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Weierstrass Representation for Minimal Surfaces
into BCV-Spaces

M. Koivogui, L. Todjihounde, and M. Kourouma

Abstract Bianchi-Cartan-Vranceanu spaces (BCV-spaces) are some 3-dimensional
homogeneous manifolds equiped with a metric depending on 2 parameters κ and
τ , and whose isometries groups are of dimension four. In this paper, we describe
a Weierstrass-type representation formula for simply connected minimal surfaces
immersed into BCV-spaces.

1. Introduction

The topic of Weierstrass representations for minimal surfaces has a long
and rich history. It has been extensively investigated since the initial works of
Weierstrass [1] and Enneper [2] in the nineteenth century on systems inducing
minimal surfaces in R3 . There exist a great number of applications of Weierstrass
representations for minimal surfaces in various domains of Mathematics, Physics,
Chemistry and Biology [10].

By using the standard harmonic maps equation, Mercuri, Montaldo and Piu
gave in [3] a Weierstrass-type representation formula for simply connected
minimal surfaces into Riemannian manifolds and they applied the obtained general
structure to the case of 3-dimensional Lie groups endowed with left invariant
metrics. From this setting, they discussed then some examples of minimal surfaces
both in 3-dimensional Heisenberg group H3 and in H2 × R where H2 is the
2-dimensional hyperbolic space.

Let κ and τ be two real numbers and Dκ,τ be the domain of R3 defined by

Dκ,τ =
�
(x , y, z) ∈ R3

.
1+

κ

4
(x2 + y2)> 0

�
.
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By considering on Dκ,τ the 2-parameters family of homogeneous Riemannian
metrics:

ds2
κ,τ =

d x2 + d y2

(1+ κ

4
(x2 + y2))2

+
�

dz+τ
yd x − xd y

1+ κ

4
(x2 + y2)

�2

, τ,κ ∈ R,

we obtain a 2-parameters family of 3-dimensional Riemannian manifolds
(Dκ,τ, ds2

κ,τ), also denoted by M3(κ,τ) , called Bianchi-Cartan-Vranceanu spaces
(BCV-spaces, in short).

The class of BCV-spaces contains all the Riemannian manifolds with
4-dimensional or 6-dimensional isometries groups except the hyperbolic space
forms. The BCV-spaces provide model spaces of Thurston’s 3-dimensional
geometries (see [12]). In theoretical cosmology, the metrics on BCV-spaces are
known as the Bianchi-Kantowski-Sachs type metrics used to construct some
homogeneous space-times (see [11]). In these last fifteen years, many differential
geometers investigate curves and surfaces with some special properties in BCV-
spaces [15, 16]. Surfaces with parallel fundamental forms in BCV-spaces are
classified by Belkhelfa, Dillen and Inoguchi in [13], and more generally surfaces
with higher order parallel second fundamental forms in BCV-spaces have been
classified by J. Van der Veken [14]. In [17] and [18], the authors studied
biharmonic curves in BCV-spaces and they obtained interesting classification
results. A Weierstrass representation is a description of the surface by some
holomorphic functions. D.A. Berdinski and I.A. Taimanov obtained in [9] a
Weierstrass type representation for minimal surfaces into BCV-spaces in terms of
spinors and Dirac operators.

In this paper, we describe a Weierstrass-type representation formula for minimal
surfaces into BCV-spaces in terms of two complex-functions satisfying some
integral conditions and we extend thus the results obtained in [3] and [4].

2. Preliminaries

Let (M n, g) be an n -dimensional Riemannian manifold and f : Σ ⊂ M → M
be a minimal conformal immersion, where Σ is a Riemann surface. The pull-back
bundle f ?(T M) has a metric and compatible connection, the pull-back connection
induced by the Riemannian metric and the Levi-Civita connection of M . Consider
the complexified bundle E= f ?(T M)⊗C .

Let (u, v) be a local coordinates on Σ , z = u+ iv the local conformal complex
parameter and (x1, . . . , xn) be a system of local coordinates in a neighborhood U
of M such that U ∩ f (Σ) 6= ∅ . The pull-back connection extends to a complex
connection on E and it is well known that E has a unique holomorphic structure
such that a section φ : Σ→ E is holomorphic if and only if

e∇ ∂

∂ z̄
φ = 0, (2.1)

where e∇ is the pull-back connection on Σ .
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The induced metric on Σ is

ds2 = λ2(du2 + dv2) = λ2|dz|2,

and the beltrami-Laplace operator on Σ , with respect to the induced metric ds2 is
given by

∆= λ2
�
∂ 2

∂ u2 +
∂ 2

∂ v2

�
.

