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1. Introduction
By a left near-ring, we mean a nonempty set N equipped with two binary operations addition
(+) and multiplication (·) satisfying the following conditions: (i) (N,+) is a group(not necessarily
abelian), (ii) (N, ·) is a semigroup, and (iii) x · (y+ z)= x · y+ x · z for all x, y, z ∈ N . Analogously,
if instead of (iii), N satisfies the right distributive law, then N is said to be a right near-ring.
Throughout this paper, by the term “near-ring N” we will mean only a left near-ring. Further,
we will write xy for x · y just for simplicity of notation. Therefore, near rings are generalized
rings, need not be commutative. For further details about the concepts and other results in
near rings, we refer to the treatises [4,5,7–11]. For any x, y ∈ N the symbol [x, y] will denote
the commutator xy− yx; while the symbol x◦ y will stand for the anti-commutator xy+ yx. The
symbol Z will represent the multiplicative center of N, that is, Z = {x ∈ N | xy= yx for all y ∈ N}.
A near-ring N is said to be prime if xN y= {0} with x, y ∈ N implies x = 0 or y= 0, and semiprime
if xNx = {0} with x ∈ N implies x = 0.
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An additive mapping d : N → N is said to be a derivation if d(xy) = xd(y)+ d(x)y for all
x, y ∈ N . Bell and Mason [6] initiated the study of derivations in near rings. Wang [12] showed
that condition d(xy)= xd(y)+d(x)y for all x, y ∈ N is equivalent to d(xy)= d(x)y+ xd(y) for all
x, y ∈ N .

Following [3], let σ,τ : N → N be two near-ring automorphisms of N . An additive mapping
d : N → N is called a (σ,τ)-derivation if d(xy) = σ(x)d(y)+ d(x)τ(y) for all x, y ∈ N . It is
straightforward that an (1,1)-derivation is an ordinary derivation.

Ashraf and Siddeeque [2] introduced the notion of (σ,τ)-n-derivation in near-ring N , where
n is a positive integer. Let σ,τ : N → N be two near-ring automorphisms of N . An n-additive
(i.e. additive in each argument) mapping D : N ×N × . . .×N → N is called a (σ,τ)-n-derivation
of N if

D(x1 y1, x2, . . . , xn)= D(x1, x2, . . . , xn)σ(y1)+τ(x1)D(y1, x2, . . . , xn),

D(x1, x2 y2, . . . , xn)= D(x1, x2, . . . , xn)σ(y2)+τ(x2)D(x1, y2, . . . , xn),
...

D(x1, x2, . . . , xn yn)= D(x1, x2, . . . , xn)σ(yn)+τ(xn)D(x1, x2, . . . , yn),

hold for all x1, x2, . . . , xn, y1, y2, . . . , yn ∈ N .
Recently, Aroonruviwat and Leerawat [1] introduced a notion of outer (σ,τ)-n-derivation in

a near-ring and investigated commutativity of prime near-rings admitting suitably constrained
outer (σ,τ)-n-derivations. In this paper we investigate some further properties involving outer
(σ,τ)-n-derivations of near-ring which force near-ring to be commutative ring.

2. Preliminaries
Throughout this paper, let N denote a (left) near-ring with center Z. Let n be a fixed positive
integer and Nn denotes N ×N × . . .×N (n terms). We first recall the definitions and lemmas
which are essential for developing the proofs of our main results.

Definition 2.1. A map D : Nn → N is called an n-additive mapping if

D(x1 + y1, x2, . . . , xn)= D(x1, x2, . . . , xn)+D(y1, x2, . . . , xn),

D(x1, x2 + y2, . . . , xn)= D(x1, x2, . . . , xn)+D(x1, y2, . . . , xn),
...

D(x1, x2, . . . , xn + yn)= D(x1, x2, . . . , xn)+D(x1, x2, . . . , yn),

for all x1, x2, . . . , xn, y1, y2, . . . , yn ∈ N .

