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Abstract. A graph G is called supermagic if it admits a labelling of the edges by pairwise different
consecutive positive integers such that the sum of the labels of the edges incident with a vertex is
independent of the particular vertex. A graph G is called degree-magic if it admits a labelling of
the edges by integers 1,2, . . . , |E(G)| such that the sum of the labels of the edges incident with any
vertex v is equal to (1+|E(G)|)deg(v)/2. In this paper, some constructions of degree-magic labellings of
some graphs obtained by generalizing the double graph of the disjoint union of a graph are presented.
As a result, some supermagic graphs are obtained.
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1. Introduction
The finite graphs without loops and isolated vertices are considered. If G is a graph, then V (G)
and E(G) stand for the vertex set and edge set of G, respectively. Cardinalities of these sets are
called the order and size of G. The subgraph of a graph G induced by a set Z ⊆ E(G) is denoted
by G[Z]. For integers p and q, the set of all integers z satisfying p ≤ z ≤ q is indicated by [p, q].

Let a graph G and a mapping f from E(G) into positive integers be given. The index-mapping
of f is the mapping f ∗ from V (G) into positive integers defined by

f ∗(v)= ∑
e∈E(G)

η(v, e) f (e), for every v ∈V (G), (1.1)
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where η(v, e) is equal to 1 when e is an edge incident with a vertex v, and 0 otherwise. An
injective mapping f from E(G) into positive integers is called a magic labelling of G for an
index λ if its index-mapping f ∗ satisfies:

f ∗(v)=λ, for all v ∈V (G). (1.2)

A magic labelling f of G is called a supermagic labelling if the set { f (e) : e ∈ E(G)} consists
of consecutive positive integers. A graph G is supermagic (magic) whenever there exists a
supermagic (magic) labelling of G.

A bijection f from E(G) onto [1, |E(G)|] is called a degree-magic labelling (or only d-magic
labelling) of a graph G if its index-mapping f ∗ satisfies:

f ∗(v)= 1+|E(G)|
2

deg(v), for all v ∈V (G). (1.3)

A graph G is said to be degree-magic (or only d-magic) when a d-magic labelling of G exists.
The concept of magic graphs was put forward by Sedláček [9]. Later, supermagic graphs were

introduced by Stewart [10]. Currently, numerous papers are published on magic and supermagic
graphs (see [1,3–7] for more comprehensive references). The thought of degree-magic graphs
was then introduced by Bezegová and Ivančo [2]. Degree-magic graphs extend supermagic
regular graphs because the following result holds.

Theorem 1.1 ([2]). Let G be a regular graph. Then G is supermagic if and only if it is degree-
magic.

Suppose that q ≥ 2 is an integer. A spanning subgraph H of a graph G is called a 1
q -factor

of G whenever degH(v) = degG(v)/q for every vertex v ∈ V (G). A bijection f from E(G) onto
[1, |E(G)|] is called q-gradual if the set

Fq( f ; i) := {
e ∈ E(G) : (i−1)|E(G)|/q < f (e)≤ i|E(G)|/q}

induces a 1
q -factor of G for each i ∈ [1, q]. A graph G is said to be balanced degree-magic if a

2-gradual d-magic labelling of G exists. A notion of a q-gradual bijection of a graph G was
recommended by Ivančo [8]. Some properties of balanced d-magic graphs were described in [2]
and [3]. However, the concept of a q-gradual labelling seems to be useful as well for q > 2.

The graph obtained by replacing each edge uv of a graph G with two edges joining u and
v is denoted by 2G. Hence, V (2G) = V (G) and E(2G) = ⋃

e∈E(G)
{(e,1), (e,2)}, where an edge (e, i),

i ∈ {1,2}, is incident with a vertex v in 2G whenever e is incident with v in G. In this case,
E i(2G) := ⋃

e∈E(G)
{(e, i)}, i = 1,2. Evidently, the subgraph of 2G induced by E i(2G), i = 1,2, is

isomorphic to G.
Let G be a graph. Suppose that U ⊆V (G) and Z ⊆ E(G). A graph D = D(G; Z,U) is defined

by

V (D)= ⋃
v∈V (G)

