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A Solution Method for Semidefinite Variational
Inequality with Coupled Constraints ?

Li Wang and Shiyun Wang

Abstract The semidefinite variational inequalities with coupled constraints are
introduced. The properties of the symmetric matrices value functions that form
coupled constraints are discussed. A method involving the augmented Lagrange
function is proposed for solving the semidefinite variational inequalities with
coupled constraints. The convergence of the method is proved.

1. Introduction and Preliminaries

In this paper, letℜn be the n-dimensional Euclidean space with the normal inner
product 〈x , y〉= x> y and norm ‖x‖=

p
x> y for any x , y ∈ ℜn. Let Sp denote the

space of p× p symmetric matrices with the inner product 〈A, B〉 := tr A>B and the
norm ‖ A ‖:=

p
〈A, A〉 for all A, B ∈ Sp. Let Sp

+ be the cone of positive semidefinite
matrices in the space Sp. For a linear mapping M :ℜn→ Sp, we denote the adjoint
of M by M∗ : Sp →ℜn, that is, 〈A, Mh〉= 〈M∗A, h〉 for h ∈ ℜn and A∈ Sp.

We consider the semidefinite variational inequality with coupled constraints:
Find x̄ ∈ K such that

〈F( x̄), y − x̄〉 ≥ 0, for all y ∈ K . (1.1)

where K = {for all y ∈ Ω | G( x̄ , y) � 0}, F : ℜn → ℜn is a mapping, G(x , y) :
ℜn ×ℜn→ Sp is a matrix value mapping, and Ω⊆ℜn is a convex closed set.

If G(x , y) = diag(g(x , y)), where g(x , y) : ℜn ×ℜn → ℜp is a mapping, then
Problem 1.1 is equivalent to find a vector x̄ ∈ K such that

〈F( x̄), y − x̄〉 ≥ 0, for all y ∈ K . (1.2)

where K = {for all y ∈ Ω | g( x̄ , y)≤ 0}.
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Problem (1.2) is called variational inequality with coupled constraints, which
were introduced and studied by Antipin [1].

Antipin [1] introduced the existence of the problems with coupled constraints
which arise in economic equilibrium models, n-person game, equilibrium
programming, hierarchical programming problems, mathematical physics and
other fields (see [2], [3], [4], [5], [6] and the references therein). This
short list of problems shows that the coupled constraints are characteristic of
a wide class of problems. For this reason, the development of methods for the
problems with coupled constraints is a very important task. Antipin [1] considered
variational inequality with coupled constraints (1.2), and introduced a class of
symmetric vector functions that formed coupled constraints. The explicit and
implicit prediction-type gradient and proximal methods were proposed for solving
variational inequalities with coupled constraints. And the convergence of these
methods were proved.

Semidefinite programming is an extension of linear programming. In recent
years, the theory and algorithm for semidefinite programming have developed
greatly, and its most important applications are found in combinatorial
optimization, system engineering and electrical engineering. Semidefinite
programming is a new and important research field in mathematical programming.
In the study of semidefinite programming, semidefinite variational inequality has
been given more concern.

Inspired by the papers cited above, in this paper, we firstly introduce a new
class of semidefinite variational inequality with coupled constraints (1.1). The
constraint function G(x , y) : ℜn × ℜn → Sp is a matrix value function which is
new and different from that in [1]. In Section 2, the properties of the symmetric
matrix value function are discussed. It easy to see that Problem (1.1) can be viewed
as the minimization problem for the linear function f (y) = 〈F( x̄), y − x̄〉 and
f (y) ≥ 0 on the set K . By using Lagrange function, we study the semidefinite
variational inequality with coupled constraints (1.1) and give the other equivalent
transformations in Section 3. In Section 4, based on the transformations of
Problem (1.1), we propose the method involving augmented Lagrange function
for solving the semidefinite variational inequalities with coupled constraints (1.1).
Furthermore, we prove that a accumulation point of the sequence generated by
the method is a solution to the variational inequality with coupled constraints.

