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1. Introduction
Let N be the set of natural numbers, R be the set of real numbers and C be the set of complex
numbers. Let A be the family of normalized functions that have the form

g(z)= z+
∞∑
j=2

d j z j, (1.1)
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which are holomorphic in D = {z ∈ C : |z| < 1} and let S be the collection of all members of A
that are univalent in D. It is well-known (see [5]) that every function g ∈ S has an inverse g−1

satisfying z = g−1(g(z)), z ∈D and ω= g(g−1(ω)), |ω| < r0(g), r0(g)≥ 1/4, where

g−1(ω)= f (ω)=ω−d2ω
2 + (2d2

2 −d3)ω3 − (5d3
2 −5d2d3 +d4)ω4 + . . . . (1.2)

A member g of A is said to be bi-univalent in D if both g and g−1 are univalent in D. We
denote the family of bi-univalent functions that have the form (1.1), by

∑
. For detailed study

and various subfamilies of the family
∑

, one can refer the works of [2], [4], [8], [11] and [14].
We recall the principle of subordination between two holomorphic functions g(z) and f (z)

in D. It is known that g(z) is subordinate to f (z), written as g(z) ≺ f (z), z ∈D, if there is a
ψ(z) holomorphic in D, with ψ(0)= 0 and |ψ(z)| < 1, z ∈D, such that g(z)= f (ψ(z)). Moreover,
g(z)≺ f (z) is equivalent to g(0)= f (0) and g(D)⊂ f (D), if f is univalent in D.

Let m(x) and n(x) be polynomials with real coefficients. The (m,n)-Lucas polynomials
L j(m(x),n(x), x) or briefly L j(x) are given by the following recurrence relation (see [10]):

L j(x)= m(x)L j−1(x)+n(x)L j−2(x), L0(x)= 2, L1(x)= m(x), (1.3)

where j ∈N− {1}. It is clear from (1.3) that L2(x)= m2(x)+2n(x), L3(x)= m3(x)+3m(x)n(x). The
generating function of the (m,n)-Lucas polynomial sequence L j(x) is given by

G(x, z) :=
∞∑
j=0

L j(x)z j = 2−m(x)z
1−m(x)z−n(x)z2 . (1.4)

Note that for particular chioces of m(x) and n(x), the (m,n)-Lucas polynomial L j(x) leads
to various polynomials, among those we list following few here (see, for more details [3]):
(i) L j(x,1, x)=L j(x), the Lucas polynomials, (ii) L j(2x,1, x)= P j(x), the Pell-Lucas polynomials,
(iii) L j(1,2x, x)= J j(x), the Jacobsthal polynomials, (iv) L j(3x,−2, x)= F j(x), the Fermat-Lucas
polynomials, (v) L j(2x,−1, x)= T j(x), the first kind Chebyshev polynomials.

In literature, the coefficient estimates and celebrated Fekete-Szegö inequality are found for
bi-univalent functions associated with certain polynomials like the Chebyshev polynomials, the
(m,n)-Lucas polynomials. We also note that the above polynomials and other special polynomials
are potentially important in the mathematical, physical, statistical and engineering sciences.
More details associated with these polynomials can be found in [1], [7], [9], [12] and [16].

For g ∈A, k ∈N∪ {0}, Sălăgean differential operator [13] Dk :A→A, is defined by

D0 g(z)= g(z), D1 g(z)= zg′(z), . . . ,Dk g(z)= D(Dk−1 g(z)), z ∈D.

It is easy to see that if g ∈A and g(z)= z+
∞∑
j=2

d j z j , then Dk g(z)= z+
∞∑
j=2

jkd j z j , z ∈D.

Inspired by recent trends on bi-univalent functions and motivated by the paper [15], we
define the following special families of

∑
by making use of the (m,n)-Lucas polynomials, which

are given by the recurrence relation (1.3) and the generating function (1.4).