Remark. Let D be an n-additive mapping.

(i) If xi = 0 for some 0≤ i ≤ n then D(x1, x2, . . . , xi, . . . , xn)= 0.

(ii) D(x1, x2, . . . ,−xi, . . . , xn)=−D(x1, x2, . . . , xi, . . . , xn), for all 0≤ i ≤ n.
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Definition 2.2 ([1, Definition 3.1]). Let N be a near-ring and let σ,τ : N → N be automorphisms.
A mapping D : Nn → N is call an outer (σ,τ)-n-derivation of N if D is an n-additive mapping
satisfying the relations

D(x1 y1, x2, . . . , xn)=σ(x1)D(y1, x2, . . . , xn)+D(x1, x2, . . . , xn)τ(y1),

D(x1, x2 y2, . . . , xn)=σ(x2)D(x1, y2, . . . , xn)+D(x1, x2, . . . , xn)τ(y2),
...

D(x1, x2, . . . , xn yn)=σ(xn)D(x1, x2, . . . , yn)+D(x1, x2, . . . , xn)τ(yn),

for all x1, x2, . . . , xn, y1, y2, . . . , yn ∈ N .

Note that if n = 1 then D is call an outer (σ,τ)-derivation.

Lemma 2.3 ([1, Lemma 3.5]). Let N be a prime near-ring, D a nonzero outer (σ,τ)-n-derivation
on N and x ∈ N.

(i) If D(N, N, . . . , N)x = {0} then x = 0.

(ii) If xD(N, N, . . . , N)= {0} then x = 0.

Corollary 2.4. Let N be a prime near-ring, D a nonzero outer (σ,τ)-n-derivation of N and x ∈ N .
If D(N, N, . . . , N)τ(x)= {0} then x = 0.

Corollary 2.5. Let N be a prime near-ring, d a nonzero outer (σ,τ) derivation on N and x ∈ N.

(i) If d(N)x = {0} then x = 0.

(ii) If xd(N)= {0} then x = 0.

Corollary 2.6. Let N be a prime near-ring, d a nonzero outer (σ,τ) derivation of N and x ∈ N.
If d(N)τ(x)= {0} then x = 0.

Lemma 2.7. Let N be a prime near-ring, D a nonzero outer (σ,τ)-n-derivation of N and x ∈ N.

(i) If σ(D(N, N, . . . , N))x = {0} then x = 0.

(ii) If xσ(D(N, N, . . . , N))= {0} then x = 0.

Proof. (i): Suppose that σ(D(N, N, . . . , N))x = {0}.
Let x1, x2, . . . , xn ∈ N. Since σ : N → N is an automorphism, there exists a ∈ N such that σ(a)= x.
We have

σ(D(x1, x2, . . . , xn)a)=σ(D(x1, x2, . . . , xn))σ(a)= 0.

Since σ is an injective, we get

D(x1, x2, . . . , xn)a = 0, for all x1, x2, . . . , xn ∈ N.

By Lemma 2.3, we get a = 0 therefore x = 0.

(ii): It can be proved in a similar manner.
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Lemma 2.8 ([6, Lemma 3]). Let N be a prime near-ring.If Z − {0} contains an element z for
which z+ z ∈ Z, then (N,+) is abelian.

3. Main Results
In this section, let σ and τ be automorphisms of N .

Theorem 3.1. Let D be nonzero outer (σ,τ)-n-derivation of N and d be nonzero outer (σ,τ)
derivation of N . If dD(N, N, . . . , N)= {0}, then (N,+) is an abelian group.

Proof. Suppose that dD(N, N, . . . , N)= {0}.

Let x, y, x1, x2, . . . , xn ∈ N. Since σ : N → N is an automorphism, there exists a ∈ N such that
σ(a)= x1.

Then dD(ax, x2, . . . , xn)= 0, it follows that

σ(D(a, x2, . . . , xn))d(τ(x))= d(x1)τ(D(−x, x2, . . . , xn)).

