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1. Introduction

Menger [6] initiated the theory of Menger space in 1942. The conversion of probabilistic notion
into geometry was one of the great efforts. Menger used the notation of new distance distribution
function from p to q by F pq. Schweizer and Sklar [1] introduced a new notion of a probabilistic-
norm. This norm naturally generates topology, convergence, continuity and completeness in
Menger space. Mishra [7] used compatible mappings and generated many fixed points in Menger
space. Altumn and Turkoglu [3] proved some more results of Menger space by utilizing the
implicit relation in multivalued mappings. Zhang et al. [12] contributed for the enrichment of
Menger space in fixed point theory by employing Schweizer-Sklar t-norm established fuzzy logic
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system. Sehgal and Bharucha-Reid [10] obtained the first result relating theory of fixed points
in complete Menger space by applying classical Banach contraction. Recently, Al-Thagafi and
Shahzad [2] weakened the notion of weakly compatible mappings by introducing occasionally
weakly compatible mappings. Further, Chauhan et al. [4] proved some more theorems by using
CLR’s-property in fuzzy metric space. Further some more results can be witnessed by using the
concepts sub sequentially continuous and semi compatible mappings in Menger space [9], [11].

2. Preliminaries

Definition 2.1 ([5]). A continuously t-norm is mapping t : [0,1]×[0,1]→ [0,1] if it has properties:

(t1) t is abelian and associative.

(t2) t(γ,1)= γ, for all γ ∈ [0,1].

(t3) t(γ,ω)≤ t(α,ϑ) for γ≤α and ω≤ϑ, for all γ,α,ϑ,ω ∈ [0,1].

Definition 2.2 ([5]). A distribution function F : R → R is non-decreasing and left continuous
such that inf{F(t) : t ∈ R} = 0 and sup{F(t) : t ∈ R} = 1. We represent the set of all distribution
functions as L.

Definition 2.3 ([5]). A Menger space is a pair (X ,F) having X 6= ; and F : X × X → t where L
is the set of all distribution functions and the value of F at (u,v) ∈ X × X is represented by Fu,v

and obeys the following conditions:

(I) Fu,v(α)= 1, for all α> 0 iff u = v,

(II) Fu,v(0)= 0,

(III) Fu,v(α)= Fv,u(α),

(IV) if Fu,v(α)= 1 and Fv,w(β)= 1 then Fu,w(α+β)= 1, for all u,v,w in X , α,β> 0.

Definition 2.4 ([5]). A Menger space is denoted by (X ,F, t), in which (X ,F) represent
probabilistic metric space and t is the t-norm has property

Fu,w(α+β)≥ t(Fu,v(α),Fv,w(β)), for all u,v,w ∈ X and α,β> 0.

Definition 2.5 ([5]). A sequence 〈xn〉 converge to β in Menger space (X ,F, t) if and only if for
each ε> 0, t > 0, ∃ N(ε) ∈ N implies Fxn,β(ε)> 1− t, for all n ≥ N(ε).

Definition 2.6 ([5]). A Menger space (X ,F, t) is complete if every Cauchy sequence is
convergent.

Definition 2.7 ([5]). Compatible self mappings P and S of a Menger space (X ,F, t) are such
that FPSxn,SPxn(β)→ 1, for all β> 0 whenever a sequence 〈xn〉 in X 3 Pxn, Sxn → z where z is
an element of X as n →∞.
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Definition 2.8 ([9]). Mappings P : X → X , S : X → X of (X ,F, t) are termed as weakly
compatible if Sx = Px ⇒ SPx = PSx, for all x ∈ X .

Definition 2.9 ([2]). Mappings P : X → X , S : X → X of (X ,F, t) are known as OWC
(Occasionally Weakly Compatible) if and only if there exists for some x in X 3 Px = Sx implies
PSx = SPx.

Clearly, two weakly compatible mappings implies OWC mappings but the reverse is need not be
true.

Example 2.10. Consider X = [0,1] and d be the metric on X and for each t1 ∈ [0,1].

Define

Fu,v(t1)=


t1

t1 +|α−β| , t1 > 0

0, t1 = 0
for all α,β in X and t1 > 0.

Define mappings P,S : X → X as P(x)= 2x2, x ∈ [0,1] and S(x)= x
5

, x ∈ [0,1].

We observe that coincidence points for the pair (P,S) are 0,
1

10
.

At x = 1
10

, P
(

1
10

)
= S

(
1

10

)
but not PS

(
1

10

)
6= SP

(
1
10

)
.