{v0,v1}

and

E(D)= ⋃
vu∈Z

{v0u0,v1u1}∪ ⋃
vu∈E(G)−Z

{v0u1,v1u0}∪ ⋃
u∈U

{u0u1}.
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The graph D(G; Z,U) is called a generalized double graph because these cases hold. (i) The graph
D(G;E(G),;) consists of two disjoint copies of G, i.e., it is isomorphic to 2G. (ii) The graph
D(G;E(G),V (G)) is the Cartesian product of G and K2. (iii) The graph D(G;;,;) is the
categorical product of G and K2, also called the bipartite double graph of a graph G.
(iv) The graph D(2G;E1(2G),;) is the lexicographic product (or composition) of G and K2,
also called the double graph of a graph G.

An idea of generalized double graphs was presented by Ivančo [8]. Some essential results
are proved and some constructions of supermagic and degree-magic labellings of some graphs
generalizing double graphs are also introduced in [8].

In this paper, some constructions of degree-magic and supermagic labellings on some graphs
obtained by generalizing the double graph of the disjoint union of n copies of a graph are shown.

2. A Generalization of the Double Graph of the Disjoint
Union of a Graph

Let G be a graph. Suppose that U ⊆V (G) and Z ⊆ E(G). For any integer n ≥ 2 and t ∈ [1,n], let
G t,U t and Z t be the tth copies of G,U and Z, respectively. Let et ∈ E(G t)(vt ∈V (G t)) be an edge
(vertex) of G t corresponding to e ∈ E(G)

(
v ∈V (G)

)
. The disjoint unions of n copies of G,U and

Z are denoted by nG = G1 ∪G2 ∪·· ·∪Gn, nU =U1 ∪U2 ∪·· ·∪Un and nZ = Z1 ∪Z2 ∪·· ·∪Zn,
respectively. A graph D = D(nG;nZ,nU) is defined by

V (D)= ⋃
v∈V (G),t∈[1,n]

{vt0,vt1}

and

E(D)= ⋃
vu∈Z,t∈[1,n]

{vt0ut0,vt1ut1}∪ ⋃
vu∈E(G)−Z,t∈[1,n]

{vt0ut1,vt1ut0}∪ ⋃
u∈U ,t∈[1,n]

{ut0ut1}.

Therefore, the graph D(nG;nZ,nU) is a generalization of the double graph of a graph nG.
Now, some vital findings are presented in this paper.

Lemma 2.1. Let G be a graph such that deg(v)≡ 0 (mod 2) for every vertex v ∈V (G). Suppose
that the subgraph of G induced by a set Z ⊆ E(G) has a 1

2 -factor. Then for any bijection
f : E(G) −→ [1, |E(G)|], there exists a 2-gradual bijection g : E(D(nG;nZ,;)) −→ [1,2|E(nG)|]
such that for every vertex v ∈V (G) it holds

g∗(vt0)= g∗(vt1)= f ∗(v)+ 1
2

(2n−1)|E(G)|deg(v).

Proof. The subgraph G[Z] of a graph G induced by a set Z ⊆ E(G) has a 1
2 -factor. Then, there is

a set Z1 ⊆ Z such that the subgraph of G[Z] induced by Z1 is a 1
2 -factor of G[Z]. Obviously, the

subgraph of G[Z] induced by Z2 = Z−Z1 is also a 1
2 -factor of G[Z]. Moreover, the degree of each

vertex of G[Z] is even as well as the degree of each vertex of H =G[E(G)−Z] is even. It means
that every component of H is Eulerian. Therefore, there is a digraph ~H gotten from H by an
orientation of its edges such that the outdegree of every vertex of ~H is equal to its indegree. Let
[u,v] be an arc of ~H and let A(~H) be the set of all arcs of ~H. For any integer n ≥ 2 and t ∈ [1,n],
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put m := |E(G)| and D := D(nG;nZ,;). Consider the bijection g : E(D)−→ [1,2mn] given by

g(utivt j)=



f (uv)+ (t−1)m if i = 0, j = 1, [u,v] ∈ A(~H),
f (uv)+ (2n− t)m if i = 1, j = 0, [u,v] ∈ A(~H),
f (uv)+ (t−1)m if i = j = 0, uv ∈ Z1,
f (uv)+ (2n− t)m if i = j = 1, uv ∈ Z1,
f (uv)+ (t−1)m if i = j = 1, uv ∈ Z2,
f (uv)+ (2n− t)m if i = j = 0, uv ∈ Z2.