Definition 1.1. A function g(z) in
∑

of the form (1.1) is said to be in the family S∑(x,γ,µ,k),
0≤ γ≤ 1, µ≥ 0, µ≥ γ and k ∈N∪ {0}, if

z(Dk g(z))′+µz2(Dk g(z))′′

(1−γ)Dk g(z)+γz(Dk g(z))′
≺G(x, z)−1, z ∈D
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and
ω(Dk f (ω))′+µω2(Dk f (ω))′′

(1−γ)Dk f (ω)+γω(Dk f (ω))′
≺G(x,ω)−1, ω ∈D,

where f (ω)= g−1(ω) is as in (1.2) and G is as in (1.4).

Definition 1.2. A function g(z) in
∑

of the form (1.1) is said to be in the family M∑(x,γ,µ,k),
0≤ γ≤ 1, µ≥ 0, µ≥ γ and k ∈N∪ {0}, if

z(Dk g(z))′+µz2(Dk g(z))′′

(1−γ)z+γz(Dk g(z))′
≺G(x, z)−1, z ∈D

and
ω(Dk f (ω))′+µω2(Dk f (ω))′′

(1−γ)ω+γω(Dk f (ω))′
≺G(x,ω)−1, ω ∈D,

where f (ω)= g−1(ω) is as in (1.2) and G is as in (1.4).

Definition 1.3. A function g(z) in
∑

of the form (1.1) is said to be in the family B∑(x,ξ,τ,k),
ξ≥ 1, τ≥ 1 and k ∈N∪ {0}, if

(1−ξ)+ξ[(z(Dk g(z))′)′]τ

(Dk g(z))′
≺G(x, z)−1, z ∈D

and
(1−ξ)+ξ[(ω(Dk f (ω))′)′]τ

(Dk f (ω))′
≺G(x,ω)−1, ω ∈D,

where f (ω)= g−1(ω) is as in (1.2) and G is as in (1.4).

For functions belonging to these newly defined families S∑(x,γ,µ,k), M∑(x,γ,µ,k) and
B∑(x,ξ,τ,k), we derive the estimates for the coefficients |d2| and |d3| and also, we consider the
celebrated Fekete-Szegö problem [6] in Section 2.

2. Coefficient Estimates and Fekete-Szegö Inequality

Theorem 2.1. Let 0 ≤ γ ≤ 1, µ ≥ 0, µ ≥ γ, k ∈ N∪ {0} and g(z) = z+
∞∑
j=2

d j z j be in the family

S∑(x,γ,µ,k). Then

|d2| ≤ |m(x)|
√
|m(x)|

2k
√

2|µ(2µ−γ)m2(x)+ (1−γ+2µ)2n(x)|
, (2.1)

|d3| ≤ 1
3k

[
m2(x)

(1−γ+2µ)2 + |m(x)|
2(1−γ+3µ)

]
(2.2)

and for δ ∈R

|d3 −δd2
2| ≤


|m(x)|

2(3k)(1−γ+3µ)
;

∣∣∣∣1− 3kδ

22k

∣∣∣∣≤ J

|m(x)|3
∣∣∣1− 3kδ

22k

∣∣∣
2(3k)|µ(2µ−γ)m2(x)+ (1−γ+2µ)2n(x)| ;

∣∣∣∣1− 3kδ

22k

∣∣∣∣≥ J,

(2.3)
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where

J = 1
(1−γ+3µ)

∣∣∣∣µ(2µ−γ)+ (1−γ+2µ)2
(

n(x)
m2(x)

)∣∣∣∣ . (2.4)