Let us firstly recall the following definitions and theorems.
We say that F is monotone if 〈F(x)− F(y), x − y〉 ≥ 0 for any x , y ∈ ℜn.
Let C be a closed convex set, for every x ∈ ℜn, there is a unique x̂ in C such

that

‖x − x̂‖=min
�‖x − y‖ | y ∈ C

	
.

The point x̂ is the projection of x onto C , denoted by ΠC(x). Therefore, the
projection mapping ΠC : ℜn → C is well defined for every x ∈ ℜn, which is
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a nonexpensive mapping. Similarly, for every A ∈ Sp, we can get the projection
mapping ΠSp

+
: Sp → Sp

+. For the projection mappings, we recall the following
well-known results.

Lemma 1.1 ([7]). Let H be a real Hilbert space and C be a closed convex set. For a
given z ∈ H, u ∈ C satisfies the inequality

〈u− z, x − u〉 ≥ 0, for all x ∈ C ,

if and only if

u= ΠC(z),

where ΠC is the projection of H to C .

Han [8] proved the following lemma.

Lemma 1.2 ([8]). A ∈ Sp
+, B ∈ Sp

+, 〈A, B〉 = 0 if and only if E(A) = 0, where
E(A) = A−ΠSp

+
(A−B) and ΠSp

+
(A−B) is the operator projection A−B onto the space

of p× p positive semidefinite symmetric matrices.

2. The Properties of Symmetric Matrix Value Functions

In this section, firstly the definition of symmetric matrix value function is
introduced. Then the properties of this symmetric matrix value function are
discussed which play an important role in demonstrating the convergence theorem.

Definition 2.1. A matrix value function G(x , y) : ℜn × ℜn → Sp is said to be
symmetric if it satisfies the following

G(x , y) = G(y, x), for all x , y ∈ ℜn. (2.1)

Remark 2.1. In (2.1), if G(x , y) = diag(g(x , y)) and g(x , y) :ℜn×ℜn→ℜp, then
we get the definition of the symmetric function which was introduced in [1]. Hence
the symmetric function definition in [1] is a special case of Definition 2.1.

Next we analyze the properties of symmetric matrix value function (2.1).

Property 2.1. Let C be a closed convex subset of ℜn and G : C × C → Sp be a
symmetric matrix value mapping. Suppose that Dy G(x , y) and Dx G(y, x) denote
the partial differential operators of G(x , y) and G(y, x) with respect to y and x,
respectively. Then these two partial differential operators of their restrictions to the
diagonal of the square C × C are equal. That is, for any h ∈ ℜn,

Dy G(x , x)h= Dx G(x , x)h, for all x ∈ C . (2.2)

Proof. By the definition of partial differential operator of matrix value function,
for any h ∈ ℜn, we differentiate G(x , y) and G(y, x) with respect to y and x ,
respectively, to obtain

Dy G(x , y)h= h1
∂ G(x , y)
∂ y1

+ h2
∂ G(x , y)
∂ y2

+ · · ·+ hn
∂ G(x , y)
∂ yn

, for all x , y ∈ C

(2.3)
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and

Dx G(y, x)h= h1
∂ G(y, x)
∂ x1

+ h2
∂ G(y, x)
∂ x2

+ · · ·+ hn
∂ G(y, x)
∂ xn

, for all x , y ∈ C ,

(2.4)

respectively.
In view of (2.1), we have

∂ G(x , y)
∂ yi

=
∂ G(y, x)
∂ x i

, for i = 1, 2, · · · , n.

Contrasting (2.3) with (2.4), we conclude that for any h ∈ ℜn, Dy G(x , x)h =
Dx G(x , x)h, for all x ∈ C . This completes the proof. ¤

Property 2.2. Suppose that C and G satisfy the conditions of Property 2.1. The
partial differential operator 2Dy G(x , y)|x=y is equal to the differential operator
DG(x , x) of the restriction of the symmetric function G(x , y) to the C × C square’s
diagonal. That is, for any h ∈ ℜn,

2Dy G(x , x)h= DG(x , x)h, for all x ∈ C . (2.5)

Proof. By the definition of a differentiable matrix value function G(x , y) which is
defined on C , for any h, k ∈ ℜn, we have

