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1. Introduction
Scientific research in mechanics are articulated around two main components: one devoted to the
laws of behavior and other boundary conditions imposed on the body. The boundary conditions
reflect the binding of the body with the outside world. The piezoelectric effect is the apparition
of electric charges on surfaces of particular crystals after deformation. Its reverse effect consists
of the generation of stress and strain in crystals under the action of the electric field on
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the boundary. Materials undergoing piezoelectric effects are called piezoelectric materials; their
study require techniques and results from electromagnetic theory and continuum mechanics.
However, there are very few mathematical results concerning contact problems involving
piezoelectric materials and therefore, there is a need to extend the results on models for contact
with deformable bodies which include coupling between mechanical and electrical properties.
The contact between deformable bodies are very common in the industry and everyday life,
contact of braking pads with wheels, tires with roads, pistons with skirts or the complex metal.
Contact processes are accompanied by a number of phenomena among which the main one is
the friction. Nevertheless, more is involved in contact than just friction. Indeed, during a contact
process elastic or plastic deformations of the surface asperities may happen. Also, some or all of
the following may take place: squeezing of oil or other fluids, breaking of the asperities’ tips and
production of debris, motion of the debris, formation or welding of junctions, creeping, fracture,
etc. Moreover, frictional contact is associated with heat generation, material damage, wear and
adhesion of contacting surfaces. As the contact process evolves, the contacting surfaces evolve
too, via their wear. Wear is one of the process which reduce the lifetime of modern machine
elements. It represents the untwated removal of materials from surfaces of contacting bodies in
relative motion.

The aim of this paper is to make the coupling of an elastic-visco-plastic piezoelectric problem
with internal state variable and a frictional contact problem with wear. Then the constitutive
laws considered here are of the form:

σκ =Aκε(u̇κ)+Gκε(uκ)+(Eκ)∗∇ψκ

+
∫ t

0
Fκ

(
σκ(s)−Aκε(u̇κ(s))−(Eκ)∗∇ψκ, ε(uκ(s)),βκ(s)

)
ds, (1)

β̇κ =Θκ(σκ−Aκε(u̇κ)− (Eκ)∗∇ψκ(s),ε(uκ),βκ
)
, (2)

Dκ =Eκε(uκ)−Bκ∇ψκ (3)

in which uκ, σκ represent, respectively, the displacement field and the stress field where the
dot above denotes the derivative with respect to the time variable, Dκ represents the electric
displacement field. Here Aκ and Gκ are nonlinear operators describing the purely viscous
and the elastic properties of the material, respectively. Fκ is a nonlinear constitutive function
describing the viscoplastic behaviour of the material and depending on the internal state
variable βκ. Θκ is also a nonlinear constitutive function which depend on βκ, and Gκ represents
the elasticity operator. E(ψκ)=−∇ψκ is the electric field, Eκ = (e i jk) represents the third order
piezoelectric tensor, (Eκ)∗ is its transpose and Bκ denotes the electric permittivity tensor.
General models for elastic materials with piezoelectric effects can be found in [5,14]. Dynamic
contact problems are the topic of numerous papers, e.g. [1,6,9]. A quasistatic frictional contact
problem with wear involving elastic-viscoplastic materials with damage and thermal effects can
be found in [2]. Contact problems with friction or adhesion for electro-viscoelastic materials
were studied in [11, 12]. A static frictional contact problem for electric-elastic materials was
considered in [5,7]. The normal compliance contact condition was first considered in [6] in the
study of dynamic problems with linearly elastic and viscoelastic materials and then it was
used in various references, see e.g. [4, 10]. This condition allows the interpenetration of the
body’s surface into the obstacle and it was justified by considering the interpenetration and
deformation of surface asperities. In this paper we consider a mathematical frictional contact
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between two elastic-visco-plastic piezoelectric bodies with internal state variable for rate-type
materials of the form (1)–(3). The contact is frictional and bilateral which result in the wear of
contacting surface.

This article is organized as follows. In Section 2 we describe the mathematical models for
the frictional contact problem between two electro-elastic-viscoplastics bodies. The contact is
modelled with normal compliance and wear. In Section 3 we list the assumption on the data and
derive the variational formulation of the problem. In Section 4 we state our main existence and
uniqueness result, Theorem 4.1. The proof of the theorem is based on arguments of nonlinear
evolution equations with monotone operators, a classical existence and uniqueness result on
parabolic inequalities and fixed-point arguments.

2. Problem Statement
We consider the following physical setting. Let us consider two electro-elastic-viscoplastics
bodies, occupying two bounded domains Ω1, Ω2 of the space Rd (d = 2,3). For each domain Ωκ,
the boundary Γκ is assumed to be Lipschitz continuous, and is partitioned into three disjoint
measurable parts Γκ1 , Γκ2 and Γκ3 on one hand, and on two measurable parts Γκa and Γκb, on the
other hand, such that meas(Γκ1)> 0, meas(Γκa)> 0. Let T > 0 and let [0,T] be the time interval
of interest. The Ωκ body is submitted to f κ0 forces and volume electric charges of density qκ0 . The
bodies are assumed to be clamped on Γκ1 × (0,T). The surface tractions f κ2 act on Γκ2 × (0,T). We
also assume that the electrical potential vanishes on Γκa × (0,T) and a surface electric charge of
density qκ2 is prescribed on Γκb× (0,T). The two bodies can enter in bilateral contact with friction
along the common part Γ1

3 =Γ2
3 =Γ3. The bodies are in contact with friction and wear, over the

contact surface Γ3. We introduce the wear function ω :Γ3× (0,T)→R+ which measures the wear
of the surface. The wear is identified as the normal depth of the material that is lost. Let g be the
intial gap between the two bodies. Let pν and pτ denote the normal and tangential compliance
functions. We denote by v∗ and α∗ = ‖v∗‖ the tangential velocity and the tangential speed
at the contact surface between the two bodies. We use the modified version of Archard’s law
ω̇=−λ0v∗σν. To describe the evolution of wear, where λ0 > 0 is a wear coefficient. We introduce
the unitary vector δ :Γ3 →Rd defined by δ= v∗/‖v∗‖. When the contact arises, some material
of the contact surfaces worn out and immediately removed from the system. This process is
measured by the wear function ω. With these assumptions above, the classical formulation of
the mechanical frictional contact problem with wear between two electro-elastic-viscoplastics
bodies is the following.