Proof. Let g(z) ∈S∑(x,γ,µ,k). Then, for two holomorphic functions r and s such that r(0) =
s(0)= 0, |r(z)| < 1 and |s(ω)| < 1, z,ω ∈D, and using Definition 1.1, we can write

z(Dk g(z))′+µz2(Dk g(z))′′

(1−γ)Dk g(z)+γz(Dk g(z))′
=G(x, r(z))−1

and
ω(Dk f (ω))′+µω2(Dk f (ω))′′

(1−γ)Dk f (ω)+γω(Dk f (ω))′
=G(x, s(ω))−1

or, equivalently
z(Dk g(z))′+µz2(Dk g(z))′′

(1−γ)Dk g(z)+γz(Dk g(z))′
=−1+L0(x)+L1(x)r(z)+L2(x)r2(z)+ . . . (2.5)

and
ω(Dk f (ω))′+µω2(Dk f (ω))′′

(1−γ)Dk f (ω)+γω(Dk f (ω))′
=−1+L0(x)+L1(x)s(ω)+L2(x)s2(ω)+ . . . . (2.6)

From (2.5) and (2.6), in view of (1.3), we obtain
z(Dk g(z))′+µz2(Dk g(z))′′

(1−γ)Dk g(z)+γz(Dk(z))′
= 1+L1(x)r1z+ [L1(x)r2 +L2(x)r2

1]z2 + . . . (2.7)

and
ω(Dk f (ω))′+µω2(Dk f (ω))′′

(1−γ)Dk f (ω)+γω(Dk f (ω))′
= 1+L1(x)s1ω+ [L1(x)s2 +L2(x)s2

1]ω2 + . . . . (2.8)

It is well known that if |r(z)| = |r1z+ r2z2+ r3z3+ . . . | < 1, z ∈D and |s(ω)| = |s1ω+ s2ω
2+ s3ω

3+
. . . | < 1, ω ∈D, then

|r i| ≤ 1 and |si| ≤ 1 (i ∈N). (2.9)

Comparing the corresponding coefficients in (2.7) and (2.8), we have

2k(1−γ+2µ)d2 = L1(x)r1 , (2.10)

2(3k)(1−γ+3µ)d3 −22k(1+γ)(1−γ+2µ)d2
2 = L1(x)r2 +L2(x)r2

1 , (2.11)

−2k(1−γ+2µ)d2 = L1(x)s1 , (2.12)

−2(3k)(1−γ+3µ)d3 +22k(γ2 − (4+2µ)γ+3+10µ)d2
2 = L1(x)s2 +L2(x)s2

1 . (2.13)

From (2.10) and (2.12), we can easily see that

r1 =−s1 (2.14)

and also

22k+1(1−γ+2µ)2d2
2 = (r2

1 + s2
1)(L1(x))2. (2.15)

If we add (2.11) and (2.13), then we obtain

22k+1((1−γ)(1−γ+2µ)+2µ)d2
2 = L1(x)(r2 + s2)+L2(x)(r2

1 + s2
1). (2.16)
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Substituting the value of (r2
1 + s2

1) from (2.15) in (2.16), we get

d2
2 =

(L1(x))3(r2 + s2)
22k+1[((1−γ)(1−γ+2µ)+2µ)(L1(x))2 − (1−γ+2µ)2L2(x)]

, (2.17)

which yields (2.1), on using (2.9).
Using (2.14) in the subtraction of (2.13) from (2.11), we obtain

d3 = 22k

3k d2
2 +

L1(x)(r2 − s2)
4(3k)(1−γ+3µ)

. (2.18)

Then in view of (2.15), (2.18) becomes

d3 =
(L1(x))2(r2

1 + s2
1)

2(3k)(1−γ+2µ)2 + L1(x)(r2 − s2)
4(3k)(1−γ+3µ)

,

which yields (2.2), on using (2.9).
From (2.17) and (2.18), for δ ∈R, we get

|d3 −δd2
2| = |m(x)|

∣∣∣∣(T(δ, x)+ 1
4(3k)(1−γ+3µ)

)
r2 +

(
T(δ, x)− 1

4(3k)(1−γ+3µ)

)
s2

∣∣∣∣ ,

where

T(δ, x)=
(

22k

3k −δ
)
m2(x)

22k+2[µ(γ−2µ)m2(x)+ (1−γ+2µ)2n(x)]
.

