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1. Introduction
Let H be a real separable Hilbert space, with norm and inner product expressed as ‖ · ‖ and 〈·, ·〉,
jointly. Let K be a non empty closed convex subset of H. Let S,T :K→K be non linear mappings.
Let G1 : K×K→ R be a bifunction, where R is the set of real number and PK be projection
defined from H onto the closed convex set K and QK = I −PK, where I is identity operator.

The Equilibrium Problem (EP) for G1 :K×K→R is, for finding v ∈K in such a way that

G1(v,u)≥ 0, ∀ u ∈K. (1.1)

The solution set of (1.1) is denoted by EP(G1). If G1(v,u) = 〈Tv,u− v〉 ∀ u,v ∈ K, then the
problem lessen to Variational Inequality Problem (VIP), which is solved for v ∈K in such a way
that
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〈Tv,u−v〉 ≥ 0, for all u ∈K. (1.2)

i.e. v is solution of equilibrium problem if and only if v is solution of variational inequality. This
problem (1.2) was given by Stampacchia [10] in 1964. VIP is solved by different method like
projection method, auxiliary principle technique, resolvent method, dynamical system technique
and Weiner Hopf equation. There are many researcher who work in these different techniques.
A mapping S :K→H is nonexpansive if

‖Su−Sv‖ ≤ ‖u−v‖, for all u,v ∈K. (1.3)

In 1991, Shi [9] demonstrate the equivalence of between Wiener-Hopf Equation (WHE):
(SPK+QK)u = g where g ∈K and variational inequality: 〈Su− g,v−u〉 ≥ 0, ∀ v ∈K. Later on
Noor [7] also established an equivalence between generalized VIP and generalized WHE. After
that Al-Shemas and Verma [1,11] worked in the same direction. It shows that WHE techinque
is more flexible than projection method.

In 2014, Wang and Zhang [12] work for solving EP, VIP and FP with WHE technique. They
are the first one to answer their own question, which is, why the earlier researcher does not
consider EP to solve VIP and VIP with FP under the applied WHE technique? They work on
EP with VIP and generalized VIP with WHE. Later on, in 2020 Khan et al. [3] introduced
a composite Wiener-Hopf equation and composite generalized variational inequality in real
separable Hilbert space and proved the strong convergence of their iterative algorithm.

Motivated from [3, 12], we introduced a composite iterative algorithm for solving EP,
composite generalized variational inequality and fixed point problem with composite Wiener-
Hopf equation. We use the equivalence technique of [3] to show the strong convergence of our
iterative algorithm.

2. Preliminaries
In this section, we list some fundamental definitions and lemmas which are useful to our result.
Let H be a real separable Hilbert space, with norm and inner product expressed as ‖ · ‖ and 〈·, ·〉,
jointly and K be a nonempty closed convex subset of H and PK is the projection mapping from K

to H.

Definition 2.1. An operator G :K→H is called
(i) monotone if,

〈Gv−Gu,v−u〉 ≥ 0, ∀ v,u ∈K;

(ii) η-strongly monotone with constant η> 0 such that

〈Gv−Gu,v−u〉 ≥ η‖v−u‖2, ∀ v,u ∈K;

(iii) ν-expansive if there exist ν> 0 such that

‖Gv−Gu‖ ≥ ν‖v−u‖, ∀ v,u ∈K;

(iv) α-cocorecive if there exist α> 0 such that

〈Gv−Gu,v−u〉 ≥α‖Gv−Gu‖2, ∀ v,u ∈K;
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(v) relaxed γ-cocoervive, if there exist γ≥ 0 such that

〈Gv−Gu,v−u〉 ≥ (−γ)‖Gv−Gu‖2, ∀ v,u ∈K;

(vi) relaxed (γ, t)-cocoercive, if there exist γ, t > 0 such that

〈Gv−Gu,v−u〉 ≥ (−γ)‖Gv−Gu‖2 + t‖v−u‖2, ∀ v,u ∈K.