Problem P. For κ = 1,2, find a displacement field uκ : Ωκ × [0,T] → Rd, a stress field
σκ :Ωκ× [0,T] →Sd , an electric potential field ψκ :Ωκ× [0,T] → R, a wear ω : Γ3 × [0,T] → R+

and a electric displacement field Dκ : Ωκ × [0,T] → Rd and an internal state variable field
βκ :Ωκ× [0,T]→Rm such that

σκ(t)=Aκε(u̇κ(t))+Gκε(uκ(t))+ (Eκ)∗∇ψκ(t)

+
∫ t

0
Fκ

(
σκ(s)−Aκε(u̇κ(s))− (Eκ)∗∇ψκ(s),ε(uκ(s)),βκ(s)

)
ds, inΩκ× (0,T), (4)

β̇κ(t)=Θκ(σκ(t)−Aκε(u̇κ(t))− (Eκ)∗∇ψκ(t),ε(uκ(t)),βκ(t)
)

in Ωκ× (0,T), (5)

Dκ(t)=Eκε(uκ(t))−Bκ∇ψκ(t) in Ωκ× (0,T), (6)
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ρκüκ =Divσκ+ f κ0 in Ωκ× (0,T), (7)

divDκ− qκ0 = 0 in Ωκ× (0,T), (8)

uκ(t)= 0 on Γκ1 × (0,T), (9)

σκνκ = f κ2 on Γκ2 × (0,T), (10)

σ1
ν =σ2

ν ≡σν, where σν =−pν(uν−ω− g) on Γ3 × (0,T), (11)

σ1
τ =−σ2

τ ≡στ, where στ =−pτ(uν−ω− g)
v∗

‖v∗‖ on Γ3 × (0,T), (12)

u1
ν+u2

ν = 0 on Γ3 × (0,T), (13)

ω̇=−λ0α
∗σν on Γ3 × (0,T), (14)

ψκ(t)= 0 on Γκa × (0,T), (15)

Dκ.νκ = qκ2 on Γκb × (0,T), (16)

uκ(0)= uκ
0, u̇κ(0)= vκ0, βκ(0)=βκ0 in Ωκ, (17)

ω(0)=ω0 on Γ3. (18)

First, equations (4)-(6) represent the electro-elastic-viscoplastic constitutive law with internal
state variable of the material. Equations (7) and (8) are the equilibrium equations for the stress
and electric-displacement fields, respectively, in which “Div” and “div” denote the divergence
operator for tensor and vector valued functions, respectively. Next, the equations (9) and (10)
represent the displacement and traction boundary condition, respectively. Conditions (11)-
(13) represent the frictional bilateral contact with wear described above. The equation (14)
represents the ordinary differential equation which describes the evolution of the wear function.
Equations (15) and (16) represent the electric boundary conditions. Finally, the functions uκ

0 ,
vκ0 , βκ0 and ω0 in (17)-(18) are the initial data.

3. Variational Formulation and Preliminaries
In this section, we list the assumptions on the data and derive a variational formulation for
the contact problem. To this end, we need to introduce some notation and preliminary material.
Here and below, Sd represent the space of second-order symmetric tensors on Rd . We recall that
the inner products and the corresponding norms on Sd and Rd are given by

uκ ·vκ = uκi ·vκi , |vκ| = (vκ ·vκ)
1
2 , ∀ uκ,vκ ∈Rd,

σκ ·τκ =σκi j ·τκi j, |τκ| = (τκ ·τκ)
1
2 , ∀ σκ,τκ ∈Sd.

Here and below, the indices i and j run between 1 and d and the summation convention over
repeated indices is adopted.

Now, we use standard notations for the Lebesgue and Sobolev spaces associated with Ωα

and Γα and, moreover, we consider the spaces

Hκ = {
vκ = (vκi )1≤i≤d; vκi ∈ L2(Ωκ)

}
,

Hκ = {
τκ = (τκi j)1≤i, j≤d; τκi j = τκji ∈ L2(Ωκ)

}
,

Hκ
1 = {

vκ = (vκi )1≤i≤d; ε(vκ) ∈Hκ
}
,

Hκ
1 = {

τκ = (τκi j)1≤i≤d; τκ ∈Hκ, Divτκ ∈ Hκ
}
,

Y κ = {
λκ = (λκi )1≤i≤m; λκi ∈ L2(Ωκ)

}
,
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Vκ = {
vκ ∈ H1(Ωκ)d; vκ = 0 on Γκ1

}
.