G(x + h, y + k) = G(x , y) + Dx G(x , y)h+ Dy G(x , y)k+ γ(h, k),

for all x , y ∈ C , (2.6)

where γ :ℜn ×ℜn→ℜn and γ(h, k)/(‖h‖2 + ‖k‖2)1/2→ 0 as ‖h‖2 + ‖k‖2→ 0.
Letting y = x and h= k in (2.6) and using (2.2) and (2.6), we obtain that

G(x + h, x + h) = G(x , x) + 2Dy G(x , x)h+ γ(h, h), (2.7)

where γ(h, h)/‖h‖ → 0 as ‖h‖ → 0.
From (2.7), it is easy to see that the restriction of the partial differential operator

to the diagonal of C × C is DG(x , x), that is, 2Dy G(x , x)h = DG(x , x)h, for any
h ∈ ℜn. This completes the proof. ¤

Next we introduce the other definition of antisymmetric matrix value function.

Definition 2.2. A matrix value function G :ℜn×ℜn→ Sp is said to be antisymmetric
if it satisfies the following condition

G(x , y) =−G(y, x), for all x , y ∈ ℜn. (2.8)

Now we show that the antisymmetric coupled constraints have no effect on the
solution to Problem (1.1), and hence we can drop it.

In fact, let us consider a pair of problems

〈F( x̄), y − x̄〉 ≥ 0, for all y ∈ Ω (2.9)
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and

〈F( x̄), y − x̄〉 ≥ 0, for all y ∈ Ω, G( x̄ , y)� 0, (2.10)

where G(x , y) is an antisymmetric matrix value function.
Since G is an antisymmetric matrix value function, we get that G(x , x) = 0 if we

set x = y in G(x , y) = −G(y, x), where 0 is a p× p null matrix. Thus G(x , x) � 0
is always to be satisfied for any x ∈ Ω. Observe that if y = x̄ is the solution to
(2.9), then it satisfies the constraints of (2.10). Thus the antisymmetric coupled
constraints in problem (2.10) can be dropped.

Generally, when G(x , y) is neither symmetric nor antisymmetric, the coupled
constraints in problem (1.1) can be symmetrized as follows.

G(x , y) = S(x , y) + K(x , y),

where

S(x , y) =
1

2
(G(x , y) + G(y, x)), K(x , y) =

1

2
(G(x , y)− G(y, x)).

It is clear that S(x , y) and K(x , y) are a symmetric and an antisymmetric function,
respectively.

From above analysis, we can present the coupled constraints of the problem
(1.1) as K = {for all y ∈ Ω | G( x̄ , y) = S( x̄ , y) + K( x̄ , y) � 0}. Since the anti-
symmetric part of the constraints can be dropped, the problem (1.1) can become
to find x̄ ∈ K such that

〈F( x̄), y − x̄〉 ≥ 0, for all y ∈ K , (2.11)

where K = {for all y ∈ Ω | S( x̄ , y) � 0}. Hence, in order to find a solution to the
problem (1.1), we can solve the symmetrized problem (2.11).

3. Saddle Point Problems from Semidefinite Programming

In this section, we give some transformations of the semidefinite variational
inequality with coupled constraints problem (1.1), which will be used in the sub-
sequent analysis.

Let f (y) = 〈F( x̄), y − x̄〉 and f (y) ≥ 0, then the problem (1.1) can be trans-
formed into the following semidefinite programming problem

(P) min f (y) s.t. y ∈ Ω, G( x̄ , y)� 0. (3.1)

The Lagrange function of problem (3.1) is of the form

L ( x̄ , y,Q) = 〈F( x̄), y − x̄〉+ 〈Q, G( x̄ , y)〉, for all y ∈ Ω, Q ∈ Sp
+.

The Lagrange dual function of problem (3.1) is

(D) max
Q�0

�
inf
x∈Ω
L ( x̄ , y,Q)

	
. (3.2)
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In order to get the other transformations, we use the famous duality theorem
below.

