
Communications in Mathematics and Applications
Volume 3 (2012), Number 1, pp. 39–50

© RGN Publications
http://www.rgnpublications.com

Asymmetric Hölder Spaces of Sign Sensitive

Weighted Integrable Functions⋆

Miguel A. Jiménez-Pozo and José M. Hernández-Morales

Abstract. We consider the space L(u, v) of 2π-periodic real-valued functions

which are integrable with respect to a sign sensitive weight (u, v). With some

necessary hypothesis for this weight, L(u, v) is an asymmetric Banach space. After

defining a convenient modulus of smoothness we introduce the corresponding

space Lipα(u, v) and its subspace lipα(u, v) of Hölder (or Lipschitz) functions

associated to this modulus. We prove these spaces are asymmetric Banach spaces

too and use the result to study approximation problems.

1. Introduction

Consider the space E = L (w) of 2π-periodic real-valued (classes of) functions

which are integrable with respect to a weight w ∈ C2π, w ≥ 0 a.e., and the

normalized Lebesgue measure d x in T= [0,2π). With the norm

‖ f ‖w =

∫

| f w|(x)d x ,

this is a classical Banach space. But there are practical problems in which the

weights depend on the signs of the functions. Let us go in.

Suppose w = (u, v), u, v ∈ C2π, u, v ≥ 0 a.e. Set

‖ f ‖u,v =

∫

(u(x) f +(x) + v(x) f −(x))d x , (1.1)

where

f + =
| f |+ f

2
and f − =

| f | − f

2
,

are the positive and negative parts of f . Then the functional ρ = ‖ · ‖u,v satisfies

the following
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Properties.

(i) ρ( f ) = 0 if and only if f = 0.

(ii) ∀ f , g,ρ( f + g)≤ ρ( f ) +ρ(g). (1.2)

(iii) ∀ f ∀λ ∈ R+, ρ(λ f ) = λρ( f ).

But perhaps there exists f such that

ρ(− f ) 6= ρ( f ). (1.3)

Set E = L(u, v) to be the functions f for which ‖ f ‖u,v <∞. Under the general

conditions above we can only assert that E is a certain cone. But even in case

of obtaining a vector space the functional ρ might not be a norm due to the

asymmetric property (1.3).

Positive homogeneous and sub-additive functionals defined by properties (i)-

(iii) were early considered in the Russian literature by M.G. Krein (see the

comments and notes in [18]). They have been extended to introduce quasi-metric

spaces or more general quasi-uniform topological spaces. In Künzi [19], the author

claims that there was much progress in quasi-uniform spaces between the years

1966 and 1982. This time is just when different authors introduced the main steps

in asymmetric approximation.

In fact, one of the first asymmetric approximation problems was presented

by Moursund [22] in 1966. Since this was the origin of studying approximation

problems with the asymmetric property (1.3), we briefly review the idea. Given

a compact set X ⊂ R with at least n + 1 points, (ϕi)1≤i≤n a Haar system on the

convex hull of X , p(x) =
∑n

i=1
ai ϕi(x) a generalized polynomial and f ∈ C(X ),

Moursund considered a general weight W (x , y) defined on X × (−∞,∞) with

values in [−∞,∞] such that

(i) For each x ∈ X , W
�

x , y
�

is a monotone non-decreasing function of y .

(ii) sgnW (x , y) = sgn y.

(iii) lim
|x |→∞
|W (x , y)|=∞.

Then p is said to approximate f if

sup
x
|W (x , p(x)− f (x))|<∞

and p is called the best approximation to f if

∀ q ∈ Pn, sup
x
|W (x , p(x)− f (x))| ≤ sup

x
|W (x ,q(x)− f (x))|.

Examples included in this general setting are Chebyshev or uniform norm with

W (x , y) = y; one-sided Chebyshev approximation with W(x , y) = y for y ≤ 0

or +∞ for y > 0; uniform approximation and interpolation at x1, x2, . . . , xm, with

W (x , y) = +∞ if x = x1, x2, . . . , xm, and y > 0, = −∞ if x = x1, x2, . . . , xm, and

y < 0; y otherwise; an asymmetric approximation with W (x , y) = y2 if y > 0, or

y if y ≤ 0.
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The Moursund paper was followed by a series of papers of the same author and

other mathematicians. We shall mention [7] that contains a long list of references.