These are real Hilbert spaces endowed with the inner products

(uκ,vκ)Hκ =
∫
Ωκ

uκ ·vκdx,

(σκ,τκ)Hκ =
∫
Ωκ
σκ ·τκdx,

(uκ,vκ)Hκ
1
=

∫
Ωκ

uκ ·vκdx+
∫
Ωκ

∇uκ ·∇vκdx,

(σκ,τκ)Hκ
1
=

∫
Ωκ
σκ ·τκdx+

∫
Ωκ

Divσκ ·Divτκdx,

(λκ,µκ)Y κ =
∫
Ωκ
λκ ·µκdx,

(uκ,vκ)Vκ = (ε(uκ),ε(vκ))Hκ

and the associated norms ‖ ·‖Hκ , ‖ ·‖Hκ , ‖ ·‖Hκ
1
, ‖ ·‖Hκ

1
, ‖ ·‖Y κ and ‖ ·‖Vκ respectively. Here and

below we use the notation

∇uκ = (uκi, j), ε(u
κ)= (εi j(uκ)), εi j(uκ)= 1

2
(uκi, j +uκj,i), ∀ uκ ∈ Hκ

1 ,

Divσκ = (σκi j, j), ∀ σκ ∈Hκ
1 .

Completeness of the space (Vκ,‖ ·‖Vκ) follows from the assumption meas(Γκ1 > 0), which allows
the use of Korn’s inequality.

We denote vκ as the trace of an element vκ ∈ Hκ
1 on Γκ. For every element vκ ∈ Hκ

1 , we also
use the notation vκ for the trace of vκ on Γκ and we denote by vκν and vκτ the normal and the
tangential components of vκ on the boundary Γκ given by

vκν = vκ.νκ, vκτ = vκ−vκνν
κ.

Let H′
Γκ be the dual of HΓκ = H

1
2 (Γκ)d and let (·, ·)− 1

2 , 1
2 ,Γκ denote the duality pairing between

H′
Γκ and HΓκ . For every element σκ ∈Hκ

1 let σκνκ be the element of H′
Γκ given by

(σκνκ,vκ)− 1
2 , 1

2 ,Γκ = (σκ,ε(vκ))Hκ + (Divσκ,vκ)Hκ ∀ vκ ∈ Hκ
1 .

Denote by σκν and σκτ the normal and the tangential traces of σκ ∈Hκ
1 , respectively. If σκ is

continuously differentiable on Ωκ∪Γκ, then

σκν = (σκνκ) ·νκ, σκτ =σκνκ−σκννκ,

(σκνκ,vκ)− 1
2 , 1

2 ,Γκ =
∫
Γκ
σκνκ.vκda

fore all vκ ∈ Hκ
1 , where da is the surface measure element. Since measΓκ1 > 0, the following

Korn’s inequality holds:

‖ε(vκ)‖Hκ ≥ cK‖vκ‖Hκ
1

∀ vκ ∈Vκ, (19)

where the constant cK denotes a positive constant which may depends only on Ωκ, Γκ1 (see [8]).
Over the space Vκ we consider the inner product given by

(uκ,vκ)Vκ = (ε(uκ),ε(vκ))Hκ , ∀ uκ,vκ ∈Vκ, (20)

and let ‖ · ‖Vκ be the associated norm. It follows from Korn’s inequality (19) that the norms
‖ · ‖Hκ

1
and ‖ · ‖Vκ are equivalent on Vκ. Then (Vκ,‖ · ‖Vκ) is a real Hilbert space. Moreover, by

the Sobolev trace theorem and (20), there exists a constant c0 > 0, depending only on Ωκ, Γκ1
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and Γ3 such that

‖vκ‖L2(Γ3)d ≤ c0‖vκ‖Vκ ∀ vκ ∈Vκ. (21)

We also introduce the spaces

Wκ = {
τκ ∈ H1(Ωκ); τκ = 0 on Γκa

}
,

Wκ = {
Dκ = (Dκ

i ); Dκ
i ∈ L2(Ωκ), divDκ ∈ L2(Ωκ)

}
.

Since measΓκa > 0, the following Friedrichs-Poincaré inequality holds:

‖∇τκ‖L2(Ωκ)d ≥ cF‖τκ‖H1(Ωκ) ∀ τκ ∈Wκ, (22)

where cF > 0 is a constant which depends only on Ωκ, Γκa.

Over the space Wκ, we consider the inner product given by

(ψκ,τκ)Wκ =
∫
Ωκ

∇ψκ ·∇τκdx

and let ‖·‖Wκ be the associated norm. It follows from (22) that ‖·‖H1(Ωκ) and ‖·‖Wκ are equivalent
norms on Wκ and therefore (Wκ,‖ · ‖Wκ) is a real Hilbert space. Moreover, by the Sobolev trace
theorem, there exists a constant c0, depending only on Ωκ, Γκa and Γ3, such that

‖ζκ‖L2(Ωκ) ≤ c0‖ζκ‖Wκ ∀ ζκ ∈Wκ. (23)

The space Wκ is real Hilbert space with the inner product

(Dκ,Eκ)Wκ =
∫
Ωκ

Dκ ·Eκdx+
∫
Ωκ

divDκ ·divEκdx,

where divDκ = (Dκ
i,i), and the associated norm ‖ ·‖Wκ .

In order to simplify the notations, we define the product spaces
V =V 1 ×V 2, H = H1 ×H2, H1 = H1

1 ×H2
1,

H=H1 ×H2, Y =Y 1 ×Y 2, H1 =H1
1 ×H2

1,

W =W1 ×W2, W=W1 ×W2.

(24)

The spaces V , H, H, Y , W and W are real Hilbert spaces endowed with the canonical inner
products denoted by (·, ·)V , (·, ·)H , (·, ·)H, (·, ·)Y , (·, ·)W and (·, ·)W. The associate norms will be
denoted by ‖ ·‖V , ‖ ·‖H , ‖ ·‖H, ‖ ·‖Y , ‖ ·‖W , and ‖ ·‖W, respectively.