Definition 2.2. The set valued mapping S :H→ 2H is called
(i) relaxed monotone operator if, there exists a constant ξ> 0 such that

〈w1 −w2,u−v〉 ≥ (−ξ)‖u−v‖2, ∀ w1 ∈ S(u) and w2 ∈ S(v).

(ii) The set-valued mapping S :H→ 2H is γ-Lipschitz continuous if, there exists γ> 0 such
that

‖w1 −w‖ ≤ γ‖u−v‖, ∀ w1 ∈ S(u) and w2 ∈ S(v).

Definition 2.3. The single valued mapping T :K→K is called
(i) non expansive if

‖Tv−Tu‖ ≤ ‖v−u‖, ∀ v,u ∈K.

(ii) strictly pseudo-contractive, if there exist l ∈ [0,1] such that

‖Tv−Tu‖2 ≤ ‖v−u‖2 + l‖(I −T)v− (I −T)u‖2, ∀ v,u ∈K.

The fixed point problem is to identify a point u ∈K for the mapping T , in such a way, that

Tu = u . (2.1)

We represent F(T) by the solution set of (2.1).
The Composite Generalized Variational Inequality (CGVIP) [3] for B,F :K→H and h :K→K,

single valued continuous nonlinear mappings, with T :H→ 2H as a set valued mapping, is to
find a point u ∈H such that h(u) ∈K and

〈Boh(u)+F(w),h(u)−h(v)〉 ≥ 0, ∀ h(v) ∈K and w ∈ S(u). (2.2)

The solution set of (CGVIP) (2.2) is denoted by VI(K,B,F,S,h).

Special cases:
(i) If F,h = I , then (CGVIP) (2.2) is equivalent to finding u ∈K such that

〈Bu+w,u−v〉 ≥ 0, ∀ v ∈K and w ∈ Su. (2.3)

Problem (2.3) introduced by Wu [14].

(ii) If B = 0, F = I and S is single valued mapping, then CGVIP (2.2) is identical to find u ∈H
such that h(u) ∈K

〈Su,h(u)−h(v)〉 ≥ 0, ∀ h(v) ∈K. (2.4)

Problem (2.4) was studied by Noor [8].

(iii) If F,S = 0 and h = I , then CGVIP (2.2) become equivalent to find a point u ∈K such that

〈Bu,u−v〉 ≥ 0, ∀ v ∈K. (2.5)

Problem (2.5) is classical variational inequality, studied by Stampachia [10].
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The mixed equilibrium problem, denoted by MEP, is to find u ∈K such that

G1(u,v)+〈Du,u−v〉 ≥ 0, ∀ v ∈K, (2.6)

where G1 :K×K→R is a bifunction and D :K→H be a non linear mapping. This problem was
imported and calculated by Moudafi and Thera [5] and Moudafi [6]. The solution set of (2.6) is

MEP(G1)= {u ∈K : G1(u,v)+〈Du,u−v〉 ≥ 0, ∀ v ∈K} (2.7)

If D = 0, (2.6) reduced to equilibrium problem, i.e.

G1(u,v)≥ 0, ∀ v ∈K. (2.8)

Lemma 2.1 ([2]). Let the function G1 :K×K→ R satisfy the following conditions
(i) G1(u,u)= 0 for all u ∈K.

(ii) G1 is monotone, i.e. G1(u,v)+G1(v,u)≤ 0 for all u,v ∈K.

(iii) for each u,v,w ∈K, lim
t→0

G1(tw+ (1− t)u,v)≤G1(u,v).

(iv) for each u ∈K,G1(u, ·) is convex and lower semicontinuous.
Then EP(G1) 6=φ.

Lemma 2.2 ([2]). Let r > 0,u ∈H, and G1 satisfy the conditions (i)-(iv) in Lemma 2.1. Then there
exists w ∈K such that G1(w,v)+ 1

r 〈v−w,w−u〉 ≥ 0, ∀ v ∈K.