For its index-mapping, one then has

g∗(vt0)= ∑
[v,w]∈A(~H)

g(vt0wt1)+ ∑
[w,v]∈A(~H)

g(wt1vt0)+ ∑
vw∈Z1

g(vt0wt0)+ ∑
vw∈Z2

g(vt0wt0)

= ∑
[v,w]∈A(~H)

( f (vw)+ (t−1)m)+ ∑
[w,v]∈A(~H)

( f (wv)+ (2n− t)m)

+ ∑
vw∈Z1

( f (vw)+ (t−1)m)+ ∑
vw∈Z2

( f (vw)+ (2n− t)m)

= ∑
vw∈E(G)

f (vw)+ (2n−1)m
deg(v)

2
= f ∗(v)+ 1

2
(2n−1)mdeg(v)

for every vertex vt0 ∈ V (D). Similarly, g∗(vt1)= f ∗(v)+ 1
2 (2n−1)mdeg(v) is obtained for every

vertex vt1 ∈V (D). Since the outdegree of every vertex of ~H is equal to its indegree and the sets
Z1 and Z2 induce 1

2 -factors of G[H], the sets

F2(g;1)= {ut0vt1; [u,v] ∈ A(~H), t ∈ [1,n]}∪ {ut0vt0;uv ∈ Z1, t ∈ [1,n]}∪ {ut1vt1;uv ∈ Z2, t ∈ [1,n]}

and

F2(g;2)= {ut1vt0; [u,v] ∈ A(~H), t ∈ [1,n]}∪ {ut1vt1;uv ∈ Z1, t ∈ [1,n]}∪ {ut0vt0;uv ∈ Z2, t ∈ [1,n]}

induce 1
2 -factors of D.

Lemma 2.2. Let q ≥ 2 be a positive integer and let G be a graph such that deg(v)≡ 0 (mod 2q)
for every vertex v ∈V (G). Then for any q-gradual bijection f : E(G)−→ [1, |E(G)|], there exists a
2-gradual bijection g from E(D(nG;;,;)) onto

[
1,2|E(nG)|] such that for every vertex v ∈V (G)

it holds

g∗(vt0)= g∗(vt1)= f ∗(v)+ 1
2

(2n−1)|E(G)|deg(v).

Proof. Because deg(v) ≡ 0 (mod 2q) for every vertex v ∈ V (G), the degree of each vertex of
Hi =G[Fq( f ; i)], i ∈ [1, q], is even. Therefore, there is a digraph ~Hi which it is obtained from
Hi by an orientation of its edges such that the outdegree of every vertex of ~Hi is equal to
its indegree. Let ~H be an orientation of G such that the set A(~H) of all arcs of ~H is equal to

q⋃
i=1

A(~Hi). For any integer n ≥ 2 and t ∈ [1,n], put m := |E(G)| and D := D(nG;;,;). Consider

the bijection g : E(D)−→ [1,2mn] given by

g(ut jvtk)=
{

f (uv)+ (t−1)m if j = 0, k = 1, [u,v] ∈ A(~H),
f (uv)+ (2n− t)m if j = 1, k = 0, [u,v] ∈ A(~H).
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For its index-mapping, one obtains

g∗(vt0)= ∑
[v,w]∈A(~H)

g(vt0wt1)+ ∑
[w,v]∈A(~H)

g(wt1vt0)

= ∑
[v,w]∈A(~H)

( f (vw)+ (t−1)m)+ ∑
[w,v]∈A(~H)

( f (wv)+ (2n− t)m)