Finally, for any real Hilbert space X , we use the classical notation for the spaces Lp(0,T; X ),
Wk,p(0,T; X ), where 1 ≤ p ≤ ∞, k ≥ 1. We denote by C(0,T; X ) and C1(0,T; X ) the space of
continuous and continuously differentiable functions from [0,T] to X , respectively, with the
norms

‖ f ‖C(0,T;X ) = max
t∈[0,T]

‖ f (t)‖X ,

‖ f ‖C1(0,T;X ) = max
t∈[0,T]

‖ f (t)‖X + max
t∈[0,T]

‖ ḟ (t)‖X ,

respectively. Moreover, we use the dot above to indicate the derivative with respect to the time
variable and if X1 and X2 are real Hilbert spaces then X1 × X2 denotes the product Hilbert
space endowed with the canonical inner product (·, ·)X1×X2 .
In the study of the Problem P, we consider the following assumptions:
Assume the operators Aκ, Gκ, Fκ, Θκ, Eκ and βκ satisfy the following conditions (LAκ , LGκ ,
mAκ , LFκ , LΘκ , and mβκ being positive constants), with κ= 1,2.
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H(1): (a) Aκ :Ωκ×Sd →Sd

(b) |Aκ(x,ψ1)−Aκ(x,ψ2)| ≤ LAκ |ψ1 −ψ2|, for any ψ1,ψ2 ∈Sd, a.e. x ∈Ωκ.
(c) (Aκ(x,ψ1)−Aκ(x,ψ2)) · (ψ1 −ψ2)≥ mAκ |ψ1 −ψ2|2, for any ψ1,ψ2 ∈Sd, a.e. x ∈Ωκ.
(d) Aκ(·,ψ) is measurable on Ωκ, for any ψ ∈Sd.
(e) Aκ(x, .) is continuous on Sd, a.e. x ∈Ωκ.

H(2): (a) Gκ :Ωκ×Sd →Sd

(b) |Gκ(x,ψ1)−Gκ(x,ψ2)| ≤ LGκ |ψ1−ψ2| for any ψ1,ψ2 ∈Sd, a.e.x ∈Ωκ.
(c) Gκ(·,ψ) is measurable on Ωκ, for any ψ ∈Sd.
(d) Gκ(·,0) belongs to Hκ.

H(3): (a) Fκ :Ωκ×Sd ×Sd ×Rm →Sd

(b) |Fκ(x,η1,ψ1,β1)−Fκ(x,η2,ψ2,β2)|≤ LFκ
(|η1−η2|+ |ψ1 −ψ2|+ |β1 −β2|

)
for any η1,η2,ψ1,ψ2 ∈Sd,β1,β2 ∈Rm, a.e. x ∈Ωκ.

(c) Fκ(·,η,ψ,β) is measurable in Ωκ, for any η,ψ ∈Sd, β ∈Rm.
(d) Fκ(·,0,0,0) belongs to Hκ.

H(4): (a) Θκ :Ωκ×Sd ×Sd ×Rm →Sd

(b) |Θκ(x,η1,ψ1,β1)−Θκ(x,η2,ψ2,β2)| ≤ LΘκ
(|η1 −η2|+ |ψ1 −ψ2|+ |β1 −β2|

)
,

for any η1,η2,ψ1,ψ2 ∈Sd,β1,β2 ∈Rm, a.e. x ∈Ωκ.
(c) Θκ(·,η,ψ,β) is measurable on Ωκ, ∀ η,ω ∈Sd,β ∈Rm

(d) Θκ(·,0,0,0) belongs to L2(Ωκ).

H(5): (a) Eκ :Ωκ×Sd →Rd

(b) Eκ = (eκi jk), eκi jk = eκik j ∈ L∞(Ωκ), 1≤ i, j,k ≤ d.
(c) Eκσ.v=σ.(Eκ)∗v, for any σ ∈Sd, for any v ∈Rd.

H(6): (a) Bκ :Ωκ×Rd →Rd

(b) Bκ = (bκi j), bκi j = bκji ∈ L∞(Ωκ), 1≤ i, j ≤ d.
(c) BκE.E≥ mBκ |E|2, for any E= (E i) ∈Rd, a.e. x ∈Ωκ.

The normal compliance function pν and the tangential function pτ satisfy the assumptions(
Lν, Lτ and Mτ being positive constants

)
H(7): (a) pν :Γ3 ×R→R+

(b) |pν(x, r1)− pν(x, r2)| ≤ Lν|r1 − r2|, ∀ r1, r2 ∈R, a.e. x ∈Γ3.
(c) pν(·, r) is measurable on Γ3, for any r ∈R.
(d) pν(x, r)= 0, for any r ≤ 0, a.e. x ∈Γ3.

H(8): (a) pτ :Γ3 ×R→R+
(b) |pτ(x,d1)− pτ(x,d2)| ≤ Lτ|d1 −d2|, for any d1,d2 ∈R, a.e. x ∈Γ3.
(c) |pτ(x,d)| ≤ Mτ for any d ∈R, a.e. x ∈Γ3.
(d) pτ(·,d) is measurable on Γ3, for any d ∈R.
(e) pτ(·,0) ∈ L2(Γ3).

We suppose that the mass density, the forces and the traction densities satisfy
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H(9): (a) ρκ ∈ L∞(Ωκ), ∃ρ0 > 0; ρκ(x)≥ ρ0 a.e. x ∈Ωκ.
(b) g ∈ L2(Γ3), g ≥ 0 a.e. on Γ3.
(c) fκ0 ∈ L2(0,T;L2(Ωκ)d), fκ2 ∈ L2(0,T;L2(Γκ2)d).
(d) qκ0 ∈ C(0,T;L2(Ωκ)), qκ2 ∈ C(0,T;L2(Γκb)).

Also, we assume that the initial values satisfy

H(10): (a) βκ0 ∈Y κ, uκ
0 ∈Vκ, vκ0 ∈ Hκ.