Lemma 2.3 ([2]). Let r > 0, u ∈H, and G1 satisfy the conditions (i)-(iv) in Lemma 2.1. Define a
mapping Sr :H→K as Sr(u)= {w ∈K : G1(w,v)+ 1

r 〈v−w,w−u〉 ≥ 0,∀ v ∈K}. Then the following
hold:

(i) Sr is single-valued.

(ii) Sr is firmly nonexpansive, i.e. ‖Sru−Srv‖ ≤ 〈Sru−Srv,u−v〉 for all u,v ∈H.

(iii) EP(G1)= F(Sr), where F(Sr) denotes the sets of fixed point of Sr .

(iv) EP(G1) is closed and convex.

Lemma 2.4 ([4]). Given w ∈H,u ∈K satisfies the inequality:

〈u−w,v−u〉 ≥ 0, ∀ v ∈K,

if and only if u = PKw, where PK is the projection of H into K. Furthermore, the projection PK is
a nonexpansive mapping.

For the projection mapping PK from H into K, consider QK = I−TPK, where I is the identity
mapping and T is a non-expansive mapping. If h−1 exists for (2.2), then we consider the problem
of finding w ∈H such that

BTPKw+F(t)+ρ−1QKw = 0, ∀ t ∈ STPKw, (2.9)

where ρ > 0 is constant.
Equation (2.4) is called composite generalized Wiener-Hopf equation [3]. The solution set of

the problem (2.4) is denoted by CC1WE(H,B,T,F,h).
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Lemma 2.5 ([3]). The element u ∈K is a common solution of VI(K,B,F,S,h)∩F(Toh) if and
only if the composite Wiener-Hopf equation (2.4) has a solution w ∈H, where

w = h(u)−ρ[Boh(u)+F(t)], (2.10)

h(u)= TPK(w), (2.11)

where PK is the projection of H into K and ρ > 0 is constant.

Lemma 2.6 ([13]). Consider {an} be a sequence of non negative real numbers such that

an+1 ≤ (1−λn)an +bn,

with λn ∈ [0,1],
∞∑

i=1
λn =∞,bn = o(λn), then lim

n→∞(an)= 0.

3. Convergence Analysis of EP with CC1WE
First we define iterative algorithm based on Lemma 2.5 for finding the solution of CGVIP (2.2)
then prove strong convergence of our iteration.

Algorithm 3.1. For any a0 ∈H, calculate the sequence {an} by the iterative process

h(un)= (βI + (1−β)T)PKan,

G1(h(vn),h(y))+ 1
r
〈h(y)−h(vn),h(vn)−h(un)〉 ≥ 0, ∀ y ∈K,

an+1 = (1−βn)an +βn[h(vn)−ρ(Boh(vn)+F(wn))], (3.1)

where {βn} is a sequence in [0,1], r > 0 and T is strictly contractive mapping.

(I) If F = h = I , Algorithm 3.1, reduces to:

Algorithm 3.2. For any a0 ∈H, calculate the sequence {an} by the iterative process

un = (βI + (1−β)T)PKan,

G1(vn, y)+ 1
r
〈y−vn,vn −un〉 ≥ 0, ∀ y ∈K,

an+1 = (1−βn)an +βn[vn −ρ(B(vn)+wn)], (3.2)

where {βn} is a sequence in [0,1], r > 0 and T is strictly contractive mapping.