Theorem 3.1 ([9]). Let (P) and (D) be the primal and dual problem (3.1) and
(3.2), respectively. Then Val(D) ≤ Val(P). Moreover, Val(P) = Val(D) and x̄ and
Q̄ are optimal solutions of (P) and (D), respectively, if and only if ( x̄ , Q̄) is a saddle
point of the Lagrange function L ( x̄ , y,Q) if and only if the following conditions

x̄ ∈ argmin
y∈Ω

L ( x̄ , y,Q), 〈Q̄, G( x̄ , x̄)〉= 0, G( x̄ , x̄)� 0, Q̄ � 0. (3.3)

Since x̄ is the minimum solution of f (y), the pair ( x̄ , Q̄) is a saddle point of
the Lagrange function L ( x̄ , y,Q) by Theorem 3.1. Hence we get the following
inequality from the definition of saddle point.

〈F( x̄), x̄ − x̄〉+ 〈Q, G( x̄ , x̄)〉 ≤ 〈F( x̄), x̄ − x̄〉+ 〈Q̄, G( x̄ , x̄)〉
≤ 〈F( x̄), y − x̄〉+ 〈Q̄, G( x̄ , y)〉, (3.4)

for all y ∈ Ω and for all Q ∈ Sp
+. For the arbitrariness of Q and y , in view of the

first inequality and the second inequality of (3.4), we can represent (3.4) in an
equivalent manner in the following

x̄ ∈ argmin
�〈F( x̄), y − x̄〉+ 〈Q̄, G( x̄ , y)〉 | y ∈ Ω	,

Q̄ ∈ arg max
�〈Q, G( x̄ , x̄)〉 |Q ∈ Sp

+
	
.

(3.5)

If G(x , y) is differentiable with respect to y for any x , by computing, we can
transform the system (3.5) in the form of the system of semidefinite variational
inequalities as follows.

〈F( x̄) + Dy G( x̄ , x̄)∗Q̄, y − x̄〉 ≥ 0, for all y ∈ Ω,

〈−G( x̄ , x̄),Q− Q̄〉 ≥ 0, for all Q ∈ Sp
+,

(3.6)

where Dy G( x̄ , x̄)∗ is the adjoint operator of Dy G( x̄ , x̄), that is, 〈Dy G( x̄ , x̄)∗Q̄, y −
x̄〉= 〈Q̄, Dy G( x̄ , x̄)(y − x̄)〉.

With the help of projection operators, it follows from Theorem 3.1, Lemma 1.1
and Lemma 1.2 that

x̄ = ΠΩ( x̄ −α(F( x̄) + Dy G( x̄ , x̄)∗Q̄)),

Q̄ = ΠSp
+
(Q̄+αG( x̄ , x̄)),

(3.7)

where α > 0 is a parameter, and ΠΩ and ΠSp
+

are the operators that project a vector
and a matrix onto the set Ω and the space Sp

+, respectively.
By the definition of the adjoint of Dy G( x̄ , x̄), we can transform the first

inequality of the system (3.6) as

〈F( x̄), y − x̄〉+ 〈Q̄, Dy G( x̄ , x̄)(y − x̄)〉 ≥ 0. (3.8)
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When the function G(x , y) |x=y on the diagonal of the square Ω × Ω is convex,
using Property 2.2, we transform (3.8) as

〈F( x̄), y − x̄〉+ 〈Q̄, Dy G( x̄ , x̄)(y − x̄)〉

= 〈F( x̄), y − x̄〉+ 1

2
〈Q̄, DG( x̄ , x̄)(y − x̄)〉

≤ 〈F( x̄), y − x̄〉+ 1

2
〈Q̄, G(y, y)− G( x̄ , x̄)〉.

From the above inequality, (3.6) can be represented as

〈F( x̄), y − x̄〉+ 1
2
〈Q̄, G(y, y)− G( x̄ , x̄)〉 ≥ 0, for all y ∈ Ω,

〈−G( x̄ , x̄),Q− Q̄〉 ≥ 0, for all Q ∈ Sp
+.

(3.9)

Thus the semidefinite variational inequality with coupled constraints reduces to
the saddle point problem (3.9).