We recall that f : Σ → M is harmonic if and only if its tension field τ( f ) =
trace∇d f vanishes and for conformal immersions, harmonicity and minimality
are equivalent.
Let us consider

φ =
∂ f

∂ z
=

1

2

�
∂ f

∂ u
− i
∂ f

∂ v

�
.

By putting

φ =
n∑

j=1

φ j
∂

∂ x j

where φ j are some complex-valued functions defined on Σ , the tension field τ( f )
of f can be written as:

τ( f ) = 4λ−2
∑

i

�
∂ φi

∂ z̄
+Γi

jkφ̄ jφk

�
∂

∂ x i

where Γi
jk are the Christoffel symbols of M .

The section φ is then holomorphic if and only if

e∇ ∂

∂ z̄

� n∑

i=1

φi
∂

∂ x i

�
=
∑

j

�
∂ φi

∂ z̄
+
∑

k, j

Γi
jkφ̄ jφk

�
∂

∂ x i
= 0 ;

or equivalently if and only if

∂ φi

∂ z̄
+
∑

k, j

Γi
jkφ̄ jφk = 0, i = 1, 2, . . . , n. (2.2)

We have then

4λ−2(e∇ ∂

∂ z̄
φ) = τ( f ).

Thus f : Σ→ M is harmonic if and only if φ = ∂ f
∂ z

is a holomorphic section of E .
Relation (2.2) is a system of first order differential equations in the φi , it can be
written as:

∂ φi

∂ z̄
+ 2
∑

j>k

Γi
jk Re(φ̄ jφk) +

∑

j

Γi
j j |φ j |2 = 0, i = 1, . . . , n.

This implies that ∂ φi

∂ z̄
∈ R , and ensures that (locally) the 1-forms φidz do not have

real periods as it has been mentioned in [3]. Therefore we have the following:
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Proposition 2.1 ([4]). Let (M , g) be a Riemannian manifold and (x1, . . . , xn) local
coordinates. Let φ j , j = 1, . . . , n, be complex-valued functions in an open simply
connected domain Ω⊂ C which are solutions of (2.2). Then the map

f j(u, v) = 2 Re
�∫ z

z0

φ jdz
�

(2.3)

is well defined and determines a minimal conformal immersion if and only if the
following conditions are satisfied:

(i)
n∑

j,k=1
gi jφ jφ̄k 6= 0 ,

(ii)
n∑

j,k=1
gi jφ jφk = 0 .

In [3], the authors proved that if M is a Lie group then the system (2.2) has a
solution. In the next section we describe a Weierstrass representation for minimal
surfaces into 3-dimensional manifold.

3. Weierstrass Representation in 3-dimensional Manifolds

Let M3 be a 3-dimensional manifold, endowed with an analytic Riemannian
metric g . We consider M3 as a single chart and (x1, x2, x3) a system of coordi-
nates on M3 . By the Gram-Schmidt orthonormalization, we have a basis of vector
fields Ei , i = 1, 2, 3, defined by

E1 =
1

A

�
∂

∂ x1 −
1

B2 (g12 − g33 g23 g13)
∂

∂ x2

+ g33
�

1

B2 (g12 − g33 g23 g13)g23 − g13

�
∂

∂ x3

�
,

E2 =
1

B

�
∂

∂ x2 − g33 g23
∂

∂ x3

�
,

E3 =
1
p

g33

∂

∂ x3 . (3.1)

where

gi j = g
�
∂

∂ x i ;
∂

∂ x j

�
, g i j = [gi j]

−1 ,

A=

r
g11 −

1

B2 (g12 − g33 g13 g23)2 − g33(g13)2 ,

B =
p

g22 − g33(g23)2 .