At x = 0, P(0)= S(0) and PS(0)= SP(0).

Thus P , S are OWC but are non-weakly compatible mappings.

Definition 2.11 ([5]). Mappings P : X → X , S : X → X of (X ,F, t) are mentioned as reciprocally
continuous if PSxn → Pz and SPxn → Sz whenever for the sequence 〈xn〉 ∈ X such that
Pxn,Sxn → z for some element z ∈ X as n →∞.

Definition 2.12 ([8]). Semi compatible self-mappings P , S of a Menger space (X ,F, t) are such
that if FPSxn,Sz(β)→ 1, for all β> 0 whenever 〈xn〉 ∈ X such that Pxn,Sxn → z for some element
z ∈ X as n →∞.

Definition 2.13 ([4]). Self mappings P and S of a Menger space (X ,F, t) are said to satisfying
CLR’s-property (Common Limit Range property) if there exists a sequence 〈xn〉 ∈ X 3 Pxn,
Sxn → Sz, for some element z ∈ X as n →∞.

This example shows that the mappings P , S are satisfying CLR’s-property but neither semi
compatible nor reciprocally continuous.

Example 2.14. Consider X = [0,2] and d is the metric on X , t ∈ [0,1]. Define

Fu,v(t)=


t
t+|α−β| , t > 0

0, t = 0
for all α,β in X and t > 0.
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Define P,S : X → X as

P(x)=


1− x, x ∈

(
0,

2
3

)
x, x ∈

[
2
3

,1
]

and

S(x)=


2x, x ∈

[
0,

2
3

]
1, x ∈

(
2
3

,1
]

Consider a sequence xn = 1
3
− 1

3n
for n = 1,2,3, . . . then

Pxn = 1−
(
1
3
− 1

3n

)
= 2

3
+ 1

3n
→ 2

3
and

Sxn = 2
(
1
3
− 1

3n

)
= 2

3
− 2

9n
→ 2

3
as n →∞.

Pxn,Sxn → S
(
1
3

)
= 2

3
as n →∞.

Thus the mappings P , S are satisfying CLR’s-property.

Also

PSxn = PS
(
1
3
− 1

3n

)
= P

(
2
3
− 2

9n

)
= 1−

(
2
3
− 1

3n

)
= 1

3
+ 1

3n
→ 1

3
6= 4

3
= S

(
2
3

)
as n →∞.

Thus the pair (P,S) is not semi compatible.

Further SPxn = SP
(
1
3
− 1

3n

)
= S

(
2
3
+ 1

3n

)
= 1→ 1 as n →∞.

This implies PSxn → 1
3
6= 2

3
= P

(
2
3

)
but SPxn → 1 6= 4

3
= S

(
2
3

)
when n →∞.

Thus the pair (P,S) is not reciprocally continuous mappings.

Lemma 2.15 ([5]). Let is Menger space (X ,F, t) with continuous t-norm if we can find a constant
q ∈ (0,1) such that Fu,v(qt)≥ Fu,v(t) for all u,v in X and t > 0 then u = v.

Lemma 2.16 ([9]). Let (X ,F, t) be a Menger space with continuous t-norm t(ω,ω) ≥ ω for all
ω ∈ [0,1], if there exists a constant θ ∈ (0,1) such that Fun,un+1(θt)≥ Fun−1,un(t), n = 1,2,3, . . . then
〈un〉 is a Cauchy sequence in X .

The following theorem was proved by P. Malviya et al. in [5].

Theorem 2.17. Let P , Q, S and T be self mappings on a complete Menger space (X ,F, t) with
continuous t-norm t(c, c)≥ c, for c ∈ (0,1) satisfying

(2.3.1) P(X )⊆ T(X ), Q(X )⊆ S(X ).

(2.3.2) (Q,T) is weakly compatible.
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(2.3.3) FPα·Qβ(hx)≥min{FSα·Tβ(x), {FSα·Pα(x)·FQβ·Tβ(x)},FPα·Sα(x)} for all α,β in X , and h > 1.

(2.3.4) (P,S) is semi compatible pair of reciprocally continuous mappings then P , Q, S and T
have unique common fixed point.

Now, we generalize Theorem 2.17 in the following way.