(b) ω0 ∈ L2(Γ3).

We will use a modified inner product on H, given by

((u,v))H =
2∑

κ=1
(ρκuκ,vκ)Hκ , ∀ u,v ∈ H,

and let ||| · |||H be the associated norm. It follows from assumption H(9)(a), that ||| · |||H and
‖ · ‖H are equivalent norms on H, and the inclusion mapping of (V ,‖ · ‖V ) into (H, ||| · |||H) is
continuous and dense. We denote by V ′ the dual of V . Identifying H with its own dual. Then
(u,v)V ′×V = ((u,v))H , ∀ u ∈ H,∀ v ∈V .

We define three mappings f : [0,T]→V ′, q : [0,T]→W , j : V ×V ×L2(Γ3)→R respectively, by

(f(t),v)V ′×V =
2∑

κ=1

∫
Ωκ

fκ0(t) ·vκdx+
2∑

κ=1

∫
Γκ2

fκ2(t) ·vκda ∀ v ∈V , (25)

(q(t),ς)W =
2∑

κ=1

∫
Ωκ

qκ0(t)ςκdx−
2∑

κ=1

∫
Γκb

qκ2(t)ςκda ∀ ς ∈W , (26)

j(u,v,ω)=
∫
Γ3

(
pν(uν−ω− g)vν

)
da+

∫
Γ3

(
pτ(uν−ω− g)

)
‖vτ−v∗‖da. (27)

We note that conditions H(9)(b) and H(9)(c) imply

f ∈ L2(0,T;V ′), q ∈ C(0,T;W). (28)

By a standard procedure based on Green’s formula, we derive the following variational
formulation of the mechanical (4)-(18).

Problem PV. Find a displacement field u : [0,T] → V , a stress field σ : [0,T] → H, an
electric potential field ψ : [0,T] → W , a wear ω : [0,T] → L2(Γ3) a electric displacement field
D : [0,T]→W and an internal state variable field β : [0,T]→Y such that

σκ =Aκε(u̇κ)+Gκε(uκ)+(Eκ)∗∇ψκ+
∫ t

0
Fκ

(
σκ(s)−Aκε(u̇κ(s))−(Eκ)∗∇ψκ,ε(uκ(s)),βκ(s)

)
ds

in Ωκ× (0,T), (29)

β̇κ =Θκ(σκ−Aκε(u̇κ)− (Eκ)∗∇ψκ,ε(uκ),βκ
)

in Ωκ× (0,T), (30)

Dκ =Eκε(uκ)−Bκ∇ψκ in Ωκ× (0,T), (31)

(ü,v)V ′×V +
2∑

κ=1
(σκ, ε(vκ))Hκ + j(u(t),v,ω)= (f(t),v)V ′×V ∀ v ∈V , t ∈ (0,T), (32)

2∑
κ=1

(Bκ∇ψκ(t)−Eκε(uκ(t)), ∇φκ)Hκ = (q(t),φ)W , ∀ φ ∈W , t ∈ (0,T), (33)

ω̇=λ0α
∗pν(uν−ω− g) on Γ3 × (0,T), (34)
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u(0)= u0, u̇(0)= v0, β(0)=β0, ω(0)=ω0. (35)

We notice that the variational Problem PV is formulated in terms of a displacement field, a
stress field, an electrical potential field, a electric displacement field and a wear. The existence
of the unique solution to Problem PV is stated and proved in the next section.

4. Existence and Uniqueness Result
Now, we propose our existence and uniqueness result

Theorem 4.1. Assume that H(1)-H(10) hold. Then there exists a unique solution {u,β,σ,ψ,ω,D}
to Problem PV. Moreover, the solution satisfies

u ∈W1,2(0,T;V )∩C1(0,T;H), ü ∈ L2(0,T;V ′), (36)

β ∈W1,2(0,T;Y ), (37)

ψ ∈ C(0,T;W), (38)

σ ∈ L2(0,T;H), Divσ ∈ L2(0,T;V ′) (39)

D ∈ C(0,T;W). (40)

ω ∈ C1(0,T;L2(Γ3)). (41)

The functions u,β,ψ,σ,D and ω which satisfy (29)-(35) are called a weak solution to the
contact Problem P. We conclude that, under the assumptions H(1)-H(10), the mechanical
problem (4)-(18) has a unique weak solution satisfying (36)-(41). We turn now to the proof
of Theorem 4.1 which will be carried out in several steps and is based on arguments of
nonlinear equations with monotone operators, a classical existence and uniqueness result on
parabolic inequalities and fixed point arguments. We assume in what follows that assumptions
of Theorem 4.1 hold, and we consider that C is a generic positive constant which depends on
Ωκ, Aκ, Gκ, Eκ, Fκ, Γκ1, Γκ2, Γ3, pν, pτ, κ and T and may change from place to place.
Let η ∈ L2(0,T;V ′) be given. In the first step we consider the following variational problem.

Problem PVuψ
η . Find (uη,ψη) : [0,T]→V ×W such that

(üη(t),v)V ′×V +
2∑

κ=1
(Aκε(u̇κ(t)), ε(vκ))Hκ = (f(t)−η(t),v)V ′×V , ∀ v ∈V ,a.e. t ∈ (0,T), (42)

2∑
κ=1

(Bκ∇ψκ
η(t)−Eκε(uκ

η(t)),∇φκ)Hκ = (q(t),φ)W , ∀ φ ∈W a.e. t ∈ (0,T), (43)

uκ
η(0)= uκ

0, u̇κ
η(0)= vκ0 in Ωκ. (44)

We have the following result for the problem.