Independently by Krein and Nudel’man [18] in 1973, where they considered a

functional ρ on C[a, b] given by

ρ( f ) = sup(u(x) f +(x) + v(x) f −(x)), (1.4)

u, v, f ∈ C[a, b], u, v fixed and strictly positive. Since u acts on the positive part f +

of f and v on its negative part f −, the pair (u, v) was called later a sign sensitive

weight (see the survey paper [8] and the long list of references quoted there).

The uniqueness of the best polynomial approximation in this asymmetric

uniform normed space can be obtained as a consequence of a generalized

alternation Chebyshev theorem firstly considered also by Moursund. It is

interesting to mention this general alternation theorem was independently

stated and proved in [10] for clarifying an application of the Karush-Kuhn-

Tucker theorem to a problem that arises in the petroleum industry [9]. A very

complete paper dedicated to uniqueness of best uniform approximation by positive

homogeneous functionals can be found in [23].

Although the main efforts concern to uniform approximation with constraints,

sign sensitive weights also appear in dealing with weighted integration as

introduced in (1.1). Early papers in that direction correspond to Babenko, see

[3], for instance. Other references deal with the study of different inequalities in

asymmetric norms by Kozko [16] and [17], or contribution to the existence of

elements of best asymmetric approximation by Simonov [24], among others.

At present, motivated not only by its own theoretical interest and its applications

to Approximation Theory, but also applications to Computer Sciences, there exists

a large theory on abstract asymmetric spaces, and more general on quasi-metric

spaces. In this general case a quasi-metric d is a function d : X ×X → R+, such that

together with the triangular inequality satisfies

d(x , y) = d(y, x) = 0 if and only if x = y.

This general condition is important for applications in Computer Sciences. We

remark that notations and definitions are not yet unanimous in the literature.

Several references are [1], [2], [21] and [25], wherein the reader may find

references or direct treatments on how to extend or interpret concepts and results

such as theorems of Hahn-Banach type, duality theory and weak topologies,

Chebyshev sets, fixed point theorems, compactness, applications of the theory, and

others.

Although a general setting is important due to its applications, here we shall

restrict ourselves to functionals ρ defined on linear spaces E that together with

properties (i) and (iii) also satisfy

(ii′) ∃ µ≥ 1 ∀ f , g,ρ( f + g)≤ µ(ρ( f ) +ρ(g)),
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which is somewhat more general than (1.2). But that also are restricted by

(iv) ∃ λ ≥ 1 ∀ f ∈ E, ρ(− f )≤ λρ( f ). (1.5)

We shall call such a functional an asymmetric norm and the pair (E,ρ) an

asymmetric normed space. For instance, under certain conditions the functionals

given in (1.1) and (1.4) are asymmetric norms. Concepts as subspaces, Banach,

Cauchy sequences, and so on, have the same interpretation in this setting than

in the usual theory of normed spaces. The importance of considering this class of

spaces (and not the most general asymmetric ones for which (1.5) is not assumed)

is that many well known results from usual normed spaces can be easily extended

with only small changes to these asymmetric normed spaces.

The goal of this paper is to prove the Hölder spaces of weighted integrable

functions defined in next section by means of sign sensitive weights are asymmetric

Banach spaces in the sense just defined above. This is accomplished in section 3.

With this result in hands, we can directly characterize the convergent sequences in

these spaces.

2. Hölder spaces

The literature on Hölder —or what is the same, Lipschitz— functions (even

restricted to approximation problems) is very extensive. The early evolution of the

subject can be followed in the survey paper [5].

Given a homogeneous Banach space H of measurable periodic functions as

defined in Katznelson [15], f ∈ H, δ > 0, 0< α < 1, we define successively

θα( f ,δ)H = sup
0<|t |≤δ≤π

‖∆t f ‖H

|t|α
,

where (∆t f )(x) = ft(x)− f (x) and ft(x) = f (x + t),

θα( f )H = sup
δ>0

θα( f ,δ)H = θα( f ,π)H ,

Lipα(H) = { f ∈ H : θα( f )H <∞},

lipα(H) = { f ∈ Lipα(H) : θα( f ,δ)H → 0 as δ→ 0}.

