8n+6 vertices and 3n2 +10n+6 edges. Its diameter is 4n+3.

3.2 Lower Bound for RHC(n)
The lower bound of radio number of graphs with small diameter can be obtained as follows. In
RHC(n), there is only one pair of vertices (u,v) such that | f (u)− f (v)| = 1. This pair is chosen to
apply radio labeling condition. The remaining vertices are chosen for a radio labeling f in the
way they are associated to already assigned vertex v. The lower bound of radio labeling is given
by rn(G)≥ 1+ x+ (n+3)(k−1− x), where x is the diametric distance vertex and k is the number
of vertices in RHC(n).

Theorem 3.1. The radio number of rhombic honeycomb network of dimension one is 58.

Proof. Let G = RHC(1) be a rhombic honeycomb network of dimension 1.= The diameter of G
is diam(G)= 7.
In RHC(1) the number of vertices, k = 16 and the number of edges is 19.
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From Section 3.2, for n = 1, k = 16 the lower bound of G is

rn(G)≥ 1+1+ (n+3)(k−1−1)= 2+4(14)= 58 .

Any radio labeling f of G must satisfy the following radio labeling condition d(u,v)+| f (u)−
f (v)| ≥ diam(G)+1= 8.
The vertices of G are labeled as follows. First, label the centre vertex v7 of G as 1. Next, label
the vertex at maximum distance from v7. The only vertex v16 is at maximum distance label, v16

by applying the radio labeling condition, i.e., f (v16)= 5. From v16, the vertex v1 at maximum
distance and label it by using the radio labeling condition, i.e., f (v1)= 6. Likewise, the remaining
vertices of RHC(1) can be labeled. Starting from v1, the vertices v9, v2, v13, v3, v12, v14, v4 and
v15 taken in this order are at distance 4 from each other and are labeled in such a way that they
satisfy the radio labeling condition. From v15 to the vertex v6 and v6 to v11 are at maximum
distance 5. Take f (v6) = 49 and f (v11) = 52. From v11, label the remaining vertex v10 as 58,
which is the span of G. Hence, rn(RHC(1))≤ 58.
Therefore, rn(RHC(1))= 58.

Theorem 3.2. For n ≥ 2 radio number of rhombic honeycomb network is

rn(RHC(n))≥ (n+3)(k−2)+2.

Proof. Let G = RHC(n) be a rhombic honeycomb network of dimension n.
From Section 3.1, |V (G)| = 2n2+8n+6 and |E(G)| = 3n2+10n+6 and its diameter 4n+3. There
is a only one pair of vertices at diametric distance such that | f (u)− f (v)| = 1 say (v1,v2n+2).
Any radio labeling f of G must satisfy the following radio labeling condition

d(u,v)+| f (u)− f (v)| ≥ diam(G)+1= 4n+4

⇒ | f (u)− f (v)| ≥ 4n+4−d(u,v)

Consider any two distinct vertices u,v ∈V (G).
Let f be an optimal radio labeling for G. Choose the centre vertex, vi of G. Label it as 1, i.e.,
f (vi) = 1. The remaining vertices of RHC(n) can be labeled by adopting the same technique
discoursed in Theorem 3.1.
From Section 3.2, the lower bound of the radio number of G is

rn(RHC(n))≥ 1+1+ (n+3)(k−1−1)≥ (n+3)(k−2)+2.

Theorem 3.3. Radio number of rhombic honeycomb network RHC(n) for n ≥ 2 is rn(RHC(n))≤
13n3 +n2 +102n−30.

Proof. Let {v1,v2, · · ·v2n2+8n+6} be the vertices of RHC(n). These vertices of RHC(n) is labeled
as follows.
Take f (v1) = 1. As the vertex f (v2n2+8n+6) is at diametric distance from v1. Label it as 2, i.e.,
f (v2n2+8n+6)= 2.
The remaining vertices of RHC(n) is labeled by the mapping,

f (vi)= (4n+2)(i−1)+2, 1< i < 2n2 +8n+6 . (3.1)
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Any radio labeling f of G must satisfy the following radio labeling condition

d(u,v)+| f (u)− f (v)| ≥ diam(G)+1= 4n+4

⇒ | f (u)− f (v)| ≥ 4n+4−d(u,v) (3.2)

Claim: The mapping (3.1) is a valid radio labeling.
To prove this, it is enough to show that the mapping (3.1) satisfies the equation (3.2)). In order
to prove this claim, the following cases have been considered.
Let u,v be any two vertices of RHC(n).