Lemma 4.1. There exists a unique solution (uη,ψη) of Problem PVuψ
η and it satisfies

uη ∈W1,2(0,T;V )∩C1(0,T;H), üη ∈ L2(0,T;V ′), (45)

ψη ∈ C(0,T;W). (46)

Proof. We define the operator A : V →V ′ by

(Au,v)V ′×V =
2∑

κ=1
(Aκε(uκ), ε(vκ))Hκ ∀ u,v ∈V . (47)
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We use (47) and H(1) to find that

‖Au− Av‖2
V ′ ≤

2∑
κ=1

‖Aκε(uκ)−Aκε(vκ)‖2
Hκ ∀ u,v ∈V .

Keeping in mind H(1) and Krasnoselski Theorem (see, e.g. [3, p.60]), we deduce that A : V →V ′

is a continuous, and so hemicontinuous. Now, by H(1)(c) and (47), it follows that

(Au− Av,u−v)V ′×V ≥ m‖u−v‖2
V ∀ u,v ∈V , (48)

where the positive constant m =min{mA1 ,mA2}. Choosing v= 0 in (48) we obtain

(Au,u)V ′×V ≥ m‖u‖2
V −‖Ao‖2

V ′‖u‖V

≥ 1
2

m‖u‖2
V − 1

2m
‖Ao‖2

V ′ ∀ u ∈V . (49)

Moreover, by (47) and H(1)(b) we find

‖Au‖V ′ ≤ C1‖u‖V +C2 ∀ u ∈V ,

where C1 = max{C1
A1 ,C1

A2} and C2 = max{C2
A1 ,C2

A2}. Finally, we recall that by (28) we have
f−η ∈ L2(0,T;V ′) and v0 ∈ H. Therefore, using a standard for ordinary differential equations in
abstract spaces (see, e.g. [13, Theorem 2.29]), we know there exists a unique function ϑη such
that

ϑη ∈ L2(0,T;V )∩C(0,T;H), ϑ̇η ∈ L2(0,T;V ′), (50)

ϑ̇η(t)+ Aϑη(t)= f(t)−η(t), a.e. t ∈ [0,T] (51)

ϑη(0)= v0. (52)

Let uη : [0,T]→V be the function defined by

uη(t)=
∫ t

0
ϑη(s)ds+u0 ∀ t ∈ [0,T]. (53)

It follows from (47) and (50)-(53), that uη is a solution to (42), (44), with the regularity (45).
Next, we define a bilinear form: b(·, ·) : W ×W →R such that

b(ψ,φ)=
2∑

κ=1
(βκ∇ψκ,∇φκ)Hκ ∀ ψ,φ ∈W . (54)

We use H(9) and (54) to show that the bilinear form b(·, ·) is continuous, symmetric and coercive
on W . Moreover, using (33) and the Riesz Representation Theorem we may define an element
qη : [0,T]→W such that

(qη(t),φ)W = (q(t),φ)W +
2∑

κ=1
(Eκε(uκ

η(t)),∇φκ)Hκ ∀ φ ∈W , t ∈ [0,T].

We apply the Lax-Milgram Theorem to deduce that there exists a unique element ψη(t) ∈ W
such that

b(ψη(t),φ)= (qη(t),φ)W ∀ φ ∈W . (55)

It follows from (55), that the pair (uη,ψη) is the solution to the nonlinear variational equation
(43). Let now t1, t2 ∈ [0,T], it follows from (43) that

‖ψη(t1)−ψη(t2)‖W ≤ C
(‖uη(t1)−uη(t2)‖V +‖q(t1)− q(t2)‖W

)
. (56)

Since uη ∈ C1(0,T;H) and q ∈ C(0,T;W), inequality (56) implies that ψη ∈ C(0,T;W). This
completes the proof.
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In the second step, we let µ ∈ L2(0,T,Y ) be given, and define βµ ∈W1,2(0,T,Y ) by

βµ(t)=β0 +
∫ t

0
µ(s)ds. (57)

We use (uη,ψη) obtained in Lemma 4.1, and βµ defined in (57) to construct the following Cauchy
problem for the stress field.

Problem PVσ
ηµ. Find σηµ = (σ1

ηµ,σ2
ηµ) : [0,T]→H such that

σκηµ(t)=Gκε(uκ
η(t))+

∫ t

0
Fκ(σκηµ(s),ε(uκ

η(s)),βκµ(s))ds, a.e. t ∈ (0,T), κ= 1,2. (58)

In the study of Problem PVσ
ηµ we have the following result.

Lemma 4.2. There exists a unique solution of Problem PVσ
ηµ and it satisfies σηµ ∈ L2(0,T;H).

Proof. We introduce the operator Ληµ = (Λ1
ηµ,Λ2

ηµ) : L2(0,T;H)→ L2(0,T;H) defined by

Λκ
ηµσ(t)=Gκε(uκ

η(t))+
∫ t

0
Fκ

(
σκ(s),ε(uκ

η(s)),βκµ(s)
)
ds, (59)

for all σ= (σ1,σ2) ∈ L2(0,T;H), t ∈ [0,T] and κ= 1,2. For σ1, σ2 ∈ L2(0,T;H) we use (59) and
H(3), to obtain

‖Ληµσ1(t)−Ληµσ2(t)‖H ≤max(LF1 ,LF2)
∫ t

0
‖σ1(s)−σ2(s)‖H ds

for all t ∈ [0,T]. It follows from this inequality that for p large enough, a power Λp
ηµ of the

operator Ληµ is a contraction on the Banach space L2(0,T;H) and, therefore, there exists a
unique element σηµ ∈ L2(0,T;H) such that Ληµσηµ =σηµ. Moreover, σηµ is the unique solution
of Problem PVσ

ηµ, which concludes the proof.