With the norm

‖ f ‖Lipα(H)
= ‖ f ‖H + θα( f )H ,

or an equivalent one, we obtain that Lipα(H) is a Banach space and lipα(H) is a

homogeneous Banach space.

Different Hölder approximation problems have been successfully studied in this

context. See for instance [4], [5], [6], [14], [20], among others. But L(w) is not a

homogeneous Banach space because the translation of functions is not defined in

this space. To remedy this situation, for any f ∈ L(w) we have introduced in [13]

the definition

(∆t f )w =∆t( f w).
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This kind of translation coincides with the typical one in case w = 1. Thus it is

an extension of the case in L1
2π.

If f ∈ L(w), δ > 0, and 0< α < 1, define

θα( f ,δ)w = θα( f ,δ)L(w) = sup
0<|t |≤δ≤π

‖(∆t f )w‖L1
2π

|t|α
.

Observe that for each δ > 0, the functional θα(·,δ)w is a seminorm on L(w);

for each fixed f ∈ L(w), the function θα( f , ·)w is an increasing function; and

θα( f ,δ)w = θα( f w,δ)L1
2π

.

Further, following in a natural way the scheme introduced above for

homogeneous spaces, define θα( f )w , Lipα(w), lipα(w), and the norm ‖ f ‖Lipα(w)
=

‖ f ‖w + θα( f )w. In [13], we have studied several approximation problems in

lipα(w), under the natural assumption that w is a smooth function.

Now let us come back to the functional ‖ · ‖u,v defined in (1.1) and to the cone

L(u, v). To get a linear space one needs that − f ∈ L(u, v) whenever f ∈ L(u, v).

That is ‖ − f ‖u,v < ∞. It is not hard to prove we reach this inference with the

following not so restrictive assumption:

There exists a measurable function ω, and numbers A, B, such that

0< A≤ω ≤ B, and u =ωv a.e. (2.1)

In fact with this assumption, for every measurable function g,

‖g‖u ≤ B‖g‖v , ‖g‖v ≤ (1/A)‖g‖u.

Thus the Banach spaces L1 (u) and L1 (v) are boundedly equivalent. Moreover, we

have proved in [13] that for every

f ∈ L(u, v), min(1,A)‖ f ‖v ≤ ‖ f ‖u,v ≤max(1, B)‖ f ‖v .

With these inequalities in hand, it easily follows that

∀ f ∈ L(u, v),‖− f ‖u,v ≤max(1/A, B)‖ f ‖u,v . (2.2)

Then (L(u, v),‖ · ‖u,v) is an asymmetric Banach space.

From now on together with (2.1) and a fixed 0 < α < 1, we shall also suppose

the stronger hypothesis u, v,ω ∈ lipα(C2π). These hypothesis of smoothness could

be deleted in different proofs, but any Hölder space with rich properties always

deals with relatively soft functions.

Observe that

( f +)t(x) =
| f |+ f

2
(x + t) =

| f |(x + t) + f (x + t)

2
= ( ft)

+(x),

and similar equalities hold for the negative part of the function f . Thus without

any confusion

f +
t
= ( f +)t = ( ft)

+ and f −
t
= ( f −)t = ( ft)

−.



44 Miguel A. Jiménez-Pozo and José M. Hernández-Morales

Define

∆t( f )u,v = ( f
+
t

ut − f −
t

vt)− ( f
+u− f −v) = f +

t
ut − f −

t
vt − f +u+ f −v, (2.3)

and

θα( f ,δ)u,v = sup
0<|t |≤δ≤π

‖∆t( f )u,v‖1

|t|α
. (2.4)

Then, as before we did it, define in a natural way θα( f )u,v, Lipα(u, v), lipα(u, v),

and the functional

‖ f ‖Lipα(u,v) = ‖ f ‖u,v + θα( f )u,v.