(II) If h,F,T = I , then Algorithm 3.1 reduced to:

Algorithm 3.3. For any a0 ∈H, calculate the sequence {an} by the iterative process

un = PKan,

G1(vn, y)+ 1
r
〈y−vn,vn −un〉 ≥ 0 , ∀ y ∈K,

an+1 = (1−βn)an +βn[vn −ρ(B(vn)+wn)], (3.3)

where {βn} is a sequence in [0,1] and studied by Wang [12] in respective Algorithm 5.3.
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(III) If F = h = T = I and βn = 1, ∀ n Algorithm 3.1 become:

Algorithm 3.4. For any a0 ∈H, calculate the sequence {an} by the iterative process

un = PKan,

G1(vn, y)+ 1
r
〈y−vn,vn −un〉 ≥ 0 , ∀ y ∈K,

an+1 = vn −ρ(B(vn)+wn), (3.4)

was studied by Wang [12], in respective Algorithm 5.4.

Theorem 3.1. Let K be a closed convex subset of real separable Hilbert space H and bifunction
G1 satisfy the conditions (i)-(iv) of Lemma 2.3. Let B,F :K→H and T,h :K→K be the single-
valued nonlinear mappings such that B is relaxed (γ, t)-cocoercive mapping and η-Lipschitz
continuous, F is ξ Lischitz continuous and T is K strictly pseudocontractive mapping such that
F(Toh)∩VI(K,B,F,S,h)∩EP(G1oh) 6=φ, respectively. Let S :H→ 2H be a set valued Lipschitz
continuous operator and relaxed monotone with corresponding constants m > 0 and k > 0,
respectively. Let {an} and {un} be the sequences provoked by Algorithm 3.1 and let βn be a
sequence in [0,1] satisfying the following conditions:

(i)
∞∑

n=0
αn =∞,

(ii) β ∈ [k,1),

(iii) 0< ρ < 2(t−γη−k)
(η+ξm)2 , t > γη+k,

then the sequences {un}, {vn} strongly converges to u∗ ∈ F(Toh)∩VI(K,B,F,S,h)∩EP(G1oh) and
{an} strongly converges to a∗ ∈CC1WE(H,B,T,F,h).

Proof. Let R = βI + (I −β)T . From the restriction (ii) we have that R is nonexpansive with
F(R)= F(T). Let h(u) ∈K be the common element of F(T)∩VI(K,B,F,S,h), then by Lemma 2.5
we have h(u∗)= RPKa∗,a∗ = (1−βn)a∗+βn[h(u∗)−ρ(Boh(u∗)+F(w∗))] where w∗ ∈ Sh(u∗) and
a∗ ∈ CC1WE(H,B,T,F,h). From Algorithm 3.1, we have

‖an+1 −a∗‖ = ‖(1−βn)an +βn[h(vn)−ρ(Boh(vn)+F(wn))]

− [(1−βn)a∗+βn[h(u∗)−ρ(Boh(u∗)+F(w∗))]]‖
≤ (1−βn)‖an −a∗‖+βn‖h(vn)−h(u∗)

−ρ[(Boh(vn)+F(wn))− (Boh(u∗)+F(w∗))]‖ . (3.5)

On solving second term of right side of (3.5).

‖h(vn)−h(u∗)−ρ[(Boh(vn)+F(wn))− (Boh(u∗)+F(w∗))]‖2

= ‖h(vn)−h(u∗)‖2 −2ρ〈(Boh(vn)+F(wn))− (Boh(u∗)+F(w∗)), (h(vn)−h(u∗))〉
+ρ2‖(Boh(vn)+F(wn))− (Boh(u∗)+F(w∗))‖2

= ‖h(vn)−h(u∗)‖2 −2ρ〈(Boh(vn)−Boh(u∗)),h(vn)−h(u∗)〉
−2ρ〈F(wn)−F(w∗),h(vn)−h(u∗)〉+ρ2‖(Boh(vn)+F(wn))− (Boh(u∗)+F(w∗))‖2

≤ ‖h(vn)−h(u∗)‖2 −2ρ(−γ‖Boh(vn)−Boh(u∗)‖2 + t‖h(vn)−h(u∗)‖2)
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+2ρk‖h(vn)−h(u∗)‖2 +ρ2‖(Boh(vn)+F(wn))− (Boh(u∗)+F(w∗))‖2