Lemma 4.3. Let (η1,µ1), (η2,µ2) ∈ L2(0,T;V ′×Y ) and let σi denote the functions obtained in
Lemma 4.2, for i = 1,2. Then, the following inequalities hold:

‖σ1(t)−σ2(t)‖2
H ≤ C

(
‖uη1(t)−uη2(t)‖2

V +
∫ t

0
‖uη1(s)−uη2(s)‖2

V ds

+
∫ t

0
‖βµ1(s)−βµ2(s)‖2

Y ds
)
, a.e. t ∈ (0,T). (60)

Proof. Let t ∈ [0,T]. Using (58) and the properties H(2)-H(3) of Gκ and Fκ, we find

‖σ1(t)−σ2(t)‖2
H ≤ C

(
‖uη1(t)−uη2(t)‖2

V+
∫ t

0
‖σ1(s)−σ2(s)‖2

H ds

+
∫ t

0
‖uη1(s)−uη2(s)‖2

V ds+
∫ t

0
‖βµ1(s)−βµ2(s)‖2

Y ds
)
.

Using the Gronwall’s inequality in the previous inequality we deduce the estimate (60), which
concludes the proof of Lemma 4.3.

In the third step, we use the displacement field uη obtained in Lemma 4.1. We consider the
following intial-value problem.

Problem PVω
η . Find ωη ∈ C1(0,T,L2(Γ3)) such that

ω̇η =λ0α
∗pν(uην−ωη− g), (61)
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ωη(0)=ω0. (62)

Let us now we consider the operator Lη : C(0,T,L2(Γ3))→ C(0,T,L2(Γ3)) defined by

Lηω(t)=λ0α
∗
∫ t

0
pν(uην(s)−ω(s)− g)ds+ω0, ∀ t ∈ [0,T]. (63)

Lemma 4.4. The operator Lη has a unique fixed point ωη and it satisfies

ωη ∈ C1(0,T,L2(Γ3)). (64)

Proof. Let ω1,ω2 ∈ C(0,T,L2(Γ3)) and t ∈ [0,T]. From (63) and H(7)(b), we deduce that

‖Lηω1(t)−Lηω2(t)‖2
L2(Γ3)ds ≤ C

∫ t

0
‖ω1(s)−ω2(s)‖2

L2(Γ3)ds.

By reiterating m times the previous inequality, we obtain

‖Lm
η ω1 −Lm

η ω2‖2
C(0,T;L2(Γ3)) ≤

(CT)m

m!
‖ω1 −ω2‖2

C(0,T;L2(Γ3)).

For m sufficiently large, Lm
η is a contractive operator on the Banach space C(0,T;L2(Γ3)). Thus,

from Banach’s fixed point theorem the operator Lη has a unique fixed point ωη ∈ C(0,T;L2(Γ3)),
and from H(7)(b), (45), we deduce that (64).

We now pass to the final step of the proof of Theorem 4.1 in which we use a fixed point
argument. To this end, we consider the operator:

Π : L2(0,T;V ′×Y )→ L2(0,T;V ′×Y )

defined by

Π(η,µ)= (
Π1(η,µ),Π2(η,µ)

)
(65)

with

(Π1(η,µ)(t),v)V ′×V =
2∑

κ=1

(
Gκε(uκ

η(t))+ (Eκ)∗∇ψκ
η , ε(vκ)

)
Hκ

+
2∑

κ=1

(∫ t

0
Fκ

(
σκηµ,ε(uκ

η(s)),βκµ(s)
)
ds , ε(vκ)

)
Hκ

+ j(uη(t),v,ωη), (66)

Π2(η,µ)(t)=
(
Θ1(σ1

ηµ(t),ε(u1
η(t)),β1

µ(t)
)
,Θ2(σ2

ηµ(t),ε(u2
η(t)),β2

µ(t)
))

(67)

for all v ∈V and t ∈ [0,T]. We have the following result.

Lemma 4.5. The operator Π has a unique fixed point (η∗,µ∗) ∈ L2(0,T;V ′×Y ).

Proof. Let (η1,µ1),(η2,µ2) in L2(0,T;V ′×Y ) and let t ∈ [0,T]. We use the notation ui = uηi ,
vi = u̇ηi , σi =σηiµi , and βi =βµi for i = 1,2. We use H(2), H(3), H(7), H(8) to obtain

‖Π1(η1,µ1)(t)−Π1(η2,µ2)(t)‖2
V ′

≤ C
(
‖u1(t)−u2(t)‖2

V +
∫ t

0
‖u1(s)−u2(s))‖2

V ds+‖ψ1(t)−ψ2(t)‖2
W +

∫ t

0
‖β1(s)−β2(s))‖2

Y ds
)
.

By similar arguments, from (60), (67) and H(4) it follows that

‖Π2(η1,µ1)(t)−Π2(η2,µ2)(t)‖2
Y

≤ C
(
‖u1(t)−u2(t)‖2

V +
∫ t

0
‖u1(s)−u2(s))‖2

V ds+
∫ t

0
‖β1(s)−β2(s))‖2

Y

)
.
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Consequently,

‖Π(η1,µ1)(t)−Π(η2,µ2)(t)‖2
V ′×Y ≤ C

(
‖u1(t)−u2(t)‖2

V +‖ψ1(t)−ψ2(t)‖2
W

+
∫ t

0
‖u1(s)−u2(s))‖2

V ds

+
∫ t

0
‖β1(s)−β2(s))‖2

Y ds+‖β1(t)−β2(t))‖2
Y

)
. (68)

Moreover, from (42) we obtain

(v̇1 − v̇2,v1 −v2)V ′×V +
2∑

κ=1
(Aκε(vκ1)−Aκε(vκ2),ε(vκ1 −vκ2))Hκ =−(η1 −η2,v1 −v2)V ′×V .