In some open set Ω⊂ Σ the section φ = ∂ f
∂ z
∈ Γ( f ∗(T M)⊗C) can be decomposed

with respect to the coordinates vector fields as

φ =
3∑

i=1

φi
∂

∂ x i =
3∑

i=1

ψi Ei , (3.2)
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for some open complex functions φi , ψi : Ω → C . Moreover, there exists an
invertible matrix Mat = (mi j)i, j=1,2,3 with the functions entries mi j : f (Ω) → R ,
i, j = 1, 2, 3, satisfying

φi =
∑

j

mi jψ j ,

where

Mat=




A−1 0 0

−(g12 − g33 g23 g13)(AB2)−1 B−1 0

(A)−1[g33((B2)−1(g12 − g33 g23 g13)g23 − g13)] −g33 g23B−1
p

g33


 .

(3.3)

By (3.2), we have

e∇ ∂

∂ z̄

�∑

i

ψi Ei

�
=
∑

i

�
∂ψi

∂ z̄
Ei +

∑

j,k

ψkψ̄ j g(∇E j
Ek, Ei)Ei

�
.

This means that the section φ is holomorphic if and only if

∂ψi

∂ z̄
+
∑

j,k

ψkψ̄ j g(∇E j
Ek, Ei) = 0, i = 1, 2, 3. (3.4)

Theorem 3.1. Let ψi , i = 1, 2, 3 be complex-valued functions defined in a simply
connected domain Ω⊂ C such as the following conditions are satisfied:

(i)
n∑

i=1
ψiψ̄i 6= 0 ,

(ii)
n∑

i=1
ψ2

i = 0 ,

(iii) ψi are solutions of (3.4).

Then the map f := (x1, x2, x3) : Ω→ (M3, g) , defined by

x1(p) = 2 Re

∫ p

p0

�p
(g11−(g22 − g33(g23)2)−1(g12−g33 g13 g23)2−g33(g13)2

�−1
ψ1dρ ,

x2(p) = 2 Re

∫ p

p0

−(g22 − g33(g23)
2)−1(g12 − g13 g23 g33)ψ1

+
�p

g22 − g33(g23)2
�−1
ψ2dρ ,

x3(p) = 2 Re

∫ p

p0

[(g22 − g33(g23)
2)−1(g23 g33(g12 − g13 g23 g33)− g33 g13]ψ1

−
�p

g22 − g33(g23)2
�−1

g23 g33ψ2 +
p

g33ψ3dρ , (3.5)

is a conformal minimal immersion.
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Proof. Using (3.1) and (3.2), we get

φ1 =
�p
(g11 − (g22 − g33(g23)2)−1(g12 − g33 g13 g23)2 − g33(g13)2

�−1
ψ1 ,

φ2 =−(g22 − g33(g23)
2)−1(g12 − g13 g23 g33)ψ1 + i

�p
g22 − g33(g23)2

�−1
ψ2 ,

φ3 = (g22 − g33(g23)
2)−1(g23 g33(g12 − g13 g23 g33)− g33 g13]ψ1

−
�p

g22 − g33(g23)2
�−1

g23 g33ψ2 + 2
p

g33ψ3 .

From proposition 2.1, the theorem is proved. ¤

Remark 3.2. If M = R3 and g the flat metric on M , we have a Weierstrass
representation for minimal surfaces in R3 , see [4].

Since the parameter z is conformal, we have

ψ2
1 +ψ

2
2 +ψ

2
3 = 0. (3.6)

From (3.6) we have

(ψ1 − iψ2)(ψ1 + iψ2) =−ψ2
3 ,

which suggests the definition of two new complex functions

G :=

r
1

2
(ψ1 − iψ2) , H :=

r
−1

2
(ψ1 + iψ2) . (3.7)

The functions G and H are single-valued complex functions which satisfy

ψ1 = G2 −H2, ψ2 = i(G2 +H2), ψ3 = 2GH. (3.8)

In the following, we give a Weierstrass representation for minimal surfaces into
BCV-spaces.

