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Abstract. In this paper, an attempt is made to obtain the solution for the problem of torsional loading
in an axisymmetric Micro-isotropic, Micro-elastic half-space under the action of an arbitrary load on
its boundary. The components of displacement, microrotation, stress, couple stress and stress moment
are obtained. These components are also obtained for a particular type of twist and represented
graphically in the positive quadrant.
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1. Introduction
Classical theory of elasticity is inadequate to describe the modern engineering structures like
polycrystalline materials, materials with fibrous or coarse grain. To remove this shortcoming of
classical theory Eringen [1,2] introduced the theory of micromorphic materials which include
micro-structure. This theory was simplified by Koh [3] by extending the concept of coincidence
of principal directions of stresses and strains of classical theory to the micro-elastic materials
and assuming micro-isotropy. He named it as the theory of Micro-isotropic, Micro-elastic
materials. Though this theory is a simplified version, still it retains the characteristic features
of the micromorphic model. The basic equations of this theory were developed by Koh and
Parameswaran [4].
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Kumar and Chadha [5] studied torsional loading problem in micropolar elastic medium.
Srinivas et al. [7] investigated the general solution of equations of motion of axisymmetric
problem of Micro-isotropic, Micro-elastic solid. Renji and Yulan [8] analyzed Torsion problems
for cylinder with rectangular hole and a rectangular cylinder with a crack. Vaysfeld and
Protserov [9] studied the torsional problem of a multilayered finite cylinder with multiple
interface cylinder crack. Rama [6] examined the propagation of Love waves in Micro-isotropic,
Micro-elastic layered media.

In this paper the general solution of axisymmetric Micro-isotropic, Micro-elastic half space
by applying a torsional loading on its boundary is obtained. Then the obtained components are
analyzed graphically by taking a particular case of twist. The stress moment components are
represented graphically for the general case.

2. Basic Equations

(A1 + A2 − A3)up,pm + (A2 + A3)um,pp +2A3εpkmφp,k +ρ fm = ρ∂
2um

∂t2 , (1)

2B3φp,mm +2(B4 +B5)φm,mp −4A3(rp +φp)−ρlp = ρ j
∂2φp

∂t2 , (2)

B1Φpp,kkδi j +2B2;(i j),kk − A4;ppδi j −2A5;(i j) +ρ f(i j) =
1
2
ρ j
∂2;(i j)

∂t2 . (3)

The constitutive equations for micro-isotropic, micro-elastic solid are

t(km) = A1eppδkm +2A2ekm , (4)

t[km] =σ[km] = 2A3εpkm(rp +φp) , (5)

σ(km) =−A4;ppδkm −2A5;(km) , (6)

tk(mn) = B1;pp,kδmn +2B2;(mn),k , (7)

m(kl) =−2(B5φl,k +B4φk,l +B5φp,pδkl) , (8)

where
A1 =λ+σ1, B1 = τ3,

A2 =µ+σ2, 2B2 = τ7 +τ10,

A3 =σ5, B3 = 2τ4 +2τ9 +τ7 −τ10,

A4 =−σ1, B4=−2τ4,

A4 =−σ2, B5 =−2τ9 .


(9)

Parameshwaran and Koh [4] established the following constraints on micro-isotropic, micro-
elastic constants.

3A1 +2A2 > 0, A2 > 0, A3 > 0, 3A4 +2A5 > 0, A5 > 0,
B3 > 0, −B3 < B4 < B3, B3 +B4 +B5 > 0

}
(10)

where ρ is the mass density, j is the micro-inertia, fm is the body force per unit mass, f(i j) is
the symmetric body moment and lp is the body couple per unit mass. The macro displacement
is denoted by uk, microrotation is denoted by ϕk and micro-strains are denoted by ;km.