= ∑
vw∈E(G)

f (vw)+ (2n−1)m
deg(v)

2

= f ∗(v)+ 1
2

(2n−1)mdeg(v)

for every vertex vt0 ∈ V (D). Likewise, g∗(vt1) = f ∗(v)+ 1
2 (2n−1)mdeg(v) is gotten for every

vertex vt1 ∈V (D). Furthermore, the outdegree of every vertex of ~Hi is equal to its indegree, and
so the sets

F2(g;1)= {ut0vt1; [u,v] ∈ A(~H), t ∈ [1,n]} and

F2(g;2)= {ut1vt0; [u,v] ∈ A(~H), t ∈ [1,n]}

induce 1
2 -factors of D.

Lemma 2.3. Let q ≥ 3 be an odd positive integer. Then for any q-gradual bijection f : E(G)−→[
1, |E(G)|], there exists a q-gradual bijection

g : E(qG)−→ [
1, |E(qG)|]

such that for every vertex v ∈V (G) it holds

g∗(vt)= f ∗(v)+ 1
2

(q−1)|E(G)|deg(v).

Proof. For any t ∈ [1, q], put m := |E(G)|. Consider the bijection g from E(qG) onto [1, |E(qG)|]
given by

g(utvt)=



f (uv)+ (i−1)m if uv ∈ Fq( f , i), i ∈ [1, q], t = 1,
f (uv)+ (i)m if uv ∈ Fq( f , i), i ∈ [1, q−1], t = 2,
f (uv)+ (i− q)m if uv ∈ Fq( f , i), i = q, t = 2,
f (uv)+ (i+1)m if uv ∈ Fq( f , i), i ∈ [1, q−2], t = 3,
f (uv)+ (i+1− q)m if uv ∈ Fq( f , i), i ∈ [q−1, q], t = 3,
...
f (uv)+ (i−3+ q)m if uv ∈ Fq( f , i), i ∈ [1,2], t = q−1,
f (uv)+ (i−3)m if uv ∈ Fq( f , i) , i ∈ [3, q], t = q−1,
f (uv)+ (i−2+ q)m if uv ∈ Fq( f , i), i = 1, t = q,
f (uv)+ (i−2)m if uv ∈ Fq( f , i), i ∈ [2, q], t = q.

Consider t = 1, for its index-mapping one receives

g∗(v1)=
q∑

i=1

∑
vw∈Fq( f ;i)

g(v1w1)

=
q∑

i=1

∑
vw∈Fq( f ;i)

f (vw)+
q∑

i=1
(i−1)m

deg(v)
q
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= ∑
vw∈E(G)

f (vw)+
(
1
2

q(q+1)− q
)

m
deg(v)

q

= f ∗(v)+ 1
2

(q−1)mdeg(v).

Likewise, g∗(vt) = f ∗(v)+ 1
2 (q−1)mdeg(v) is obtained for t ∈ [2, q]. Moreover, for i ∈ [1, q] the

sets

Fq(g;1)= {u1v1 : uv ∈ Fq( f ;1)}∪ {uq+2−ivq+2−i : uv ∈ Fq( f ; i), i ∈ [2, q]},

Fq(g;2)= {u3−iv3−i : uv ∈ Fq( f ; i), i ∈ [1,2]}∪ {uq+3−ivq+3−i : uv ∈ Fq( f ; i), i ∈ [3, q]}, . . . ,

Fq(g; q−1)= {uq−ivq−i : uv ∈ Fq( f ; i), i ∈ [1, q−1]}∪ {uqvq : uv ∈ Fq( f ; q)}

and

Fq(g; q)= {uq+1−ivq+1−i : uv ∈ Fq( f ; i), i ∈ [1, q]}

induce 1
q -factors of qG.

Lemma 2.4. Let q ≥ 3 be an odd positive integer and let G be a graph such that deg(v) ≡ 0
(mod 2q) for every vertex v ∈ V (G). Suppose that the subgraph of G induced by a set Z ⊆ E(G)
has a 1

2 -factor. Then for any q-gradual bijection f : E(G)−→ [1, |E(G)|], there exists a bijection
g : E(D(qG; qZ,;))−→ [1,2|E(qG)|] such that for every vertex v ∈V (G) it holds

g∗(vt0)= g∗(vt1)= f ∗(v)+ 1
2

(2q−1)|E(G)|deg(v).