We integrate this equality with respect to time, use the initial conditions v1(0)= v2(0)= v0
and condition H(1)(c) to find

m
∫ t

0
‖v1(s)−v2(s))‖2

V ds≤−
∫ t

0
(η1(s)−η2(s),v1(s)−v2(s))V ′×V ds

where m =min(mA1 ,mA2). Then, using 2ab ≤ a2

δ
+δb2 we obtain∫ t

0
‖v1(s)−v2(s))‖2

V ds ≤ C
∫ t

0
‖η1(s)−η2(s)‖2

V ′ds. (69)

The definition (57) yields

‖β1(t)−β2(t)‖2
Y ≤ C

(∫ t

0
‖µ1(s)−µ2(s)‖2

Y ds
)
. (70)

Since u1 and u2 have the same initial value we get

‖u1(t)−u2(t)‖2
V ≤

∫ t

0
‖v1(s)−v2(s))‖2

V ds. (71)

We substitute (69)-(71) in (68) to obtain∥∥Π(η1,µ1)(t)−Π(η2,µ2)(t)
∥∥2

V ′×Y ≤ C
∫ t

0

∥∥(η1,µ1)(s)− (η2,µ2)(s)
∥∥2

V ′×Y ds.

Reiterating this inequality n times we obtain∥∥Πn(η1,µ1)−Πn(η2,µ2)
∥∥2

L2(0,T;V ′×Y ) ≤
CnTn

n!

∥∥(η1,µ1)− (η2,µ2)
∥∥2

L2(0,T;V ′×Y ).

Thus, for n sufficiently large, Πn is a contraction on the Banach space L2(0,T;V ′×Y ), and so Π
has a unique fixed point.

Now, we have all the ingredients to prove Theorem 4.1.

Proof. Existence. Let (η∗,µ∗) ∈ L2(0,T;V ′×Y ) be the fixed point of Π defined by (66)-(67) and
denote

u∗ = uη∗ , ψ∗ =ψη∗ , β∗ =βµ∗ , ω∗ =ωη∗ , (72)

σκ∗ =Aκε(u̇κ
η∗)+ (Eκ)∗∇ψκ

η∗ +σκη∗µ∗ , κ= 1,2, (73)

Dκ
∗ =Eκε(uκ

∗)−Bκ∇ψκ
∗, κ= 1,2. (74)

We prove {u∗,σ∗,D∗,ψ∗,β∗,ω∗} satisfies (29)-(35) and the regularities (36)-(41). Indeed, we
write (42) for η= η∗ and use (72) to find

(ü∗(t),v)V ′×V +
2∑

κ=1
(Aκε(u̇κ

∗(t)), ε(vκ))Hκ + (η∗(t),v)V ′×V
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= (f(t),v)V ′×V ∀ v ∈V ,a.e. t ∈ (0,T). (75)

Equation Π1(η∗,µ∗)= η∗ combined with (66) and (73) show that

(η∗(t),v)V ′×V =
2∑

κ=1

(
Bκε(uκ

∗(t)), ε(vκ)
)
Hκ +

2∑
κ=1

(
(Eκ)∗∇ψκ

∗, ε(vκ)
)
Hκ

+
2∑

κ=1

(∫ t

0
Fκ

(
σκ∗−Aκε(u̇κ

∗)− (Eκ)∗∇ψκ
∗,ε(uκ

∗),βκ∗
)
(s)ds , ε(vκ)

)
Hκ

+ j(ω,u∗(t),v), ∀ v ∈V . (76)

We substitute (76) in (75) and use (72)-(73) to see that (32) is satisfied. From Π2(η∗,µ∗) = µ∗

and (57) we see that (30) is satisfied. We write now (43) for η = η∗ and use (72) to find (33).
Next, (35) and the regularities (36), (37), (38) follow from Lemma 4.1, and the relation (57).
The regularity σ ∈ L2(0,T;H) follows from Lemmas 4.2, 4.3, assumptions H(1), H(3) and (73).
Finally, (32) implies that

ρκüκ
∗ =Divσκ∗+ f κ0 a.e. t ∈ [0,T], κ= 1,2

and from H(9)(a), H(9)(b) and (36) we find that (Divσ1∗,Divσ2∗) ∈ L2(0,T;V ′). We deduce that
the regularity (39) holds. Let now t1, t2 ∈ [0,T], by H(5), H(6), (22) and (74), we deduce that

‖D∗(t1)−D∗(t2)‖H ≤ C
(‖ϕ∗(t1)−ϕ∗(t2)‖W +‖u∗(t1)−u∗(t2)‖V

)
.

The regularity of u∗ and ϕ∗ given by (36) and (38) implies

D∗ ∈ C(0,T;H). (77)

For κ= 1,2, we choose φ= (φ1,φ2) with φκ ∈ D(Ωκ)d and φ3−κ = 0 in (43) and using (74) we find

divDκ
∗(t)= qκ0(t) ∀ t ∈ [0,T], κ= 1,2. (78)

Property (40) follows from H(9)(d), (77) and (78).

Uniqueness. The unique solution part of Theorem 4.1 is a consequence of the uniqueness of the
fixed point of the operator Π defined by (65)-(67) and the unique solvability of the Problems
PVuψ

η , PVσ
ηµ and PVω

η , which completes the proof.

Conclusion
We presented a mathematical models for the frictional contact problem between two elastic-
viscoplastic piezoelectric bodies with internal state variables. The contact is modelled with
normal compliance and wear. We establish a variational formulation for the model and we
prove the existence of a unique weak solution to the problem. The proof is based on a classical
existence and uniqueness result on parabolic equalities, differential equations and fixed point
argument.
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