≤ ‖h(vn)−h(u∗)‖2 +2ρ(γη− t+k)‖h(vn)−h(u∗)‖2

+ρ2‖(Boh(vn)+F(wn))− (Boh(u∗)+F(w∗))‖2 . (3.6)

Now consider the third term of right side of (3.6)

‖(Boh(vn)+F(wn))− (Boh(u∗)+F(w∗))‖ = ‖(Boh(vn)−Boh(u∗))+ (F(wn)−F(w∗))‖
≤ ‖(Boh(vn)−Boh(u∗))‖+‖(F(wn)−F(w∗))‖
≤ (η+ξm)‖(h(vn)−h(u∗))‖ . (3.7)

Use (3.7) in (3.6), we get

‖h(vn)−h(u∗)−ρ[(Boh(vn)+F(wn))− (Boh(u∗)+F(w∗))]‖2

≤ ‖h(vn)−h(u∗)‖2 +2ρ(γη− t+k)‖h(vn)−h(u∗)‖2 +ρ2(η+ξm)2‖(h(vn)−h(u∗))‖2

= [1+2ρ(γη− t+k)+ρ2(η+ξm)2]‖(h(vn)−h(u∗))‖2

= ζ2‖h(vn)−h(u∗)‖2 , (3.8)

where ζ=
√

1+2ρ(γη− t+k)+ρ2(η+ξm)2.

From condition (iii), we get ζ< 1. Now use (3.8) in (3.5), we get

‖an+1 −a∗‖ ≤ (1−βn)‖an −a∗‖+βnζ‖h(vn)−h(u∗)‖ . (3.9)

Since u∗ ∈EP(G1oh) implies

G1(h(u∗),h(y))≥ 0 , ∀ y ∈K . (3.10)

Put y= vn in (3.10) and y= u∗ in Algorithm 3.1, we obtain

G1(h(u∗),h(vn))≥ 0 and G1(h(vn),h(u∗))+ 1
r
〈h(u∗)−h(vn),h(vn)−h(un)〉 ≥ 0 . (3.11)

From the monotonicity of G1, we have

G1(h(u∗),h(vn))≥ 0 =⇒ G1(h(vn),h(u∗))≤ 0 . (3.12)

Combining (3.11) and (3.12), we obtain

〈h(u∗)−h(vn),h(vn)−h(un)〉 ≥ 0 .

It follows that

〈h(u∗)−h(vn),h(vn)−h(u∗)+h(u∗)−h(un)〉 ≥ 0

=⇒ 〈h(u∗)−h(vn),h(vn)−h(u∗)〉+〈h(u∗)−h(vn),h(u∗)−h(un)〉 ≥ 0

=⇒ ‖h(u∗)−h(vn)‖2 ≤ 〈h(u∗)−h(vn),h(u∗)−h(un)〉
≤ ‖h(u∗)−h(vn)‖ ·‖h(u∗)−h(un)‖

=⇒ ‖h(u∗)−h(vn)‖ ≤ ‖h(u∗)−h(un)‖
=⇒ ‖h(vn)−h(u∗)‖ ≤ ‖h(un)−h(u∗)‖ . (3.13)

Since R is non expansive, we get

‖h(un)−h(u∗)‖ = ‖RPKan −RPKa∗‖
≤ ‖an −a∗‖ . (3.14)
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From (3.9), (3.13) and (3.14), we obtain

‖an+1 −a∗‖ ≤ (1−βn)‖an −a∗‖+βnζ‖h(vn)−h(u∗)‖
≤ [1−βn(1−ζ)]‖an −a∗‖ . (3.15)

From condition (i) and Lemma 2.6 into equation (3.15), we have

lim
n→0

‖an −a∗‖→ 0 .

On the other hand, from (3.13) and (3.14), we obtain

lim
n→0

‖un −u∗‖→ 0 and lim
n→0

‖vn −u∗‖→ 0.