Proof. The subgraph G[Z] of a graph G induced by a set Z ⊆ E(G) has a 1
2 -factor. Then, there

is a set Z1 ⊆ Z such that the subgraph of G[Z] induced by Z1 is a 1
2 -factor of G[Z]. Obviously,

the subgraph of G[Z] induced by Z2 = Z−Z1 is also a 1
2 -factor of G[Z]. Moreover, the degree of

each vertex of G[Z] as well as the degree of each vertex of H =G[E(G)−Z] is even. Therefore,
there is a digraph ~H obtained from H by an orientation of its edges such that the outdegree of
every vertex of ~H is equal to its indegree. Let [u,v] be an arc of ~H and let A(~H) be the set of all
arcs of ~H.
For any integer t ∈ [1, q], put m := |E(G)| and D := D(qG; qZ,;). Since f is a q-gradual
bijection from E(G) onto [1, |E(G)|], according to Lemma 2.3 there exists a q-gradual bijection
f1 : E(qG)−→ [

1, |E(qG)|] such that

f ∗1 (vt)= f ∗(v)+ 1
2

(q−1)mdeg(v)

for every vertex v ∈V (G). Consider the bijection g : E(D)−→ [1,2qm] given by

g(utivt j)=



f1(utvt) if i = 0, j = 1, [u,v] ∈ A(~H),
f1(utvt)+ qm if i = 1, j = 0, [u,v] ∈ A(~H),
f1(utvt) if i = j = 0, uv ∈ Z1,
f1(utvt)+ qm if i = j = 1, uv ∈ Z1,
f1(utvt) if i = j = 1, uv ∈ Z2,
f1(utvt)+ qm if i = j = 0, uv ∈ Z2.
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For its index-mapping, one then has

g∗(vt0)= ∑
[v,w]∈A(~H)

g(vt0wt1)+ ∑
[w,v]∈A(~H)

g(wt1vt0)+ ∑
vw∈Z1

g(vt0wt0)+ ∑
vw∈Z2

g(vt0wt0)

= ∑
[v,w]∈A(~H)

f1(vtwt)+ ∑
[w,v]∈A(~H)

(
f1(wtvt)+ qm

)
+ ∑

vw∈Z1

f1(vtwt)+ ∑
vw∈Z2

(
f1(vtwt)+ qm

)
= ∑

vw∈E(G)
f1(vtwt)+ qm

deg(v)
2

= f ∗1 (vt)+ 1
2

qmdeg(v)

= f ∗(v)+ 1
2

(q−1)mdeg(v)+ 1
2

qmdeg(v)

= f ∗(v)+ 1
2

(2q−1)mdeg(v)

for every vertex vt0 ∈ V (D). Similarly, g∗(vt1) = f ∗(v)+ 1
2 (2q−1)mdeg(v) is obtained for every

vertex vt1 ∈V (D).

3. Degree-Magic and Supermagic Graphs
In this section, some sufficient conditions of some graphs obtained by generalizing the double
graph of the disjoint union of a graph D(nG;nZ,;) to be degree-magic are presented.

Theorem 3.1. Let G be a degree-magic graph such that deg(v) ≡ 0 (mod 2) for every vertex
v ∈ V (G). If the subgraph of G induced by a set Z ⊆ E(G) has a 1

2 -factor, then the graph
D(nG;nZ,;) of a graph G is balanced degree-magic.