Remark 3.1. The above discussion yields that, under some conditions, x̄ is the
solution of (1.1) if and only if x̄ satisfies the relations (3.4)-(3.7) and (3.9).
Furthermore, if G(x , y) is differentiable with respect to y for any x and is convex
on the the diagonal of the square Ω×Ω, (3.4)-(3.7) and (3.9) are equivalent from
each other. Hence, by solving (3.9), we can obtain the solution of (1.1). The methods
for solving (3.9) will be shown in the rest of sections.

4. The Method Involving the Augmented Lagrange Function

In this section, we state the augmented Lagrange method for solving the system
of variational inequalities (3.9) which is equivalent to the semidefinite variational
inequality with coupled constraints problem (1.1) as follows.

Let x1 ∈ Ω, Q1 ∈ Sp
+ be initial estimated solution and Lagrange multiplier. At

n-th iteration (xn ∈ Ω,Qn ∈ Sp
+ are known), determine (xn+1,Qn+1) by

xn+1 ∈ arg min
�

1

2
‖y − xn‖2 +αM (xn+1, y,Qn)

��� y ∈ Ω
�

,

Qn+1 = ΠSp
+
(Qn +αG(xn+1, xn+1)), α > 0,

(4.1)

where

M (x , y,Q) = 〈F(x), y − x〉+ 1

2α
‖ΠSP

+
(Q+αG(x , y))‖2 − 1

2α
‖Q‖2

is the augmented Lagrangian function for problem (1.1).
The system (4.1) can be represented equivalently as the following variational

inequalities.

〈xn+1 − xn +α(F(xn+1) + Dy G(xn+1, xn+1)∗ΠSP
+
(Qn +αG(xn+1, xn+1))), y − xn+1〉

≥ 0, (4.2)

and

〈Qn+1 −Qn −αG(xn+1, xn+1),Q−Qn+1〉 ≥ 0, (4.3)
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for all y ∈ Ω and for all Q ∈ Sp
+.

In what follows, we demonstrate the convergence theorem of the augmented
Lagrange method for solving problem (1.1).

Theorem 4.1. Suppose that the solution set Ω0 of problem (1.1) is non-empty, F(x)
is a monotone mapping and G(x , y) is a symmetric matrix value function. Assume
that Ω ⊆ Rn is a convex closed set, G(x , y) is differentiable with respect to y for
any x and is convex on the diagonal of the square Ω × Ω, and α > 0. Then, the
accumulation of the sequence xn constructed by method (4.1) is a solution to the
variational inequality with coupled constraints problem (1.1).

Proof. Setting y = x̄ ∈ Ω0 in (4.2) and taking into account the second equation
(4.3), we obtain that

〈xn+1 − xn +α(F(xn+1) + Dy G(xn+1, xn+1)∗Qn+1), x̄ − xn+1〉 ≥ 0.

The above inequality can be transformed as follows:

〈xn+1−xn, x̄−xn+1〉+α〈F(xn+1), x̄ − xn+1〉+α〈Dy G(xn+1, xn+1)∗Qn+1, x̄ − xn+1〉
≥ 0. (4.4)

By the convexity of G(x , x) and Property 2.2, the last term in (4.4) can be
transformed as

〈Dy G(xn+1, xn+1)∗Qn+1, x̄ − xn+1〉= 〈Qn+1, Dy G(xn+1, xn+1)( x̄ − xn+1)〉

=
1

2
〈Qn+1, DG(xn+1, xn+1)( x̄ − xn+1)〉

≤ 1

2
〈Qn+1, G( x̄ , x̄)− G(xn+1, xn+1)〉. (4.5)

Substituting (4.5) into (4.4), we have

〈xn+1 − xn, x̄ − xn+1〉+α〈F(xn+1), x̄ − xn+1〉+ α
2
〈Qn+1, G( x̄ , x̄)− G(xn+1, xn+1)〉

≥ 0. (4.6)

Setting y = xn+1 in the first inequality in (3.9), we get that

〈F( x̄), xn+1 − x̄〉+ 1

2
〈Q̄, G(xn+1, xn+1)− G( x̄ , x̄)〉 ≥ 0. (4.7)