Similarly,

σ(D(a, x2, . . . , xn))d(τ(y))= d(x1)τ(D(−y, x2, . . . , xn)).

By hypothesis, dD(a(x+ y), x2, . . . , xn)= 0. This implies that

d(x1)τ(D(x+ y, x2, . . . , xn))+σ(D(a, x2, . . . , xn))d)τ(x+ y)= 0.

Combining the above three eqations, we have

d(x1)τ(D(x+ y− x− y, x2, . . . , xn))= 0.

By Corollary 2.6, we get D(x+ y− x− y, . . . , xn)= 0.

Next, D(x1(x+ y− x− y), . . . , xn)= 0 implies that

D(x1, . . . , xn)τ(x+ y− x− y)= 0.

By Corollary 2.4, we have x+ y− x− y= 0.

Therefore x+ y= y+ x for all x, y ∈ N . Thus, (N,+) is abelian.

Theorem 3.2. Let σ and τ be automorphisms such that σ2 = σ and τ2 = τ. Let D be nonzero
outer (σ,τ)-n-derivation of N and d be nonzero outer (σ,τ) derivation of N . If dD is an outer
(σ,τ)-n-derivation of N then (N,+) is an abelian group.

Proof. Since dD is an outer (σ,τ)-n-derivation of N,

dD(x1 y1, x2, . . . , xn)=σ(x1)dD(y1, x2, . . . , xn)+dD(x1, x2, . . . , xn)τ(y1)

for all x1, y1, x2, . . . , xn ∈ N . On the other hand, we also have

dD(x1 y1, x2, . . . , xn)= d{D(x1 y1, x2, . . . , xn)}

=σ(x1)dD(y1, x2, . . . , xn)+d(σ(x1))τ(D(y1, x2, . . . , xn))

+σ(D(x1, x2, . . . , xn))d(τ(y1))+dD(x1, x2, . . . , xn)τ(y1),
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for all x1, y1, x2, . . . , xn ∈ N . By comparing the above two values of dD(x1 y1, x2, . . . , xn), we find
that

σ(D(x1, x2, . . . , xn))d(τ(y1))=−d(σ(x1))τ(D(y1, x2, . . . , xn)), (3.2.1)

for all x1, y1, x2, . . . , xn ∈ N.

Let x, y ∈ N. Since τ : N → N is an automorphism, there exist a,b ∈ N such that τ(a) = x and
τ(b)= y. Replacing y1 by a+b in (3.2.1), we get

σ(D(x1, x2, . . . , xn))d(τ(a+b))=−d(σ(x1))τ(D(a+b, x2, . . . , xn)). (3.2.2)

Replacing y1 by −a and −b, respectively in (3.2.1), we conclude that

σ(D(x1, x2, . . . , xn))d(τ(−a−b))= d(σ(x1))τ(D(a+b, x2, . . . , xn)). (3.2.3)

By combining (3.2.2) and (3.2.3), we obtain

σ(D(x1, x2, . . . , xn))d(τ(a+b−a−b))= 0, for all x1, x2, . . . , xn ∈ N.

Hence

σ(D(x1, x2, . . . , xn))d(x+ y− x− y)= 0, for all x1, x2, . . . , xn, x, y ∈ N.

By Lemma 2.7, we have

d(x+ y− x− y)= 0, for all x, y ∈ N.

For w ∈ N , 0= d(wx+wy−wx−wy= d(w(x+ y− x− y)) and so we obtain d(w)τ(x+ y− x− y)= 0.

By Corollary 2.6, we get x+ y= y+ x for all x, y ∈ N . Therefore (N,+) is abelian.

Theorem 3.3. Let σ and τ be automorphisms such that σ2 = σ and τ2 = τ. Let D be an outer
(σ,τ)-n-derivation of N and d be an outer (σ,τ) derivation of N . If (N,+) is non-abelian and dD
is an outer (σ,τ)-n-derivation of N, then D = 0 or d = 0.