Proof. Since G is a d-magic graph, there is a d-magic labelling f from E(G) onto [1, |E(G)|].
According to Lemma 2.1, there exists a 2-gradual bijection g : E(D(nG;nZ,;))−→ [1,2|E(nG)|]
satisfying

g∗(vt0)= g∗(vt1)= f ∗(v)+ 1
2

(2n−1)|E(G)|deg(v)

for every vertex v ∈V (G). As f is a d-magic labelling, f ∗(v)= 1
2 (1+|E(G)|)deg(v). Hence,

g∗(vt0)= g∗(vt1)= 1
2

(1+|E(G)|)deg(v)+ 1
2

(2n−1)|E(G)|deg(v)

= 1
2

(1+2n|E(G)|)deg(v)= 1
2

(1+|E(D(nG;nZ,;))|)deg(v).

Therefore, g is a 2-gradual d-magic labelling of D(nG;nZ,;).

Combining Theorem 1.1 and Theorem 3.1, one certainly has

Corollary 3.1. Let G be a supermagic regular graph of even degree. If the subgraph of G induced
by a set Z ⊆ E(G) has a 1

2 -factor, then the graph D(nG;nZ,;) of a graph G is supermagic.

A totally disconnected graph has a 1
2 -factor and one then obtains
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Corollary 3.2. Let G be a supermagic regular graph of even degree. Then the graph D(nG;;,;)
of a graph G is supermagic.

In the next result, a sufficient condition for a graph D(n2G;nE1(2G),;) to be balanced
degree-magic is proved.

Corollary 3.3. Let G be a graph having a 1
2 -factor. Then the graph D(n2G;nE1(2G),;) of a

graph G is balanced degree-magic.

Proof. Let g be a bijection from E(G) onto [1, |E(G)|]. Consider a mapping f : E(2G) −→
[1,2|E(G)|] given by

f ((e, j))=
{

g(e) if j = 1,
1+2|E(G)|− g(e) if j = 2.

Evidently, f is a bijection. Moreover, f ((e,1))+ f ((e,2)) = 1+2|E(G)| for every edge e ∈ E(G).
Thus,

f ∗(v)= (1+2|E(G)|)degG(v)= 1
2

(1+|E(2G)|)deg2G(v).

Hence, f is a degree-magic labelling of 2G. Because the subgraph of 2G induced by E1(2G)
is isomorphic to G, it contains a 1

2 -factor. By Theorem 3.1, D(n2G;nE1(2G),;) is a balanced
d-magic graph.

Corollary 3.4. Let G be a graph such that deg(v)≡ 0 (mod 2) for every vertex v ∈V (G) and let
q ≥ 2 be an even positive integer. If G can be decomposed into q pairwise edge-disjoint 1

q -factors,
then the graph D(n2G;nE1(2G),;) of a graph G is balanced degree-magic.

Proof. Since the union of q/2 edge-disjoint 1
q -factors induces a 1

2 -factor of G, According to
Corollary 3.3, D(n2G;nE1(2G),;) is a balanced d-magic graph.

Since any regular graph of even degree d is decomposable into d/2 pairwise edge-disjoint
2-factors (i.e., 1

d/2 -factors), one suddenly gets

Corollary 3.5. Let G be a regular graph of degree d, where 4≤ d ≡ 0 (mod 4). Then the graph
D(n2G;nE1(2G),;) of a graph G is supermagic.

Combining Theorem 1.1 and Corollary 3.3, one immediately has

Corollary 3.6. Let G be a regular graph having a 1
2 -factor. Then the graph D(n2G;nE1(2G),;)

of a graph G is supermagic.

Now, a sufficient condition for a generalization of the disjoint union of a graph D(nG;;,;)
to be degree-magic is shown.

Theorem 3.2. Let q ≥ 2 be a positive integer and let G be a graph such that deg(v)≡ 0 (mod 2q)
for every vertex v ∈ V (G). If G admits a q-gradual degree-magic labelling, then the graph
D(nG;;,;) of a graph G is balanced degree-magic.
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Proof. Suppose that f is a q-gradual d-magic labelling of G. According to Lemma 2.2, there
exists a 2-gradual bijection g : E(D(nG;;,;))−→ [

1,2|E(nG)|] satisfying

g∗(vt0)= g∗(vt1)= f ∗(v)+ 1
2

(2n−1)|E(G)|deg(v)

for every vertex v ∈V (G). Since f is a d-magic labelling, f ∗(v)= 1
2 (1+|E(G)|)deg(v). Thus,

g∗(vt0)= g∗(vt1)= 1
2

(1+|E(G)|)deg(v)+ 1
2

(2n−1)|E(G)|deg(v)

= 1
2

(1+2n|E(G)|)deg(v)= 1
2

(1+|E(D(nG;;,;))|)deg(v).