φp = 1
2
εpkm;km, rp = 1

2
εpkmumk
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3. Formulation of the Problem
Consider an axisymmetric Micro-isotropic, Micro-elastic half space in cylindrical coordinates.
The displacement component and microrotation components will become

uθ = uθ(r, z), ϕr =ϕr(r, z), ϕz =ϕz(r, z) (11)

and micro-strain will become

;θθ =;θθ (r, z) , ;rθ =;rθ (r, z) , ;zθ =;zθ (r, z) . (12)

By substituting (11) and (12) in equations (1) to (3) we get

(A2 + A3)
[
∇2uθ− uθ

r2

]
+2A3

[
∂ϕr

∂z
− ∂ϕz

∂r

]
= 0 , (13)

2B3

[
∇2ϕr − ϕr

r2

]
−4A3ϕr + (2B4 +2B5)

∂e
∂r

+2A3

[
∂uθ
∂z

]
= 0 , (14)

2B3
[∇2ϕz

]−4A3ϕz + (2B4 +2B5)
∂e
∂z

−2A3
1
r

[
∂(ruθ)
∂r

]
= 0 , (15)

B1∇2;θθ+2B2∇2;θθ− A4;θθ−2A5;θθ = 0 , (16)

2B2∇2;(rθ) −2A5;(rθ) = 0 , (17)

2B2∇2;(zθ) −2A5;(zθ) = 0 (18)

where

e = 1
r
∂

∂r
(
rϕr

)+ ∂ϕz

∂z
and ∇2 = ∂2

∂r2 + 1
r
∂

∂r
+ ∂2

∂z2 . (19)

Here the following the potential functions will be introduced.

ϕr = ∂φ

∂r
+ ∂2ψ

∂r∂z
, (20)

ϕz = ∂φ

∂z
−

(
∇2 − ∂2

∂z2

)
ψ , (21)

uθ = ∂v
∂r

. (22)

Substituting (20) to (22) in equations (13) to (15), we get
∂φ

∂r

[
(2B3 +2B4 +2B5)

(
∇2 − 1

r2

)
−4A3

]
+ ∂2ψ

∂r∂z

[
2B3

(
∇2 − 1

r2

)
−4A3 + (2B4 +2B5)

(
− 1

r2

)]
+2A3

∂2v
∂r∂z

= 0 , (23)

∂φ

∂z
[
(2B3 +2B4 +2B5)∇2 −4A3

]−(
∇2 − ∂2

∂z2

)
ψ

(
2B3∇2 −4A3

)−2A3

(
∇2 − ∂2

∂z2

)
v = 0 , (24)

∂

∂r

(
∇2 − 1

r2

)
v+ 2A3

A2 + A3

∂

∂r
(∇2)ψ= 0 . (25)

The Hankel transforms defined by

H(ξ, z)=
∫ ∞

0
H(r, z)rJ0(ξr)dr and H(ξ, z)=

∫ ∞

0
H(r, z)rJ1(ξr)dr , (26)

will be applied to equations (23) to (25), we get

(D2 −ξ2)(D2 −ξ2
2)φ̂= 0 , (27)
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(D2 −ξ2)(D2 −ξ2
1)ψ̂= 0 , (28)

2(B3 +B4 +B5)(D2 −ξ2
1)φ̂+D(D2 −ξ2

2)ψ̂= 0 , (29)

where

ξ2
1 = ξ2 +k2

1, ξ2
2 = ξ2 +k2

2 and k2
1 =

2A3

B3 +B4 +B5
, k2

2 =
4A3

2B3

(
A2 +2A3

A2 + A3

)
. (30)

As various components approach zero as z →∞ the displacement functions also approaches
zero as z →∞, we choose the solutions of (27) and (28) as follows:

φ̂= A exp(−ξz)+Bexp(−ξ1z) , (31)

ψ̂= C exp(−ξz)+D exp(−ξ2z) . (32)

Substituting (31) and (32) in (29) we get

A = A2 +2A3

A2 + A3
ξC . (33)

By taking inverse transforms to equations (31) and (32) and using (33) we get

φ=
∫ ∞

0

[
A2 +2A3

A2 + A3
ξC exp(−ξz)+Bexp(−ξ1z)

]
ξJ0(ξr)dξ , (34)

ψ=
∫ ∞

0
[C exp(−ξz)+D exp(−ξ2z)]ξJ0(ξr)dξ . (35)

Since there acts a torsional loading on the boundary z = 0 plane, the mathematical equations
for boundary conditions are

tzθ =− f (r), mzz = mzr = 0 at z = 0 , (36)

;θθ =;(rθ) =;(zθ) = 0 at r = a . (37)

By substituting (34) and (35) in boundary conditions (36), we get

2A3

[
A2 +2A3

A2 + A3
ξ2C+ξB

]
= f̂ (ξ) , (38)