Proof. Suppose that (N,+) is non-abelian and dD is an outer (σ,τ)-n-derivation of N . If D = 0,
then nothing to do. Assume that D 6= 0. Now, using similar arguments as used in the proof of
Theorem 3.2, we conclude that

d(N)τ(x+ y− x− y)= {0} (3.3.1)

for all x, y ∈ N.

If d 6= 0, then by Corollary 2.6 we have (N,+) is abelian, a contradiction to the assumption.
Hence d = 0. The proof is complete.

Theorem 3.4. Let D be nonzero outer (σ,τ)-n-derivation of N . Suppose that for any positive
integer i ∈ {1,2, . . . ,n}, D(x1, x2, . . . , [xi, yi], . . . , xn)= 0 for all x1, x2, . . . , xi, yi, . . . , xn ∈ N . Then N is
a commutative ring.

Proof. For any x1, x2, . . . , xi, yi, . . . , xn ∈ N , we have

D(x1, x2, . . . , [xi, xi yi], . . . , xn)= 0.
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But

D(x1, x2, . . . , [xi, xi yi], . . . , xn)=σ(xi)D(x1, x2, . . . , [xi, yi], . . . , xn)

+D(x1, x2, . . . , xi, . . . , xn)τ([xi, yi]).

By hypothesis, we get

D(x1, x2, . . . , xi, . . . , xn)τ(xi yi)= D(x1, x2, . . . , xi, . . . , xn)τ(yixi), (3.4.1)

for all x1, x2, . . . , xi, yi, . . . , xn ∈ N.

Let x1, x2, . . . , xi, yi, . . . , xn, z ∈ N . Since τ is an automorphism, there exits a ∈ N such thatτ(a)= z.
By using (3.4.1), Then

D(x1, x2, . . . , xi, . . . , xn)τ(xia)= D(x1, x2, . . . , xi, . . . , xn)τ(axi)

and

D(x1, x2, . . . , xi, . . . , xn)zτ(xi yi − yixi)= D(x1, x2, . . . , xi, . . . , xn)τ(axi yi)−τ(ayixi)

= D(x1, x2, . . . , xi, . . . , xn)τ(xiayi)−τ(ayixi)= 0.

Therefore

D(x1, x2, . . . , xi, . . . , xn)zτ(xi yi − yixi)= 0,

for all x1, x2, . . . , xi, yi, . . . , xn, z ∈ N.

That is

D(x1, x2, . . . , xi, . . . , xn)Nτ(xi yi − yixi)= {0}

for all x1, x2, . . . , xi, . . . , xn, z ∈ N.

By the primeness of N and D is a nonzero outer (σ,τ)-n-derivation of N, we have

τ(xi yi − yixi)= 0, for all xi, yi ∈ N.

Since τ is an injective function, xi yi = yixi for all xi, yi ∈ N. Hence N is a commutative near-ring.
Then N = Z. Applying Lemma 2.8, we can conclude that (N,+) is an abelian group. So N is a
commutative ring.

Theorem 3.5. Let D be nonzero outer (σ,τ)-n-derivation of N . Suppose that for any positive
integer i ∈ {1,2, . . . ,n}. Assume that

D(x1, x2, . . . , [xi, yi], . . . , xn)=±[σ(xi),σ(yi)],

for all x1, x2, . . . , xi, yi, . . . , xn ∈ N . Then N is a commutative ring.

Proof. For any x1, x2, . . . , xi, yi, . . . , xn ∈ N, we have

D(x1, x2, . . . , [xi, xi yi], . . . , xn)=±σ(xi)[σ(xi),σ(yi)].