Summing (4.6) and (4.7), we have

〈xn+1 − xn, x̄ − xn+1〉+α〈F(xn+1)− F( x̄), x̄ − xn+1〉

+
α

2
〈Qn+1 − Q̄, G( x̄ , x̄)− G(xn+1, xn+1)〉 ≥ 0. (4.8)

Letting Q = Q̄ in (4.3) and using 〈Qn+1, G( x̄ , x̄)〉 ≤ 0 and 〈Q̄, G( x̄ , x̄)〉 = 0, we
obtain that

1

2
〈Qn+1 −Qn, Q̄−Qn+1〉 − α

2
〈G(xn+1, xn+1)− G( x̄ , x̄), Q̄−Qn+1〉 ≥ 0.

(4.9)



A Solution Method for Semidefinite Variational Inequality with Coupled Constraints 47

Since F(x) is monotone, summing (4.9) and (4.8), we get that

〈xn+1 − xn, x̄ − xn+1〉+ 1

2
〈Qn+1 −Qn, Q̄−Qn+1〉 ≥ 0. (4.10)

By using the identity for arbitrary x1, x2 and x3 as follows

‖x1 − x3‖2 = ‖x1 − x2‖2 + 2〈x1 − x2, x2 − x3〉+ ‖x2 − x3‖2,

which yields that

〈x1 − x2, x2 − x3〉=
1

2
‖x1 − x3‖2 − 1

2

�‖x1 − x2‖2 + ‖x2 − x3‖2� (4.11)

In view of (4.11), we get from (4.10) that

‖xn+1 − xn‖2 + ‖ x̄ − xn+1‖2 +
1

2
‖Qn+1 −Qn‖2 +

1

2
‖Q̄−Qn+1‖2

≤ ‖ x̄ − xn‖2 +
1

2
‖Q̄−Qn‖2. (4.12)

Summing (4.12) from n= 0 to n= N , we have
k=N∑

k=0

‖x k+1 − x k‖2 +
1

2

k=N∑

k=0

‖Qk+1 −Qk‖2 + ‖xN+1 − x̄‖2 +
1

2
‖QN+1 − Q̄‖2

≤ ‖x0 − x̄‖2 +
1

2
‖Q0 − Q̄‖2. (4.13)

The inequality (4.13) implies the boundedness of the trajectory {(x i ,Qi) : i =
1, 2, · · · }, that is,

‖xN+1 − x̄‖2 +
1

2
‖QN+1 − Q̄‖2 ≤ ‖x0 − x̄‖2 +

1

2
‖Q0 − Q̄‖2, (4.14)

and also the convergence of the series
∞∑

k=0

‖x k+1 − x k‖2 <∞,
∞∑

k=0

‖Qk+1 −Qk‖2 <∞,

therefore, ‖xn+1 − xn‖2 → 0, ‖Qn+1 −Qn‖2 → 0 as n → ∞. Since the sequence
(xn,Qn) is bounded, there exists an element (x ′,Q′) such that xni → x ′ and
Qni →Q′ as ni →∞. Moreover

‖xni+1 − xni‖2→ 0, ‖Qni+1 −Qni‖2→ 0.

Considering (4.2) and (4.3) with n = ni and passing to the limit as ni → ∞
produces

〈F(x ′) + Dy G(x ′, x ′)∗Q′, y − x ′〉 ≥ 0, for all y ∈ Ω,

Q′ = ΠSP
+
(Q′ +αG(x ′, x ′)), 〈−G(x ′, x ′),Q−Q′〉 ≥ 0, for all Q � 0.

Since these relations coincide with (3.6), therefore the limit of the subsequence
{xn} is a solution to problem (1.1). That is, the accumulation of the {xn} is a
solution to the variational inequality with coupled constraints. This completes the
proof. ¤
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5. Conclusions

In this paper, we introduce a class of semidefinite variational inequality with
coupled constraints which generalized the variational inequality with coupled
constraints in [1]. Furthermore, we address the properties of the symmetric
matrix value function that formed the coupled constraints. A method involving
the augmented Lagrange function is discussed and the convergence theorem is
demonstrated.
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