In view of (1.3), we conclude that

|d3 −δd2
2| ≤


|m(x)|

2(3k)(1−γ+3µ)
; 0≤ |T(δ, x)| ≤ 1

4(3k)(1−γ+3µ)

2|m(x)| |T(δ, x)| ; |T(δ, x)| ≥ 1
4(3k)(1−γ+3µ)

,

which yields (2.3) with J as in (2.4). This evidently completes the proof of Theorem 2.1.

Remark 1. The results obtained in Theorem 2.1 coincide with Theorem 2 and Theorem 3 of [3],
for k = 0 and µ= γ, (0≤ γ≤ 1).

Remark 2. The results of Theorem 2.1 reduce to Corollary 1 and Corollary 3 of [3], when
k =µ= γ= 0.

Remark 3. Corollary 2 and Corollary 4 of [3] can be obtained from Theorem 2.1, by putting
k = 0 and µ= γ= 1.

Theorem 2.2. Let 0 ≤ γ ≤ 1, µ ≥ 0, µ ≥ γ, k ∈ N∪ {0} and g(z) = z+
∞∑
j=2

d j z j be in the family

M∑(x,γ,µ,k). Then

|d2| ≤ |m(x)|
√

|m(x)|
2k

√
|(4µ(µ−γ)+ (1−γ+2µ))m2(x)+8(1−γ+µ)2n(x)|

, (2.19)

|d3| ≤ 1
3k

[
m2(x)

4(1−γ+µ)2 + |m(x)|
3(1−γ+2µ)

]
(2.20)
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and for δ ∈R

|d3 −δd2
2| ≤


|m(x)|

3k+1(1−γ+2µ)
;

∣∣∣∣1− 3kδ

22k

∣∣∣∣≤ M

|m(x)|3
∣∣∣1− 3kδ

22k

∣∣∣
3k|(4µ(µ−γ)+ (1−γ+2µ))m2(x)+8(1−γ+µ)2n(x)| ;

∣∣∣∣1− 3kδ

22k

∣∣∣∣≥ M,

(2.21)
where

M = 1
3(1−γ+2µ)

∣∣∣∣(4µ(µ−γ)+ (1−γ+2µ))+8(1−γ+µ)2
(

n(x)
m2(x)

)∣∣∣∣ .

Proof. Let g(z) ∈ M∑(x,γ,µ,k). Then, for two holomorphic functions r and s such that
r(0)= s(0)= 0, |r(z)| = |r1z+r2z2+r3z3+·· · | < 1 and |s(ω)| = |s1ω+s2ω

2+s3ω
3+·· · | < 1, z,ω ∈D,

and using Definition 1.2, we can write
z(Dk g(z))′+µz2(Dk g(z))′′

(1−γ)z+γz(Dk g(z))′
=G(x, r(z))−1 (2.22)

and
ω(Dk f (ω))′+µω2(Dk f (ω))′′

(1−γ)ω+γω(Dk f (ω))′
=G(x, s(ω))−1. (2.23)

Following (2.5), (2.6), (2.7), and (2.8) in the proof of Theorem 2.1, one gets in view of (2.22) and
(2.23)

2k+1(1−γ+µ)d2 = L1(x)r1 , (2.24)

3k+1(1−γ+2µ)d3 −22k+2(1−γ+µ)γd2
2 = L1(x)r2 +L2(x)r2

1 , (2.25)

−2k+1(1−γ+µ)d2 = L1(x)s1 , (2.26)

−3k+1(1−γ+2µ)d3 +22k+1[2γ2 − (5+2µ)γ+3(1+2µ)]d2
2 = L1(x)s2 +L2(x)s2

1 . (2.27)

The results (2.19)-(2.21) of this theorem now follow from (2.24)-(2.27) by applying the procedure
as in Theorem 2.1 with respect to (2.10)-(2.13).

Theorem 2.3. Let ξ≥ 1, τ≥ 1 and k ∈N∪ {0}, g(z) = z+
∞∑
j=2

d j z j be in the family B∑(x,ξ,τ,k).