In the other hand, we get

D(x1, x2, . . . , [xi, xi yi], . . . , xn)=σ(xi)D(x1, x2, . . . , [xi, yi], . . . , xn)

+D(x1, x2, . . . , xi, . . . , xn)τ([xi, yi]).
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Therefore

σ(xi)D(x1, x2, . . . , [xi, yi], . . . , xn)+D(x1, x2, . . . , xi, . . . , xn)τ([xi, yi])=±σ(xi)[σ(xi),σ(yi)],

for all x1, x2, . . . , xi, yi, . . . , xn ∈ N .

By hypothesis, we have

D(x1, x2, . . . , xi, . . . , xn)τ([xi, yi])= 0,

for all x1, x2, . . . , xi, yi, . . . , xn ∈ N.

Then, by using the same technique in the proof of Theorem 3.4, we can conclude that N is a
commutative ring.

Theorem 3.6. Let D be nonzero outer (σ,τ)-n-derivation of N . Suppose that for any positive
integer i ∈ {1,2, . . . ,n}. Assume that

D(x1, x2, . . . , (xi ◦ yi), . . . , xn)=±(σ(xi)◦σ(yi)),

for all x1, x2, . . . , xi, yi, . . . , xn ∈ N . Then N is a commutative ring.

Proof. For any x1, x2, . . . , xi, yi, . . . , xn ∈ N , we have

D(x1, x2, . . . , (xi ◦ xi yi), . . . , xn)=±σ(xi)(σ(xi)◦σ(yi)).

On the other hand, we get

D(x1, x2, . . . , (xi ◦ xi yi), . . . , xn)=σ(xi)D(x1, x2, . . . , (xi ◦ yi), . . . , xn)

+D(x1, x2, . . . , xi, . . . , xn)τ(xi ◦ yi).

Therefore

σ(xi)D(x1, x2, . . . , (xi ◦ yi)+D(x1, x2, . . . , xi, . . . , xn)τ(xi ◦ yi)=±σ(xi)(σ(xi)◦σ(yi)),

for all x1, x2, . . . , xi, yi, . . . , xn ∈ N.

By hypothesis, we have

D(x1, x2, . . . , xi, . . . , xn)τ(xi ◦ yi)= 0, (3.6.1)

for all x1, x2, . . . , xi, yi, . . . , xn ∈ N.

Replacing xi by −xi in (3.6.1), we have

D(x1, x2, . . . ,−xi, . . . , xn)τ(−xi yi)= D(x1, x2, . . . ,−xi, . . . , xn)τ(yixi). (3.6.2)

Then, by (3.6.1) and (3.6.2), we obtain

D(x1, x2, . . . ,−xi, . . . , xn)Nτ([xi, yi])= {0},

for all x1, x2, . . . , xi, yi, . . . , xn ∈ N.

By using the same technique in the proof of Theorem 3.4, we can conclude that N is a
commutative ring.
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Corollary 3.7. Let N be a 2-torsion free prime near-ring. Then there exists no nonzero outer
(σ,τ)-n-derivation D such that

D(x1, x2, . . . , (xi ◦ yi), . . . , xn)=±(σ(xi)◦σ(yi)),

for all x1, x2, . . . , xi, yi, . . . , xn ∈ N, and for i ∈ {1,2, . . . ,n}.

Proof. Suppose that there exists a nonzero outer (σ,τ)-n-derivation D such that

D(x1, x2, . . . , (xi ◦ yi), . . . , xn)=±(σ(xi)◦σ(yi)),

for all x1, x2, . . . , xi, yi, . . . , xn ∈ N.

By Theorem 3.6, we get N is a commutative ring. Since N is 2-torsion free, D(x1, x2, . . . , xn)yixi =
0, for all x1, x2, . . . , xi, yi, . . . , xn ∈ N.

Hence D(x1, x2, . . . , xn)Nxi = {0}, for all x1, x2, . . . , xi, . . . , xn ∈ N.

Since N is prime and D 6= 0, xi = 0. This implies that D = 0, a contradiction. The proof of the
corollary is complete.
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