Therefore the sequence {un} and {vn} strongly converges to u∗ ∈ F(Toh)∩VI(K,B,F,S,h)∩
EP(G1oh) and {an} strongly converges to a∗ ∈CC1WE(H,B,T,F,h).

Remark 3.1. If G1 = 0 we obtain Theorem 4.1 of Wang [12].

Corollary 3.1. Let K be a closed convex subset of real separable Hilbert space H and bifunction
G1 satisfy the condition (i)-(iv) of Lemma 2.3. Let B,F : K → H and T,h : K → K be the
single-valued nonlinear mappings such that B is relaxed (γ, t)-cocoercive mapping and η-
Lipschitz continuous, F is ξ Lipschitz continuous and T is non expansive mapping such that
F(Toh)∩VI(K,B,F,S,h)∩EP(G1oh) 6=φ, respectively. Let S :H→ 2H be a multi valued Lipschitz
continuous and relaxed monotone operator with respective constants m > 0 and k > 0, respectively.
Let {an} and {un} be the sequences provoked by Algorithm 3.1 and for the sequence βn in [0,1]
which satisfying the successive conditions:

(i)
∞∑

n=0
αn =∞,

(ii) β ∈ [k,1),

(iii) 0< ρ < 2(t−γ∗η−k)
(η+ξm)2 , t > γη+k,

then the sequence {un}, {vn} strongly converges to u∗ ∈ F(Toh)∩VI(K,B,F,S,h)∩EP(G1oh) and
{an} strongly converges to a∗ ∈ CC1WE(H,B,T,F,h).

4. Convergence Analysis of MEP with CC1WE
In this section we consider Mixed Equilibrium Problem (MEP) and define several iterative
algorithm and prove its convergence theorem for solving MEP(G1oh)∩F(Toh)∩VI(K,B,F,S,h)

Algorithm 4.1. For any a0 ∈H, calculate the sequence {an} by the iterative process

h(un)= (βI + (1−β)T)PKan,

G1(h(vn),h(y))+〈Boh(vn), y−vn〉+ 1
r
〈h(y)−h(vn),h(vn)−h(un)〉 ≥ 0, ∀ y ∈K ,

an+1 = (1−βn)an +βn[h(vn)−ρ(Boh(vn)+F(wn))], (4.1)

where {βn} is a sequence in [0,1], r > 0 and T is strictly contractive mapping.

Communications in Mathematics and Applications, Vol. 12, No. 2, pp. 273–283, 2021



Composite Weiner Hopf Equation with Variational Inequality & Equilibrium Problem: S. Rathee & M. Swami 281

(I) If F = h = I , Algorithm 4.1, reduces to algorithm:

Algorithm 4.2. For any a0 ∈H, calculate the sequence {an} by the iterative process

un = (βI + (1−β)T)PKan,

G1(vn, y)+〈B(vn), y−vn〉+ 1
r
〈y−vn,vn −un〉 ≥ 0, ∀ y ∈K ,

an+1 = (1−βn)an +βn[vn −ρ(B(vn)+wn)], (4.2)

where {βn} is a sequence in [0,1], r > 0 and T is strictly contractive mapping.

(II) If h,F,T = I , then Algorithm 4.1 reduces to:

Algorithm 4.3. For any a0 ∈H, calculate the sequence {an} by the iterative process

un = PKan,

G1(vn, y)+〈B(vn), y−vn〉+ 1
r
〈y−vn,vn −un〉 ≥ 0 , ∀ y ∈K ,

an+1 = (1−βn)an +βn[vn −ρ(B(vn)+wn)], (4.3)

where {βn} is a sequence in [0,1].