Then

|d2| ≤ |m(x)|
√
|m(x)|

2k
√
|((8ξτ2 −7ξτ+1)−4(2ξτ−1)2)m2(x)−8(2ξτ−1)2n(x)|

, (2.28)

|d3| ≤ 1
3k

[
m2(x)

4(2ξτ−1)2 + |m(x)|
3(3ξτ−1)

]
(2.29)

and for δ ∈R

|d3 −δd2
2| ≤


|m(x)|

3k+1(3ξτ−1)
;

∣∣∣∣1− 3kδ

22k

∣∣∣∣≤Ω∣∣∣1− 3kδ
22k

∣∣∣ |m(x)|3

3k|((8ξτ2 −7ξτ+1)−4(2ξτ−1)2)m2(x)−8(2ξτ−1)2n(x)| ;
∣∣∣∣1− 3kδ

22k

∣∣∣∣≥Ω,

(2.30)
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where

Ω= 1
3(3ξτ−1)

∣∣∣∣((8ξτ2 −7ξτ+1)−4(2ξτ−1)2)−8(2ξτ−1)2
(

n(x)
m2(x)

)∣∣∣∣ .

Proof. Let g(z) ∈B∑(x,ξ,τ,k). Then, for two holomorphic functions r and s such that r(0) =
s(0)= 0, |r(z)| = |r1z+ r2z2 + r3z3 +·· · | < 1 and |s(ω)| = |s1ω+ s2ω

2 + s3ω
3 +·· · | < 1, z,ω ∈D, and

using Definition 1.3, we can write
(1−ξ)+ξ[(z(Dk g(z))′)′]τ

(Dk g(z))′
=G(x, (z))−1, z ∈D (2.31)

and
(1−ξ)+ξ[(ω(Dk f (ω))′)′]τ

(Dk f (ω))′
=G(x, (ω))−1, ω ∈D. (2.32)

Following (2.5), (2.6), (2.7), and (2.8) in the proof of Theorem 2.1, one gets in view of (2.31) and
(2.32)

2k+1(2ξτ−1)d2 = L1(x)r1 , (2.33)

22k+2(2ξτ2 −4ξτ+1)d2
2 +3k+1(3ξτ−1)d3 = L1(x)r2 +L2(x)r2

1 , (2.34)

−2k+1(2ξτ−1)d2 = L1(x)s1 , (2.35)

22k+1(4ξτ2 +ξτ−1)d2
2 −3k+1(3ξτ−1)d3 = L1(x)s2 +L2(x)s2

1 . (2.36)

The results (2.28)-(2.30) of this theorem now follow from (2.33)-(2.36) by applying the procedure
as in Theorem 2.1 with respect to (2.10)-(2.13).

In next section, we present some interesting consequences of our main result.

3. Corollaries and Consequences
Theorem 2.1 would yield the following corollary for the family K∑(x,k), when γ = 1/2 and
µ= 1/2.

Corollary 3.1. If g(z) ∈K∑(x,k), a subfamily of
∑

satisfying

(z2(Dk g(z))′)′

(zDk g(z))′
≺G(x, z)−1, z ∈D and

(ω2(Dk f (ω))′)′

(ωDk f (ω))′
≺G(x,ω)−1, ω ∈D,

where f (ω)= g−1(ω) is as in (1.2) and G is as in (1.4), then

|d2| ≤
p

2|m(x)|
√

|m(x)|
2k

√
|m2(x)+9n(x)|

, |d3| ≤ 1
3k

[
4m2(x)

9
+ |m(x)|

4

]
and for some δ ∈R,

|d3 −δd2
2| ≤


|m(x)|
4(3k)

;
∣∣∣∣1− 3kδ

22k

∣∣∣∣≤ 1
8

∣∣∣∣1+9
(

n(x)
m2(x)

)∣∣∣∣
2|m(x)|3

∣∣∣1− 3kδ
22k

∣∣∣
3k|m2(x)+9n(x)| ;

∣∣∣∣1− 3kδ

22k

∣∣∣∣≥ 1
8

∣∣∣∣1+9
(

n(x)
m2(x)

)∣∣∣∣ .