3. Main Result

Theorem 3.1. Let P , Q, S and T be self-mappings on a complete Menger space (X ,F, t) with
continuous t-norm t(c, c)≥ c for c ∈ (0,1) satisfying:

(3.1.1) P(X )⊆ T(X ), Q(X )⊆ S(X )

(3.1.2) (Q,T) is occasionally weakly compatible

(3.1.3) FPα·Qβ(hx)≥min{FSα·Tβ(x), {FSα·Pα(x)·FQβ·Tβ(x)}, FPα·Sα(x)} for all α,β in X , and h > 1

(3.1.4) the pair (P,S) satisfies CLRs-property

then P , Q, S and T have unique common fixed point.

Proof. From (3.1.1), we can construct a sequence 〈yn〉 for n ≥ 1 such that

〈y2n〉 = Px2n = Tx2n+1 and 〈y2n+1〉 =Qx2n+1 = Sx2n+2.

Now our claim 〈yn〉 is Cauchy sequence.

For this take α= x2n+1, β= x2n+2 in (3.1.2) we get

FPx2n+1,Qx2n+2(hx)≥min{FSx2n+1·Tx2n+2(x), {FSx2n+1·Px2n+1(x) ·FQx2n+2·Tx2n+2(x)},FPx2n+1·Sx2n+1(x)}

as n →∞.

This gives

Fy2n+1·y2n+2(hx)≥min{Fy2n,y2n+1(x), {Fy2n,y2n+1(x) ·Fy2n+2,y2n+1(x)},Fy2n+1,y2n(x)}.

This results

Fy2n+1·y2n+2(hx)≥ Fy2n,y2n+1(x).

Similarly

Fy2n+2·y2n+3(hx)≥ Fy2n+1,y2n+2(x).

In general we have Fyn+1·yn(hx)≥ Fyn,yn−1(x) for n ≥ 1.

By applying Lemma 2.16, then 〈yn〉 is cauchy sequence in complete space X so it has limit point
z ∈ X consequently each subsequence has the same limit point z.

Since the pair (P,S) satisfied CLRs-Property implies a sequence 〈xn〉 such that

Pxn,Sxn → Sz for some z in X as n →∞.

Claim z = Sz.
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Take α= xn, β= x2n+1 in (3.1.3), we get

FPxn·Qx2n+1(hx)≥min{FSxn·Tx2n+1(x), {FSxn·Pxn(x) ·FQx2n+1·Tx2n+1(x)},FPxn·Sxn(x)} as n →∞.

FSz·z(hx)≥min{FSz,z(x), {FSz,Sz(x) ·Fz·z(x)},FSx,Sz(x)}.

This results

FSz·z(hx)≥ FSz·z(x).

By using Lemma 2.15, implies z = Sz.

We claim that z = Pz.

Take α= z, β= x2n+1 in (3.1.3), we get

FPz·Qx2n+1(hx)≥min{FSz·Tx2n+1(x), {FSz·Pz(x) ·FQx2n+1·Tx2n+1(x)},FPz·Sz(x)} as n →∞.

FPz·z(hx)≥min{Fz,z(x), {Fz,Pz(x) ·Fz·z(x)},FPz,z(x)}.

This gives

FPz·z(hx)≥ FPz,z(x).

By applying Lemma 2.15, we obtain z = Pz implies z = Pz = Sz. Now, z = Pz ∈ P(X )⊆ T(X ) by
(3.1.1), there exists some u ∈ X such that z = Pz = Tu.

Now we claim z =Qu.

Take α= z, y= u in (3.1.3), gives

FPz,Qu(hx)≥min{FSz·Tu(x), {FSz·Pz(x) ·FQu·Tu(x)},FPz·Sz(x)}.

By using z = Pz = Sz = Tu we get

Fz·Qu(hx)≥min{Fz,z(x), {Fz,z(x) ·FQu·z(x)},Fz,z(x)}

this gives

Fz·Qu(hx)≥ Fz·Qu(x).

By Lemma 2.15, we get z =Qu.

This gives z =Qu = Tu.

Again since the pair (Q,T) is OWC means if u in X such that Qu = Tu implies QTu = TQu
and this results Qz = Tz.

Claim z =Qz.

Take α= z, y= z in (3.1.3), we get

FPz,Qz(hx)≥min{FSz·Tz(x), {FSz·Pz(x) ·FQz·Tz(x)},FPz·Sz(x)}.

By using z = Pz = Sz, Qz = Tz we get

Fz·Qz(hx)≥min{Fz,z(x), {Fz,z(x) ·FQz·Qz(x)},Fz,z(x)}.

This gives

Fz,Qz(hx)≥ Fz,z(x).