[(B3 +B4)ξ2 +2A3]B+ (B3 +B4)
(

A3

A2 + A3

)
ξ3C− (B3 +B4)ξ2ξ

2D = 0 , (39)[
(B3 +B4)ξ1B+ (B3 +B4)

(
A3

A2 + A3

)
ξ2C

]
−

[
(B3 +B4)ξ2 +2A3

(
A2 +2A3

A2 + A3

)]
D = 0 , (40)

where

f (ξ)=
∫ ∞

0
f (r)rJ1(ξr)dr . (41)

By solving (38) to (40), we get

B = ξF1(ξ); C = F2(ξ)
(

A2 + A3

A3

)
; D = F3(ξ);

F1(ξ)= f̂ (ξ)
2∆(A2 + A3)

(−ξ2 −ε1 +ξ2ξ);

F2(ξ)= f̂ (ξ)
2∆(A2 + A3)

[
ξ1ξ2 −ξ2 −ε1

(2A2 +3A3)
(A2 +2A3)

− 2A3ε1

ξ2(B3 +B4)

]
;

F3(ξ)= f̂ (ξ)
2∆(A2 + A3)

[
ξ(ξ−ξ1)+ 2A3

B3 +B4

]
;
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ε1 = 2A3(A2 +2A3)
(A2 + A3)(B3 +B4)

, ∆= (ξ2 +ε1)
2 + ξ2ξ

2

A2 + A3
[A3 (B3 +B4)− (A2 +2A3)ξ1]. (42)

Then we get potential functions as

φ=
∫ ∞

0
ξ2

[
A2 +2A3

A3
F2(ξ)exp(−ξz)+F1(ξ)exp(−ξ1z)

]
J0(ξr)dξ, (43)

ψ=
∫ ∞

0
ξ

[
A2 + A3

A3
F2(ξ)exp(−ξz)+F3(ξ)exp(−ξ2z)

]
J0(ξr)dξ . (44)

Using (43) and (44) we can obtain the components of displacement, microrotation, stress and
couple stress as follows:

uθ = 2
∫ ∞

0
ξ2

[
F2(ξ)exp(−ξz)+ A3

A2 + A3
F3(ξ)exp(−ξ2z)

]
J1(ξr)dξ , (45)

ϕr =
∫ ∞

0
ξ3

[
−F2(ξ)exp(−ξz)−F1(ξ)exp(−ξ1z)+ ξ2

ξ
F3(ξ)exp(ξ2z)

]
J1(ξr)dξ , (46)

ϕz =
∫ ∞

0
ξ3

[
−F2(ξ)exp(−ξz)+ ξ2

ξ
F1(ξ)exp(−ξ1z)−F3(ξ)exp(ξ2z)

]
J0(ξr)dξ , (47)

tzθ =−2(A2 +2A3)
∫ ∞

0
ξ3

[
F2(ξ)exp(−ξz)− A3

A2 +2A3
F1(ξ)exp(−ξ1z)

]
J1(ξr)dξ , (48)

mzz =−2(B3 +B4)
∫ ∞

0
ξ4

[
−F2(ξ)exp(−ξz)+

(
1+ A3

ξ2(A2 +2A3)

)
F1(ξ)exp(−ξ1z)

−ξ2

ξ
F3(ξ)exp(ξ2z)

]
J0(ξr)dξ , (49)

mzr =−2(B3 +B4)
∫ ∞

0
ξ4

[
−F2(ξ)exp(−ξz)+ ξ1

ξ
F1(ξ)exp(−ξ1z)

−
(
1+ A2 +2A3

ξ2(B3 +B4)(A2 + A3)

)
F3(ξ)exp(ξ2z)

]
J1(ξr)dξ . (50)

4. Numerical Work
To analyze the components obtained in (45) to (50) we take a particular type of twist given by

f (r)= r
4a4 exp

(
− r2

4a4

)
, (51)

where r is the distance of the point from the origin of the coordinate system. By applying Hankel
transform (46) to (50) we get

f̂ (ξ)= ξexp(−a2ξ2). (52)

Then equations (45) to (50) becomes

uθ = 2
∫ ∞

0
ξ3 exp(−a2ξ2)

[
F2(ξ)exp(−ξz)+ A3

A2 + A3
F3(ξ)exp(−ξ2z)

]
J1(ξr)dξ, (53)

ϕr =
∫ ∞

0
ξ4 exp(−a2ξ2)