Corollary 3.2 asserts immediate consequence of Theorem 2.1 for the family J∑(x,k), when
γ= 0 and µ= 1/2.
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Corollary 3.2. If g(z) ∈J∑(x,k), a subfamily of
∑

satisfying

(z2(Dk g(z))′)′

2Dk g(z)
≺G(x, z)−1, z ∈D and

(ω2(Dk f (ω))′)′

2Dk f (ω)
≺G(x,ω)−1, ω ∈D,

where f (ω)= g−1(ω) is as in (1.2) and G is as in (1.4), then

|d2| ≤ |m(x)|
√
|m(x)|

2k
√
|m2(x)+8n(x)|

, |d3| ≤ 1
3k

[
m2(x)

4
+ |m(x)|

5

]
and for δ ∈R,

|d3 −δd2
2| ≤


|m(x)|
5(3k)

;
∣∣∣∣1− 3kδ

22k

∣∣∣∣≤ 1
5

∣∣∣∣1+8
(

n(x)
m2(x)

)∣∣∣∣
|m(x)|3

∣∣∣1− 3kδ
22k

∣∣∣
3k|m2(x)+8n(x)| ;

∣∣∣∣1− 3kδ

22k

∣∣∣∣≥ 1
5

∣∣∣∣1+8
(

n(x)
m2(x)

)∣∣∣∣ .

We conclude the below result for the family L∑(x,k) by putting γ = 1/2 and µ = 1 in
Theorem 2.1.

Corollary 3.3. If g(z) ∈L∑(x,k),a subfamily of
∑

satisfying

2z(z(Dk g(z))′)′

(zDk g(z))′
≺G(x, z)−1, z ∈D and

2ω(ω(Dk f (ω))′)′

(ωDk fω))′
≺G(x,ω)−1, ω ∈D,

where f (ω)= g−1(ω) is as in (1.2) and G is as in (1.4), then

|d2| ≤
p

2|m(x)|
√
|m(x)|

2k
√
|6m2(x)+25n(x)|

, |d3| ≤ 1
3k

[
4m2(x)

25
+ |m(x)|

7

]
and for δ ∈R,

|d3 −δd2
2| ≤



|m(x)|
7(3k)

;
∣∣∣∣1− 3kδ

22k

∣∣∣∣≤ 1
14

∣∣∣∣6+25
(

n(x)
m2(x)

)∣∣∣∣
2|m(x)|3

∣∣∣∣1− 3kδ

22k

∣∣∣∣
3k|6m2(x)+25n(x)| ;

∣∣∣∣1− 3kδ

22k

∣∣∣∣≥ 1
14

∣∣∣∣6+25
(

n(x)
m2(x)

)∣∣∣∣ .

Corollary 3.4 asserts an another interesting consequence of Theorem 2.1 for the family
P∑(x,µ,k), by putting γ= 0.

Corollary 3.4. Let µ≥ 0. If a function g(z) ∈P∑(x,µ,k), a subfamily of
∑

satisfying(
z(Dk g(z))′

Dk g(z)

)(
1+µ z(Dk g(z))′′

(Dk g(z))′

)
≺G(x, z)−1, z ∈D

and (
ω(Dk f (ω))′

Dk f (ω)

)(
1+µω(Dk f (ω))′′

(Dk f (ω))′

)
≺G(x,ω)−1, ω ∈D,

where f (ω)= g−1(ω) is as in (1.2) and G is as in (1.4), then

|d2| ≤ |m(x)|
√
|m(x)|

2k
√[

2|2µ2m2(x)+ (1+2µ)2n(x)|] , |d3| ≤ 1
3k

[
m2(x)

(1+2µ)2 + |m(x)|
2(1+3µ)

]
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and for δ ∈R,

|d3 −δd2
2| ≤


|m(x)|

2(3k)(1+3µ)
;

∣∣∣1− 3kδ
22k

∣∣∣≤ 1
(1+3µ)

∣∣∣∣2µ2 + (1+2µ)2
(

n(x)
m2(x)

)∣∣∣∣
|m(x)|3

∣∣∣1− 3kδ
22k

∣∣∣
2(3k)[2µ2m2(x)+ (1+2µ)2n(x)]

;
∣∣∣∣1− 3kδ

22k

∣∣∣∣≥ 1
(1+3µ)

∣∣∣∣2µ2 + (1+2µ)2
(

n(x)
m2(x)

)∣∣∣∣ .