Case (i): Suppose d(u,v)= 1.
Clearly, from the structure of RHC(n), u(= vi+2 or vi+3), v(= vi).
By applying (3.1) in radio labeling condition, we get

| f (u)− f (v)| = (4n+2)[i+2−1− (i−1)]= 8n+4≥ 4n+3 .

Case (ii): Suppose the vertices u, v lie in the same level and d(u,v)≥ 2.
In this case, u(= vi+1) or (vi+2 etc.), v(= vi).
From the mapping and radio labeling condition, we get

| f (u)− f (v)| = (4n+2)[i+1−1− (i−1)]= 4n+2,

by taking u = vi+1.
Suppose u = vi+4, | f (u)− f (v)| = (4n+2)[i+4−1− (i−1)]= 16n+8≥ 4n+4.
Similarly, the result can be verified for any u ∈ RHC(n).

Case (iii): Suppose the vertices u, v are in different levels and d(u,v)≥ 2.
In this case, u(= vi+4) or vi+5 etc., v(= vi).
By radio labeling condition, we get

| f (u)− f (v)| = (4n+2)[i+4−1− (i−1)]= 16n+8≥ 4n+4 .

Case (iv): Suppose the vertices u = v1 and v = vn2+8n+6.
In this case, d(u,v)= 4n+3.
By our assumption, | f (u)− f (v)| = 1.
Hence in all the cases, mapping (3.1) satisfies the radio labeling condition (3.2).
By the mapping, the vertex vn2+8n+5 receives the maximum label and its label is

f (vn2+8n+5)= 13n3 +n2 +102n−30,

which is the span of RHC(n).
Hence, rn(THC(n))≤ 13n3 +n2 +102n−30.

Theorem 3.4. The bounds of radio number of rhombic honeycomb network lies between
(n+3)(k−2)+2 and 13n3 +n2 +102n−30 for n ≥ 2.

Proof. The proof is obvious from Theorem 3.2 and Theorem 3.3.

(n+3)(k−2)+2≤ rn(RHC(n))≤ 13n3 +n2 +102n−30.
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Table 2. Lower and upper bounds of RHC(n)

Dimensions (n) 2 3 4 5 6 7 8 9 10

Number of nodes (k) 30 48 70 96 126 160 198 240 286

Lower bound (y) 142 278 478 754 1118 1582 2158 2858 3694

Upper bound (y) 282 636 1226 2130 3426 5162 7506 10446 14090

Figure 4. Lower and upper bounds of RHC(n)

Remark 3.1. For n = 2,3, · · ·10, the values of lower and upper bound of rn(THC(n)) and
rn(RHC(n)) have been displayed in Table 1 and Table 2. These table values were graphically
represented in Figure 2 and Figure 4. From these figures, it is clear that as dimension n of the
network increases, the lower and upper bound of the radio number increases drastically. In the
figures, the curves with red dots represent the upper bound and blue dots represents the lower
bound. By knowing these bounds, it is easy to estimate the minimum and maximum spectrum
needed for the effective communication, without any interference in a communication network.

4. Conclusion
In communication networks, radio labeling plays a vital role in assigning the channels
(frequencies) to all the transmitters in a network in such a way that the total bandwidth required
for the network and the chance of interference gets minimized. In this work, the radio number of
triangular and rhombic honeycomb network has been modeled and reported. The lower bound of
the radio number of triangular honeycomb network THC(n) and rhombic honeycomb network
RHC(n) for n ≥ 2 is rn(THC(n)) ≥ k(n+1)+2 and rn(RHC(n)) ≥ (n+3)(k−2)+2. The upper
bounds of the radio number of triangular and rhombic honeycomb networks have also been
investigated and reported. Also, the graphical representation of the bounds of these labeling
were presented.
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