[
−F2(ξ)exp(−ξz)−F1(ξ)exp(−ξ1z)+ ξ2

ξ
F3(ξ)exp(ξ2z)

]
J1(ξr)dξ, (54)

ϕz =
∫ ∞

0
ξ4 exp(−a2ξ2)

[
−F2(ξ)exp(−ξz)+ ξ2

ξ
F1(ξ)exp(−ξ1z)−F3(ξ)exp(ξ2z)

]
J0(ξr)dξ, (55)

tzθ =−2(A2 +2A3)
∫ ∞

0
ξ4 exp(−a2ξ2)

[
F2(ξ)exp(−ξz)− A3

A2 +2A3
F1(ξ)exp(−ξ1z)

]
J1(ξr)dξ, (56)
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mzz =−2(B3 +B4)
∫ ∞

0
ξ5 exp(−a2ξ2)

[
−F2(ξ)exp(−ξz)+

(
1+ A3

ξ2(A2 +2A3)

)
F1(ξ)exp(−ξ1z)

−ξ2

ξ
F3(ξ)exp(ξ2z)

]
J0(ξr)dξ, (57)

mzr =−2(B3 +B4)
∫ ∞

0
ξ5 exp(−a2ξ2)

[
−F2(ξ)exp(−ξz)+ ξ1

ξ
F1(ξ)exp(−ξ1z)

−
(
1+ A2 +2A3

ξ2(B3 +B4)(A2 + A3)

)
F3(ξ)exp(ξ2z)

]
J1(ξr)dξ . (58)

5. Approximation Evaluation of Integrals
As the integrals involved in (53) to (58) are difficult to evaluate, we evaluate them by taking the
following approximations. By assuming A3, k2

1 and k2
2 to be small compared to unity we expand

ξ1, ξ2 and 1
∆ in an infinite series to obtain

ξ1 = ξ+
m2

1

2ξ
+ o(m4

1), ξ2 = ξ+
m2

2

2ξ
+ o(m4

2) and ∆= γε1A1ξ
2 , (59)

where A1 = 1
B3+B4

− 1
2B3

− 1
2(B3+B4+B5) .

Then (53) to (58) becomes

uθ = 1
A2 + A3

∫ ∞

0
ξ

(
1+ 2A3L1

A1ξ2

)
exp(−a2ξ2)exp(−ξz)J1(ξr)dξ, (60)

ϕr = A3

A1(A2 + A3)(B3 +B4)

∫ ∞

0
(L4 + zξL2)exp(−a2ξ2)exp(−ξz)J1(ξr)dξ, (61)

ϕz = A3

A1(A2 + A3)(B3 +B4)

∫ ∞

0
(L3 + zξL2)exp(−a2ξ2)exp(−ξz)J0(ξr)dξ , (62)

tzθ =−
∫ ∞

0
ξ2

(
1+ ε1L1(B3 +B4)

ξ2A1

)
exp(−a2ξ2)exp(−ξz)J1(ξr)dξ, (63)

mzz = −2A3L2z
A1(A2 + A3)

∫ ∞

0
ξ2 exp(−a2ξ2)exp(−ξz)J0(ξr)dξ, (64)

mzr = −2A3L2z
A1(A2 + A3)

∫ ∞

0
ξ3 exp(−a2ξ2)J1(ξr)dξ , (65)

where

L1 = 1
2(B3 +B4 +B5)

+ 1
2B3

− 2
B3 +B4

,

L2 = 1
2(B3 +B4 +B5)

+ 1
2B3

− B3 +B4

2B3(B3 +B4 +B5)
,

L3 = 1
B3 +B4

− 1
2(B3 +B4 +B5)

,

L4 = 1
B3 +B4

− 1
2B3

.