Setting δ= 1 and k = 0 in Theorem 2.1, we arrive at the following:

Corollary 3.5. Let 0≤ γ≤ 1, µ≥ 0, µ≥ γ and g(z) of the form (1.1) be in S∑(x,γ,µ,0). Then

|d3 −d2
2| ≤

|m(x)|
2(1−γ+3µ)

.

Remark 4. Corollary 3.5 reduces to Corollary 5, Corollary 6 and Corollary 7 of [3] when µ= γ,
µ= γ= 0 and µ= γ= 1, respectively.

Corollary 3.6 asserts immediate consequence of Theorem 2.2 for the family K∑(x,µ,k) when
γ= 0.

Corollary 3.6. If g(z) ∈K∑(x,µ,k), µ≥ 0, a subfamily of
∑

satisfying

(Dk g(z))′+µz(Dk g(z))′′ ≺G(x, z)−1 and (Dk f (ω))′+µω(Dk f (ω))′′ ≺G(x,ω)−1,

where z,ω ∈D, f (ω)= g−1(ω) is as in (1.2) and G is as in (1.4), then

|d2| ≤ |m(x)|
√
|m(x)|

2k
√
|(4µ2 +2µ+1)m2(x)+8(1+µ)2n(x)|

, |d3| ≤ 1
3k

[
m2(x)

4(1+µ)2 + |m(x)|
3(1+2µ)

]
and for δ ∈R,

|d3 −δd2
2| ≤


|m(x)|

3k+1(1+2µ)
;

∣∣∣∣1− 3kδ

22k

∣∣∣∣≤ M1

|m(x)|3|1− 3kδ
22k |

3k|(4µ2 +2µ+1)m2(x)+8(1+µ)2n(x)| ;
∣∣∣∣1− 3kδ

22k

∣∣∣∣≥ M1,

where M1 = 1
3(1+2µ)

∣∣∣∣(4µ2 +2µ+1)+8(1+µ)2
(

n(x)
m2(x)

)∣∣∣∣.
Corollary 3.7 asserts an another interesting consequence of Theorem 2.2 for the family

L∑(x,µ,k) by putting γ= 1.

Corollary 3.7. If g(z) ∈L∑(x,µ,k), µ≥ 1, a subfamily of
∑

satisfying

1+µ
(

z(Dk g(z))′′

(Dk g(z))′

)
≺G(x, z)−1, z ∈D and 1+µ

(
ω(Dk f (ω))′′

(Dk f (ω))′

)
≺G(x,ω)−1, ω ∈D,

where f (ω)= g−1(ω) is as in (1.2) and G is as in (1.4), then

|d2| ≤ |m(x)|
√

|m(x)|
2k

√
2µ|(2µ−1)m2(x)+4µn(x)|

, |d3| ≤ 1
2µ(3k)

[
m2(x)

2µ
+ |m(x)|

3

]
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and for δ ∈R,

|d3 −δd2
2| ≤


|m(x)|

2µ(3k+1)
;

∣∣∣∣1− 3kδ

22k

∣∣∣∣≤ 1
3

∣∣∣∣(2µ−1)+4µ
(

n(x)
m2(x)

)∣∣∣∣
|m(x)|3

∣∣∣1− 3kδ
22k

∣∣∣
2µ(3k)|(2µ−1)m2(x)+4µn(x)| ;

∣∣∣∣1− 3kδ

22k

∣∣∣∣≥ 1
3

∣∣∣∣(2µ−1)+4µ
(

n(x)
m2(x)

)∣∣∣∣ .