By Lemma 2.15, we get z =Qz.
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Thus z = Pz = Sz =Qz = Tz.

Therefore z is a common fixed point for the mappings P,Q,S and T .

Uniqueness

If possible z1 is another fixed point for the mappings P , Q, S and T then z1 = Pz1 = Sz1 =
Qz1 = Tz1.

Put α= z, β= z1 in (3.1.3), we have

FPz,Qz1(hx)≥min{FSz·Tz(x), {FSz·Pz(x) ·FQz1,Tz1(x)},FPz·Sz(x)}.

This results

Fz·z1(hx)≥min{Fz·z(x), {Fz·z(x) ·Fz1·z1(x)},Fz·z(x)}.

This results Fz·z1(hx)≥ 1 and this gives Fz·z1(hx)= 1.

This implies z = z1.

Therefore z is the unique common fixed point of the four mappings P , Q, S and T .

Now we provide a supporting example to justify the theorem.

4. Example

Consider X = [0,1] is general metric on X and each t ∈ [0,1].

Define

Fu,v(t)=


t
t+|α−β| , t > 0

0, t = 0
for all α,β in X , t > 0.

Define mappings P,S,T and Q : X → X as

P(x)=Q(x)=



1−3x, x ∈
[
0,

1
3

]
4
5

, x ∈
(
1
3

,
2
5

)
x, x ∈

[
2
5

,1
]

and

S(x)= T(x)=



2x, x ∈
[
0,

1
3

]
3
5

, x ∈
(
1
3

,
2
5

]
x2, x ∈

(
2
5

,1
]

Now P(X )=Q(X )= [0,1] and S(X )= T(X )= [0,1].

So that P(X )⊆ T(X ) and Q(X )⊆ S(X ).
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Clearly,
1
5

and 1 are coincidence points for the mappings Q, T .

At x = 1
5

, Q
(
1
5

)
= T

(
1
5

)
but QT

(
1
5

)
=Q

(
2
5

)
= 2

5
6= 3

5
= T

(
2
5

)
= TQ

(
1
5

)
.

At x = 1, Q(1)= T(1) and QT(1)=Q(1)= 1= T(2)= TQ(1).

Thus Q, T are OWC mappings but are not weakly compatible.

If xn = 1− 2
3n

for n ≥ 1, then

Pxn = P
(
1− 2

3n

)
= 1− 2

3n
→ 1

and

Sxn = S
(
1− 2

3n

)
=

(
1− 2

3n

)2
→ 1 as n →∞.

This implies Pxn, Sxn → S(1) as n →∞.

This gives pair (P,S) satisfies CLR’s-property.

Further if consider a sequence xn = 1
5
− 1

3n
for n ≥ 1, then

Pxn = P
(
1
5
− 1

3n

)
= 1−3

(
1
5
− 1

3n

)
= 2

5
+ 1

3n
→ 2

5
and

Sxn = S
(
1
5
− 1

3n

)
= 2

(
1
5
− 1

3n

)
= 2

5
− 2

3n
→ 2

5
as n →∞.

Now

PSxn = PS
(
1
5
− 1

3n

)
= P

(
2
5
− 2

3n

)
= 4

5
→ 4

5
and also

SPxn = SP
(
1
5
− 1

3n

)
= S

(
2
5
+ 1

3n

)
=

(
2
5
+ 1

3n

)2
→ 4

25
as n →∞.

P
(
2
5

)
= 2

5
, S

(
2
5

)
= 3

5
.

Thus Pxn,Sxn → S
(
1
5

)
= 2

5
as n →∞.

Thus pair (P,S) satisfies CLRs-property

PSxn → 4
5
6= 2

5
= S

(
2
5

)
as n →∞.

So the mappings P , S are not semi compatible

PSxn → 4
5
6= 2

5
= P

(
2
5

)
and

SPxn → 4
25

6= 3
5
= S

(
2
5

)
as n →∞.

Thus mappings P and S not reciprocally continuous.
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Now, we conclude that the pair (P,S) satisfies CLRs-property but neither semi compatible nor
reciprocally continuous mappings.

Thus the mappings P , Q, S and T satisfied all the conditions in Theorem 3.1 and containing
the unique common fixed point at 1.

5. Conclusion

We proved fixed point theorem using weaker condition as the pair (Q,T) occasionally weakly
compatible instead of weakly compatible and the pair (P,S) CLRs-property instead of semi-
compatible reciprocally continuous.
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