If u= v = w, these definitions are consistent in the sense that

∆t( f )u,v =∆t( f )w , θα( f ,δ)u,v = θα( f ,δ)w , Lipα(u, v) = Lipα(w).

The main goal of this paper is to prove the pair (Lipα(u, v),‖ · ‖Lipα(u,v))

is an asymmetric Banach space. Further we shall use this result in studying

approximation problems in l ipα(u, v).

3. The space Lipα(u, v)

We shall need some auxiliary results. For any real t 6= 0 and ∆t(·)u,v as

introduced in (2.3), define the functional St : L(u, v)→ R, by

St( f ) =

∫

T

|∆t( f )u,v(x)|d x . (3.1)

Also set

C1 =max

�

B,
1

A

�

, C2 =min

�

A,
1

B

�

and C3 =

�

1+
1

A2

�

,

where A and B are the bounds introduced in (2.1) and the value of C1 already

appeared in (2.2).

Lemma 3.1. For any f , g ∈ L(u, v) and real γ, the functional St satisfies the

inequalities

(i) St(γ f )≤ |γ|C1St( f ) + C3|γ| ‖ f ‖u,v‖ωt −ω‖∞.

(ii) St( f + g) ≤
(1+ C1)

(1+ C2)
(St( f ) + St(g)) +

2C3

1+ C2

(‖ f ‖u,v + ‖g‖u,v)‖ωt −ω‖∞.

Proof. We begin by expressing the interval T=[0,2π) as the union of the sets

A1(h) = {(h
+
t
> 0 ∧ h− > 0)∨ (h+

t
> 0 ∧ h= 0)}

A2(h) = {(h
−
t
> 0 ∧ h− > 0)∨ (h−

t
> 0 ∧ h= 0)}

A3(h) = {(h
+
t
> 0 ∧ h+ > 0)∨ (h+ > 0 ∧ ht = 0)}

A4(h) = {(h
−
t
> 0 ∧ h+ > 0)∨ (h− > 0 ∧ ht = 0)}

A5(h) = {h= 0 ∧ ht = 0}
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where ∧ and ∨ have the usual logical meanings and h is any real measurable

function on the given interval.

Of course (i) is true whenever γ≥ 0. While for γ < 0 one has

St(γ f ) = |γ|St(− f ).

Now we shall present a detailed estimation of St(− f ) for showing the procedure

of proof. A development of (2.3) proves the expression

∆t(− f )(u,v) = − f +
t

ut

1

ωt

+ f −
t

vtωt + f +u
1

ω
− f −vω, (3.2)

while

St(− f ) =

4
∑

i=1

∫

Ai( f )

|∆t(− f )(u,v)(x)|d x .

We shall use the restrictions of (3.2) to the sets Ai( f ), 1≤ i ≤ 4, for estimating the

corresponding integrals.

For every x ∈ A1( f ),

|∆t(− f )(u,v)(x)|= f +
t

ut

1

ωt

(x) + f −vω(x),

and

|∆t( f )(u,v)(x)|= f +
t

ut(x) + f −v(x).

Thus
∫

A1( f )

|∆t(− f )(u,v)(x)|d x ≤ (1/A)

∫

A1( f )

f +
t

ut(x)d x + B

∫

A1( f )

f −v(x)d x

≤ C1

∫

A1( f )

|∆t( f )(u,v)(x)|d x .

A very similar proof gives

∫

A4( f )

|∆t(− f )(u,v)(x)|d x ≤ C1

∫

A4( f )

|∆t( f )(u,v)(x)|d x ,

in the case h−
t
> 0 and h+ > 0. While this inequality is trivial if h− > 0 and ht = 0.

On A2( f ), for every x in the set,

∆t(− f )(u,v)(x) = f −
t

vtωt(x)− f −vω(x),

and

∆t(− f )(u,v)(x) = | f
−
t

vt(x)− f −v(x)| .
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Thus, introducing the null term f −
t

vtω(x)− f −
t

vtω(x),

∫

A2( f )

|∆t(− f )(u,v)(x)|d x

≤

∫

A2( f )

(| f −
t

vt(ωt −ω)|+ | f
−
t

vt − f −v|ω)(x)d x

≤ C1

∫

A2( f )

|∆t( f )(u,v)(x)|d x + ‖ f ‖ω‖ωt −ω‖∞.