4. Weierstrass Representation in BCV-space M3(κ,τ)

Let κ and τ be two real numbers, with τ≥ 0. Bianchi-Cartan-Vranceanu space
(BCV-space) M3(κ,τ) is defined as the set

Dκ,τ =
�
(x , y, z) ∈ R3

.
1+

κ

4
(x2 + y2)> 0

�

endowed with the metric

ds2
κ,τ =

d x2 + d y2

(1+ κ

4
(x2 + y2))2

+
�

dz+τ
yd x − xd y

1+ κ

4
(x2 + y2)

�2

. (4.1)

It was Cartan [8] who obtained this family of spaces by classifying of three-
dimensional Riemannian manifolds with four-dimensional isometry group. They
also appeared in the work L. Bianchi [5, 6], and G. Vranceanu [7]. The complete
classification of BCV-spaces is as follows:

• if κ= τ= 0, then M3(κ,τ)∼= R3 ;
• if κ= 4τ2 6= 0, then M3(κ,τ)∼= S3(κ

4
)\{∞} ;
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• if κ > 0 and τ= 0, then M3(κ,τ)∼= (S2(κ)\{∞})×R ;
• if κ < 0 and τ= 0, then M3(κ,τ)∼=H2(κ)×R ;
• if κ > 0 and τ 6= 0, then M3(κ,τ)∼= SU(2)\{∞} ;
• if κ < 0 and τ 6= 0, then M3(κ,τ)∼=fSL(2,R) ;
• if κ= 0 and τ 6= 0, then M3(κ,τ)∼= Nil3 .

By the Gram-Schmidt orthonormalization the following vectors fields form an
orthonormal frame on M3(κ,τ) :

E1 =
�

1+
κ

4
(x2 + y2)

∂

∂ x
−τy

∂

∂ z

�
;

E2 =
�

1+
κ

4
(x2 + y2)

∂

∂ y
+τx

∂

∂ z

�
; E3 =

∂

∂ z
. (4.2)

The corresponding Lie Bracket are

[E1; E2] =−
κ

2
yE1 +

κ

2
x E2 + 2τE3; [E1; E3] = 0; [E2; E3] = 0. (4.3)

With respect to this orthonormal basis, the Levi-Civita connection can be computed
as:

∇E1
E1 =

κ

2
yE2 ∇E1

E2 =−κ2 yE1 +τE3, ∇E1
E3 =−τE2,

∇E2
E1 =−κ2 x E2 −τE3, ∇E2

E2 =
κ

2
x E1, ∇E2

E3 = τE1,

∇E3
E1 =−τE2, ∇E3

E2 = τE1, ∇E3
E3 = 0.

We have by Kozul’s formula

g(∇E1
E1, E2) =

κ

4
y, g(∇E1

E2, E1) =−κ4 y, g(∇E1
E2, E3) =

τ

2
, g(∇E1

E3, E2) =−τ2 ,

g(∇E2
E1, E2) =−κ4 x , g(∇E2

E1, E3) =−τ2 , g(∇E2
E2, E1) =

κ

4
x , g(∇E2

E3, E1) =
τ

2
,

g(∇E3
E1, E2) =−τ2 , g(∇E3

E2, E1) =
τ

2
.

The matrice (3.3) is then given by



1+ κ

4
(x2 + y2) 0 0

0 1+ κ

4
(x2 + y2) 0

−τy τx 1


 .

According to (3.4) the section φ = ψ1E1 +ψ2E2 +ψ3E3 is holomorphic if and
only if

∂ψ1

∂ z̄
− κ

4
yψ2ψ̄1 +

κ

4
xψ2ψ̄2 +

τ

2
ψ2ψ̄3 +

τ

2
ψ3ψ̄2 = 0 ,

∂ψ2

∂ z̄
+
κ

4
yψ1ψ̄1 −

τ

2
ψ1ψ̄3 −

κ

4
xψ1ψ̄2 −

τ

2
ψ3ψ̄1 = 0 , (4.4)

∂ψ3

∂ z̄
− τ

2
ψ1ψ̄2 +

τ

2
ψ2ψ̄1 = 0 .

Let us now write equations (4.4), which ensures that φ is holomorphic section, in
term of the functions G and H :
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If ψ satisfies (3.8) then

G
∂ G

∂ z̄
=
κ

8
yi(|G|4 − G2H̄2)− κ

8
x(|G|4 + G2H̄2)− iτ

2
GH̄(|G|2−|H|2),

(4.5)

H
∂ H

∂ z̄
=
κ

8
yi(|H|4 −H2Ḡ2) +

κ

8
x(|H|4 +H2Ḡ2)− iτ

2
HḠ(|G|2−|H|2),

(4.6)

H
∂ G

∂ z̄
+ G

∂ H

∂ z̄
=− iτ

2
(|G|4−|H|4) . (4.7)

Therefore, Theorem 3.1 can be written as:

Theorem 4.1. Let G and H be complex-valued functions defined in a simply
connected domain Ω⊂ C such that:

(i) G and H are not identically zeros.
(ii) G and H are solutions of (4.5)-(4.7).