Therefore, g is a 2-gradual d-magic labelling of D(nG;;,;).

Combining Theorem 1.1 and Theorem 3.2, one immediately has

Corollary 3.7. Let q ≥ 2 be a positive integer and let G be a regular graph such that deg(v)≡ 0
(mod 2q) for every vertex v ∈V (G). If G admits a q-gradual supermagic labelling, then the graph
D(nG;;,;) of a graph G is supermagic.

In the next result, for any odd positive integer q ≥ 3 a sufficient condition for the
generalization of the double graph of the disjoint union of a graph D(qG; qZ,;) to be degree-
magic is presented.

Theorem 3.3. Let q ≥ 3 be an odd positive integer and let G be a graph such that deg(v) ≡ 0
(mod 2q) for every vertex v ∈V (G). Let the subgraph of G induced by a set Z ⊆ E(G) has a 1

2 -factor.
If G admits a q-gradual degree-magic labelling, then the graph D(qG; qZ,;) is degree-magic.

Proof. Suppose that f is a q-gradual d-magic labelling of G. According to Lemma 2.4, there
exists a bijection g : E(D(qG; qZ,;))−→ [1,2|E(qG)|] satisfying

g∗(vt0)= g∗(vt1)= f ∗(v)+ 1
2

(2q−1)|E(G)|deg(v)

for every vertex v ∈V (G). Since f is a d-magic labelling, f ∗(v)= 1
2 (1+|E(G)|)deg(v). Thus,

g∗(vt0)= g∗(vt1)

= 1
2

(1+|E(G)|)deg(v)+ 1
2

(2q−1)|E(G)|deg(v)

= 1
2

(1+2q|E(G)|)deg(v)

= 1
2

(1+|E(D(qG; qZ,;))|)deg(v).

Therefore, g is a d-magic labelling of D(qG; qZ,;).

Combining Theorem 1.1 and Theorem 3.3, one certainly has

Corollary 3.8. Let q ≥ 3 be an odd positive integer and let G be a regular graph such that
deg(v)≡ 0 (mod 2q) for every vertex v ∈V (G). Let the subgraph of G induced by a set Z ⊆ E(G)
has a 1

2 -factor. If G admits a q-gradual supermagic labelling, then the graph D(qG; qZ,;) is
supermagic.
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Now, a sufficient condition for the graph D(q2G; qE1(2G),;) to be degree-magic is indicated.

Corollary 3.9. Let q ≥ 3 be an odd positive integer and let G be a graph having a 1
2 -factor

such that deg(v)≡ 0 (mod 2) for every vertex v ∈V (G). If G can be decomposed into q pairwise
edge-disjoint 1

q -factors, then the graph D(q2G; qE1(2G),;) of a graph G is degree-magic.

Proof. Evidently, deg(v)≡ 0 (mod 2q) for every vertex v ∈V (G). Let H1,H2, . . . ,Hq be pairwise
edge-disjoint 1

q -factors of a graph G. Put m := |E(G)|/q. Clearly, the subgraph Hi , i ∈ [1, q], has
m edges. Suppose that hi is a bijection from E(Hi) onto [1,m], for i ∈ [1, q]. Consider a mapping
f : E(2G)−→ [1,2qm] given by

f ((e, j))=
{

hi(e)+ (i−1)m if j = 1 and e ∈ E(Hi),
1+ (1+2q− i)m−hi(e) if j = 2 and e ∈ E(Hi).

Evidently, f is a bijection. Moreover, f ((e,1))+ f ((e,2))= 1+2qm for every edge e ∈ E(G). Thus,

f ∗(v)= (1+2qm)degG(v)= 1
2

(1+|E(2G)|)deg2G(v).