For every x ∈ A3( f ), at which f +
t
6= 0,

|∆t(− f )(u,v)(x)|=

�

�

�

�

f +
t

ut

1

ωt

(x)− f +u
1

ω
(x)

�

�

�

�

and

|∆t( f )(u,v)(x)|= | f
+
t

ut(x)− f +u(x)|.

Introducing the null term f +
t

ut
1

ω
(x)− f +

t
ut

1

ω
(x), one get

∫

A3( f )

|∆t(− f )(u,v)(x)|d x

≤

∫

A3( f )

�

f +
t

ut(x)

�

�

�

�

wt − w

wt w
(x)

�

�

�

�

+ |∆t( f )(u,v)(x)|
1

w
(x)

�

d x .

From which
∫

A3( f )

|∆t(− f )(u,v)(x)|d x

≤ C1

∫

A3( f )

|∆t( f )(u,v)(x)|d x + C3‖ f ‖ω‖ωt −ω‖∞,

that is also true if f +
t
= 0.

Then summing

St(− f )≤ C1St( f ) + C3‖ f ‖L(u,v)‖ωt −ω‖∞,

and so we complete the proof of (i).

For the proof of part (ii), we must estimate the four integrals in the right hand

of
∫

T

|∆t( f + g)(u,v)(x)|d x =

4
∑

i=1

∫

Ai( f +g)

|∆t( f + g)(u,v)(x)|d x .

To do it, we observe that for any two functions p and q, one has

(p+ q)+ = p+ + q+ − p− − q− + (p+ q)−,
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and now we follow the same procedure showed in part (i). By this way we obtain

(1+ C2)

∫

A1( f+g)

|∆t( f + g)(u,v)(x)|d x

≤

∫

A1( f +g)

|∆t( f )(u,v)(x)|d x +

∫

A1( f+g)

|∆t(g)(u,v)(x)|d x

+

∫

A1( f +g)

|∆t(− f )(u,v)(x)|d x +

∫

A1( f +g)

|∆t(−g)(u,v)(x)|d x

+

∫

A1( f +g)

|( f + g)+
t

ut

�

1

ωt

−
1

ω

�

(x)|d x ,

(1+ C2)

∫

A2( f+g)

|∆t( f + g)(u,v)(x)|d x

≤

∫

A2( f +g)

|∆t( f )(u,v)(x)|d x +

∫

A1( f+g)

|∆t(g)(u,v)(x)|d x

+

∫

A2( f +g)

|∆t(− f )(u,v)(x)|d x +

∫

A2( f +g)

|∆t(−g)(u,v)(x)|d x

+

∫

A2( f +g)

|( f + g)−
t

vt(wt −w)(x)|d x ,

(1+ C2)

∫

A3( f+g)

|∆t( f + g)(u,v)(x)|d x

≤

∫

A3( f+g)

|∆t( f )(u,v)(x)|d x +

∫

A3( f +g)

|∆t(g)(u,v)(x)|d x

+

∫

A3( f+g)

|∆t(− f )(u,v)(x)|d x +

∫

A3( f+g)

|∆t(−g)(u,v)(x)|d x

+

∫

A3( f+g)

|( f + g)+
t

ut

�

1

ωt

−
1

ω

�

(x)|d x ,

(1+ C2)

∫

A4( f+g)

|∆t( f + g)(u,v)(x)|d x

≤

∫

A4( f +g)

|∆t( f )(u,v)(x)|d x +

∫

A4( f+g)

|∆t(g)(u,v)(x)|d x

+

∫

A4( f +g)

|∆t(− f )(u,v)(x)|d x +

∫

A4( f +g)

|∆t(−g)(u,v)(x)|d x

+

∫

A4( f +g)

|( f + g)−
t

vt(ωt −ω)(x)|d x .