(66)

The term exp(−a2ξ2) in (60) to (65) is expanded by assuming aξ is so small that its fourth order
terms are negligible and we get

uθ = r
(A2 + A3)

[
1
ρ3

1
+ 3a2

ρ5
1

(
1− 5z2

ρ2
1

)
+ 2A3L1

A1

{
1

ρ1 + z
− a2

ρ3
1
+ 3a4

2ρ5
1

(
5z2

ρ2
1
−1

)}]
, (67)
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ϕr = A3

A1(A2 + A3)(B3 +B4)
r
ρ1

[
L4

{
1

ρ1 + z
− 3a2z

ρ4
1

+ 15a4z
2ρ6

1

(
7z2

ρ2
1
−3

)}

+L2
z
ρ2

1

{
1+ 3a2

ρ2
1

(
1− 5z2

ρ2
1

)}]
, (68)

ϕz = A3

A1(A2 + A3)(B3 +B4)
1
ρ1

[
L3

{
1+ a2

ρ2
1

(
1− 3z2

ρ2
1

)
+ 9a4

2ρ4
1

(
1+ 5z2

ρ2
1

(
3z2

ρ2
1
−2

))}

+L2
z2

ρ2
1

{
1+ 3a2

ρ2
1

(
3− 5z2

ρ2
1

)}]
, (69)

tzθ =− r
ρ1

[
3z
ρ4

1
+ 15a4z

ρ6
1

(
3− 7z2

ρ2
1

)
+ (B3 +B4)

ε1L1

A1

{
1

ρ1 + z
− 3a2z

ρ4
1

+ 15a4z
2ρ6

1

(
7z2

ρ2
1
−3

)}]
, (70)

mzz = 2A3L2z
A1(A2 + A3)

1
ρ3

1

[
1− 3z2

ρ2
1
+ 9a2

ρ2
1

{
1+ 5z2

ρ2
1

(
3z2

ρ2
1
−2

)}]
, (71)

mzr = 6A3L2z2r
A1(A2 + A3)ρ5

1

[
5z2

ρ2
1

(
7z2

ρ2
1
−3

)
−1

]
, (72)

where ρ2
1 = r2 + z2.

6. Numerical Results and Analysis
The components of displacement, microrotation, stress and couple stress are calculated in the
plane z = 1 for three different values of B3(0.025,0.050,0.075) in the range 0≤ r ≤ 4 and a = 1,
A2 = 0.015, A3 = 0.01, B4 = 0.015, B5 = 0.005.

Figure 1 Figure 2

It is observed from Figure 1 that displacement uθ curve is falling down when the distance
from the origin r > 2. From Figure 2 it is clear that the stress component tzθ increases rapidly
when distance r < 0.3 then it decreases rapidly when 0.3 < r < 1 and constant almost when
r > 1.
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Figure 3 Figure 4

It is observed from Figure 3 that the microrotation component ϕr is constant for various
values of B3 when r < 1.5 and decreases gradually for r > 1.5. Figure 4 shows that microrotation
component ϕz decreases when r < 1.7 and increases from there.

Figure 5 Figure 6

It is observed from Figure 5 that couple stress component mzr rapidly increases r < 0.3 and
rapidly decreases between 0.3< r < 1 and then it is constant almost when distance is greater
than 1. Similarly other couple stress component mzz decreases rapidly when r < 1 and almost
constant from there onwards in Figure 6.

7. Evaluation of Micro-strains
Equations (16) to (18) can be written as

[∇2 − l2
1];θθ = 0 (73)
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[∇2 − l2
2];(rθ) = 0 (74)

[∇2 − l2
2];(zθ) = 0 (75)

where l2
1 = A4+2A5

B1+2B2
and l2

2 = A5
B2

.
The solutions of equations (73) to (75) can be assumed in the form of

;θθ = E exp(−ξz)J1(l1r) (76)

;(rθ) = F exp(−ξz)J1(l2r) (77)

;(zθ) =G exp(−ξz)J1(l2r) (78)

where E, F and G are arbitrary constants to be determined using the boundary conditions
given in (37). Then we get

E = J1(l1a)
l1aJ0(l1a)

and F =G = J1(l2a)
l2aJ0(l2a)

Figure 7 shows the curves of Micro-strains for A4 = 0.05, A5 = 0.025, B1 = 0.03, B2 = 0.02.
It is observed from the graph that φrθ and φzθ are the same.

Figure 7

8. Conclusions
Thus various components have been calculated for the general torsional problem in Micro-
isotropic, Micro-elastic solid. It is observed that for the taken twist except couple stress ϕz all
the remaining components are decreasing. It is also observed that by assuming A2 = µ

2 , A3 = κ
2

and B3 = γ

2 , B4 = β

2 , B5 = α
2 the result of Kumar and Chadha [7] can be obtained. Again by

assuming α→ 0, β→ 0 and γ→ 0 the classical result can also be obtained.
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