Then the map f := (x , y, z) : Ω→ M3(κ,τ) , defined by

x(p) = 2 Re

∫ p

p0

(1+
κ

4
(x2 + y2))(G2 −H2)dρ , (4.8)

y(p) = 2 Re

∫ p

p0

(1+
κ

4
(x2 + y2))i(G2 +H2)dρ , (4.9)

z(p) = 2 Re

∫ p

p0

−yτ(G2 −H2) + i xτ(G2 +H2) + 2GHdρ , (4.10)

is a conformal minimal immersion.

Proof. Using (4.2), we get

φ1 =
�
1+
κ

4
(x2+ y2)

�
ψ1 , φ2 =

�
1+
κ

4
(x2+ y2)

�
ψ2 , φ3 =−τyψ1 +τxψ2 +ψ3 .

From Theorem 3.1 and (3.8), we have the result. ¤

Remark 4.2. Equations (4.5) and (4.6) are non-linear partial differential equa-
tions with non-constant coefficients and it is more complicated to find explicitly
solutions φi , i = 1, 2, 3. By replacing κ by δ = 1+ κ

4
(x2 + y2) , with |δ| > 2 and

δ is constant, we obtain the new metric

ds2
δ,τ =

d x2 + d y2

δ2 +
�

dz+τ
yd x − xd y

δ

�2

, (4.11)

which looks like a Heisenberg metric but is not isometric to a Heisenberg metric.

By the Gram-Schmidt orthonormalization the following vectors fields form an
orthonormal frame on M3(δ,τ) :

E1 = δ
∂

∂ x
−τy

∂

∂ z
; E2 = δ

∂

∂ y
+τx

∂

∂ z
; E3 =

∂

∂ z
. (4.12)
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The corresponding Lie Bracket are

[E1; E2] = 2δτE3 ; [E1; E3] = 0 ; [E2; E3] = 0 . (4.13)

With respect to this orthonormal basis, the Levi-Civita connection can be computed
as:

∇E1
E1 = 0 , ∇E1

E2 = δτE3 , ∇E1
E3 =−δτE2 ,

∇E2
E1 =−δτE3 , ∇E2

E2 = 0 , ∇E2
E3 = δτE1 ,

∇E3
E1 =−δτE2 , ∇E3

E2 = δτE1 , ∇E3
E3 = 0 .

We have by Kozul’s formula

g(∇E1
E2, E3) = δτ , g(∇E1

E3, E2) =−δτ , g(∇E2
E1, E3) =−δτ ,

g(∇E2
E3, E1) = δτ , g(∇E3

E1, E2) =−δτ , g(∇E3
E2, E1) = δτ .

According to (3.4), the section φ =ψ1E1+ψ2E2+ψ3 is holomorphic if and only if

∂ψ1

∂ z̄
+ 2δτRe(ψ2ψ̄3) = 0 ;

∂ψ2

∂ z̄
− 2δτRe(ψ1ψ̄3) = 0 ;

∂ψ3

∂ z̄
− 2iδτ Im(ψ1ψ̄2) = 0. (4.14)

Equations (4.14) can be written in terms of the functions G and H defined by
(3.7).

∂ G

∂ z̄
=−iδτH̄(|G|2 − |H|2) , (4.15)

∂ H

∂ z̄
=−iδτḠ(|G|2 − |H|2) . (4.16)

Therefore, Theorem 4.1 becomes:

Theorem 4.3. Let G and H be complex-valued functions defined in a simply
connected domain Ω⊂ C such that:

(i) G and H are not identically zeros.
(ii) G and H are solutions of (4.15)-(4.16).

Then the map f := (x , y, z) : Ω→ M3(δ,τ) , defined by




x(p) = 2 Re
∫ p

p0
δ(G2 −H2)dρ ,

y(p) = 2 Re
∫ p

p0
iδ(G2 +H2)dρ ,

z(p) = 2 Re
∫ p

p0
−yτ(G2 −H2) + i xτ(G2 +H2) + 2GHdρ ,

is a conformal minimal immersion.
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