Summing these inequalities, we get (ii) of the lemma. �
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Lemma 3.2. For any f , g ∈ L(u, v), real γ, δ > 0, and 0< α < 1,

θα(γ f ,δ)u,v ≤ |γ|C1θα( f ,δ)u,v + C3|γ|‖ f ‖u,v
θα(ω,δ)C2π

,

θα( f + g,δ)u,v ≤
(1+ C1)

(1+ C2)
(θα( f ,δ)u,v + θα(g,δ)u,v)

+
2C3

1+ C2

(‖ f ‖u,v + ‖g‖u,v)θα(ω,δ)C2π
.

Proof. It easily follows from definition (2.4) and the lemma above. �

Taking sup for δ in these inequalities we also get the bounds

θα(γ f )u,v ≤ |γ|C1θα( f )u,v + C3|γ|‖ f ‖u,vθα(ω)C2π
,

θα( f + g)u,v ≤
(1+ C1)

(1+ C2)
(θα( f )u,v + θα(g)u,v)

+
2C3

1+ C2

(‖ f ‖u,v + ‖g‖u,v)θα(ω)C2π
.

Theorem 3.3. The pair (Lipα(u, v),‖ · ‖Lipα(u,v)) is an asymmetric Banach space and

lipα(u, v) is a closed subspace.

Proof.

‖γ f ‖Lipα(u,v) = ‖γ f ‖u,v + θα(γ f )u,v

≤ C1|γ|‖ f ‖u,v + |γ|C1θα( f )u,v + C3|γ|‖ f ‖u,vθα(ω)C2π

= (C1 + C3θα(ω)C2π
)|γ|‖ f ‖u,v + |γ|C1θα( f )u,v

≤ C4|γ|(‖ f ‖u,v + θα( f )u,v) = C4|γ|‖ f ‖Lip(u,v)(T)
,

where C4 = C1 + C3θα(ω)C2π
.

‖ f + g‖Lip(u,v)(T)
= ‖ f + g‖u,v + θα( f + g)u,v ≤ ‖ f ‖u,v + ‖g‖u,v

+
(1+ C1)

(1+ C2)
(θα( f )u,v + θα(g)u,v)

+
2C3

1+ C2

(‖ f ‖u,v + ‖g‖u,v)θα(ω)C2π

=

�

1+
2C3

1+ C2

θα(ω)C2π

�

(‖ f ‖u,v + ‖g‖u,v)

+
(1+ C1)

(1+ C2)
(θα( f )u,v + θα(g)u,v)

≤ C5(‖ f ‖u,v + ‖g‖u,v + θα( f )u,v + θα(g)u,v)

= C5(‖ f ‖Lip(u,v)(T)
+ ‖g‖Lip(u,v)(T)

),

where C5 =max
�

1+
2C3

1+C2

θα(w)C2π
,

1+C1

1+C2

�

.

These inequalities prove Lipα(u, v) is a linear space and ‖ · ‖Lipα(u,v) is an

asymmetric norm on it. The proofs of the completeness of Lipα(u, v) and l ipα(u, v)

follow classical schemes and will be omitted. �
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The knowledge that Lipα(u, v) is an asymmetric Banach space wherein lipα(u, v)

is a closed subspace, let us in a position of characterize the convergent sequences in

this last subspace.

Definition 3.4. A non-empty set G of functions in Lipα(u, v) is called

0-equicontinuous (or equilipchitzian) if

θα(G,δ) := sup{θα(g,δ)u,v : g ∈ G} → 0 as δ→ 0.

A sequence ( fn) in Lipα(u, v) is called 0-equicontinuous if the set { fn, n ∈ N} is.

Remark 3.5. Of course any 0-equicontinuous set in Lipα(u, v) lies in lipα(u, v).

Theorem 3.6. Let ( fn) be a sequence in lipα(u, v) and f ∈ L(u, v). Then the following

conditions are equivalent:

(i) f ∈ lipα(u, v) and ‖ fn − f ‖Lipα(u,v)→ 0.

(ii) ( fn) is 0-equicontinuous and ‖ fn − f ‖u,v → 0.

Proof. With minor modifications we can adapt the proofs sketched in [11] and

completely developed in [12] to a similar result for linear metric spaces instead

L(u, v) and families of semi-norms instead θα(·,δ)u,v, δ > 0. �
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