Moreover, the sets

Fq( f ;1)= {(e,1) ∈ E(2G) : e ∈ E(H1)∪E(H2)},

Fq( f ;2)= {(e,1) ∈ E(2G) : e ∈ E(H3)∪E(H4)}, . . . ,

Fq

(
f ;

q+1
2

)
= {(e,1), (e,2) ∈ E(2G) : e ∈ E(Hq)}, . . . ,

Fq( f ; q−1)= {(e,2) ∈ E(2G) : e ∈ E(H4)∪E(H3)}

and

Fq( f ; q)= {(e,2) ∈ E(2G) : e ∈ E(H2)∪E(H1)}

induce 1
q -factors of 2G. Hence, f is a q-gradual d-magic labelling of 2G. Since the subgraph of 2G

induced by E1(2G) is isomorphic to G, it contains a 1
2 -factor. By Theorem 3.3, D(q2G; qE1(2G),;)

is a d-magic graph.

As any regular graph of even degree d is decomposable into d/2 pairwise edge-disjoint
2-factors (i.e., 1

d/2 -factors), one also gets

Corollary 3.10. Let G be a regular graph of degree d, where 6≤ d ≡ 2 (mod 4). Then the graph
D( d

2
2G; d

2 E1(2G),;) of a graph G is supermagic.

For any even positive interger m ≥ 4, the graph obtained by replacing each edge uv of
a graph G with m edges joining u and v is denoted by mG. Hence, V (mG) = V (G) and
E(mG) = ⋃

e∈E(G)
{(e,1), (e,2), . . . , (e,m)}, where an edge (e, i), i ∈ {1,2, . . . ,m}, is incident with a

vertex v in mG whenever e is incident with v in G. Also, in this case E i(mG) := ⋃
e∈E(G)

{(e, i)},

i = 1,2, . . . ,m. Certainly, the subgraph of mG induced by E i(mG), i = 1,2, . . . ,m, is isomorphic
to G.

This paper is concluded with proving a sufficient condition for a graph D(nmG;nE1(mG),;)
to be balanced degree-magic for any even positive integer m ≥ 4.
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Corollary 3.11. Let m ≥ 4 be an even positive integer and let G be a graph having a 1
2 -factor.

Then the graph D(nmG;nE1(mG),;) of a graph G is balanced degree-magic.

Proof. Let g be a bijection from E(G) onto [1, |E(G)|]. Consider a mapping f : E(mG) −→
[1,m|E(G)|] given by

f ((e, j))=
{

g(e)+ ( j−1)|G(E)| if j = 1,2, . . . ,m/2,
1+ j|E(G)|− g(e) if j = 1+m/2, . . . ,m.

Evidently, f is a bijection. Moreover,

f ((e,1))+ f ((e,2))+ . . .+ f ((e,m))= m
2
+ m2

2
|E(G)|

for every edge e ∈ E(G). Thus,

f ∗(v)=
(

m
2
+ m2

2
|E(G)|

)
degG(v)

=
(

m
2
+ m2

2
|E(G)|

)
degmG(v)

m

= 1
2

(
1+m|E(G)|)degmG(v)

= 1
2

(
1+|E(mG)|)degmG(v).

Therefore, f is a degree-magic labelling of mG. Since the subgraph of mG induced by E1(mG)
is isomorphic to G, it contains a 1

2 -factor. By Theorem 3.1, D(nmG;nE1(mG),;) is a balanced
d-magic graph.

Combining Theorem 1.1 and Corollary 3.11, one immediately has

Corollary 3.12. Let m ≥ 4 be an even positive integer and let G be a regular graph having a
1
2 -factor. Then the graph D(nmG;nE1(mG),;) of a graph G is supermagic.

4. Conclusion
In this paper, some constructions of degree-magic and supermagic labellings on some graphs
obtained by generalizing the double graph of the disjoint union of n copies of a graph are
presented as well as some supermagic graphs are obtained. However, the labelling of discrete
structures is an extensive field of study, so a further open area of research would be to investigate
and derive similar results for different families in the context of varying graph-labelling
problems.
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