We conclude the below result for the family M∑(x,ξ,k) by putting τ= 1 in Theorem 2.3.

Corollary 3.8. If g(z) ∈M∑(x,ξ,k), ξ≥ 1, a subfamily of
∑

satisfying

(1−ξ) 1
(Dk g(z))′

+ξ
(
1+ z(Dk g(z))′′

(Dk g(z))′

)
≺G(x, z)−1, z ∈D

and

(1−ξ) 1
(Dk f (ω))′

+ξ
(
1+ ω(Dk f (ω))′′

(Dk f (ω))′

)
≺G(x,ω)−1, ω ∈D,

where f (ω)= g−1(ω) is as in (1.2) and G is as in (1.4), then

|d2| ≤ |m(x)|
√
|m(x)|

2k
√
|(ξ+1−4(2ξ−1)2)m2(x)−8(2ξ−1)2n(x)|

,

|d3| ≤ 1
3k

[
m2(x)

4(2ξ−1)2 + |m(x)|
3(3ξ−1)

]
and for δ ∈R

|d3 −δd2
2| ≤


|m(x)|

3k+1(3ξ−1)
;

∣∣∣∣1− 3kδ

22k

∣∣∣∣≤Ω1

2|m(x)|3
∣∣∣1− 3kδ

22k

∣∣∣
3k|(ξ+1−4(2ξ−1)2)m2(x)−8(2ξ−1)2n(x)| ;

∣∣∣∣1− 3kδ

22k

∣∣∣∣≥Ω1,

where Ω1 = 1
3(3ξ−1)

∣∣∣∣(ξ+1−4(2ξ−1)2)−8(2ξ−1)2
(

n(x)
m2(x)

)∣∣∣∣.
Theorem 2.3 would yield the following corollary for the family N∑(x,τ,k), when ξ= 1.

Corollary 3.9. If g(z) ∈N∑(x,τ,k), τ≥ 1, a subfamily of
∑

satisfying

[(z(Dk g(z))′)′]τ

(Dk g(z))′
≺G(x, z)−1, z ∈D and

[(ω(Dk f (ω))′)′]τ

(Dk f (ω))′
≺G(x,ω)−1, ω ∈D,

where f (ω)= g−1(ω) is as in (1.2) and G is as in (1.4), then

|d2| ≤ |m(x)|
√
|m(x)|

2k
√
|(8τ2 −7τ+1−4(2τ−1)2)m2(x)−8(2τ−1)2n(x)|

,

|d3| ≤ 1
3k

[
m2(x)

4(2τ−1)2 + |m(x)|
3(3τ−1)

]

Communications in Mathematics and Applications, Vol. 11, No. 4, pp. 563–574, 2020
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and for δ ∈R

|d3 −δd2
2| ≤


|m(x)|

3k+1(3τ−1)
;

∣∣∣∣1− 3kδ

22k

∣∣∣∣≤Ω2

|m(x)|3
∣∣∣1− 3kδ

22k

∣∣∣
3k|((8τ2 −7τ+1)−4(2τ−1)2)m2(x)−8(2τ−1)2n(x)| ;

∣∣∣∣1− 3kδ

22k

∣∣∣∣≥Ω2,

where Ω2 = 1
3(3τ−1)

∣∣∣∣(8τ2 −7τ+1−4(2τ−1)2)−8(2τ−1)2
(

n(x)
m2(x)

)∣∣∣∣.
4. Conclusion

Using the concept of subordination, we have introduced some special families of holomorphic
and Sălăgean type bi-univalent functions in the open unit disc D associated with (m,n)-Lucas
polynomials. We have then derived the initial coefficient estimations and also Fekete-Szegö
inequalities for functions belonging to these special families. Our main results are obtained in
Theorem 2.1, Theorem 2.2 and Theorem 2.3. Further by specializing the parameters, several
consequences of these new families are mentioned.
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