(III) If F = h = T = I and βn = 1, ∀ n Algorithm 4.1 become:

Algorithm 4.4. For any a0 ∈H, calculate the sequence {an} by the iterative process

un = PKan,

G1(vn, y)+〈B(vn), y−vn〉+ 1
r
〈y−vn,vn −un〉 ≥ 0, ∀ y ∈K ,

an+1 = vn −ρ(B(vn)+wn), (4.4)

Theorem 4.1. Let K be a closed convex subset of separable real Hilbert space H and bifunction
G1 satisfy the condition (i)-(iv) of Lemma 2.3. Let B,F :K→H and T,h :K→K be the single-
valued nonlinear mappings such that B is relaxed (γ, t)-cocoercive mapping and η-Lipschitz
continuous, F is ξ Lischitz continuous and T is K strictly pseudocontractive mapping such
that F(Toh)∩VI(K,B,F,S,h)∩MEP(G1oh) 6= φ, respectively. Let S : H→ 2H be a set valued
Lipschitz continuous operator and relaxed monotone with corresponding constants m > 0 and
k > 0, respectively. Let {an} and {un} be the sequences provoked by Algorithm 4.1 and βn be the
sequence in [0,1] satisfying the following conditions:

(i)
∞∑

n=0
αn =∞,

(ii) β ∈ [k,1),

(iii) 0< ρ < 2(t−γ∗η−k)
(η+ξm)2 , t > γη+k,

then the sequence {un}, {vn} strongly converges to u∗ ∈ F(Toh)∩VI(K,B,F,S,h)∩EP(G1oh) and
{an} strongly converges to a∗ ∈ CC1WE(H,B,T,F,h).

Proof. By the same technique as in Theorem 3.1, we have

u∗ ∈MEP(G1oh) implies G1(h(u∗),h(y))+〈Boh(u∗), y−u∗〉 ≥ 0 . (4.5)
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Put y= vn in (4.5) and y= u∗ in Algorithm 4.1, we obtain

G1(h(u∗),h(vn))+〈Boh(u∗),vn −u∗〉 ≥ 0 (4.6)

and

G1(h(vn),h(u∗))+〈Boh(vn),u∗−vn〉+ 1
r
〈h(u∗)−h(vn),h(vn)−h(un)〉 ≥ 0 . (4.7)

From the monotonicity of G1 and (4.7), we get

G1(h(u∗),h(vn))+〈Boh(u∗),vn −u∗〉 ≥ 0,

G1(h(vn),h(u∗))≤ 〈Boh(u∗),vn −u∗〉,

0≤G1(h(vn),h(u∗))+〈Boh(vn),u∗−vn〉+ 1
r
〈h(u∗)−h(vn),h(vn)−h(un)〉

≤ 〈Boh(u∗),vn −u∗〉+〈Boh(vn),u∗−vn〉+ 1
r
〈h(u∗)−h(vn),h(vn)−h(un)〉

≤−〈Boh(u∗)−Boh(vn),u∗−vn〉+ 1
r
〈h(u∗)−h(vn),h(vn)−h(un)〉 .

As B is relaxed (γ, t)-cocoercive mapping, then

≤−(−γ‖Boh(u∗)−Boh(vn)‖2 + t‖h(u∗)−h(vn)‖2)+ 1
r
〈h(u∗)−h(vn),h(vn)−h(un)〉

≤ r(γη− t)‖h(u∗)−h(vn)‖2 −‖h(u∗)−h(vn)‖2 +‖h(u∗)−h(vn)‖ ·‖h(u∗)−h(un)‖
‖h(u∗)−h(vn)‖ ≤ r(γη− t)+‖h(u∗)−h(un)‖

≤ ‖h(u∗)−h(un)‖ (because (γη− t)< 0 and r > 0).

Again proceeding in the same manner, we get

lim
n→0

‖an −a∗‖→ 0.

Also we have

lim
n→0

‖un −u∗‖→ 0 and lim
n→0

‖vn −u∗‖→ 0.

Therefore the sequence {un} and {vn} strongly converges to u∗ ∈ F(Toh)∩VI(K,B,F,S,h)∩
MEP(G1oh) and {an} strongly converges to a∗ ∈ CC1WE(H,B,T,F,h).
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