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1. Introduction

Variational inclusions, as the generalization of variational inequalities, have been widely studied
in recent years. For more details, see for example [6-10, 12,1317, 19,24] and the references there
in. Among the methods for solving variational inclusion problems, resolvent operator technique
has been widely used. In particular, the applications of the resolvent operator technique have
been explored and improved recently. For instance, Fang and Huang [7] introduced a class of
H-monotone operators and defined the associated class of resolvent operators, which extends
the classes of the resolvent operators associated with n-subdifferential operators of Ding and
Lou [6]], maximal monotone operators of Liu, Agarwal and Kang [[19] and maximal monotone
operators of Huang and Fang [12], respectively.

In 2001, Huang and Fang [11] introduced the generalized m-accretive mapping and give
the definition of resolvent operator for the generalized m-accretive mapping in Banach spaces.
Since then a number of researchers investigated several classes of generalized m-accretive
mappings such as H-accretive, H(-,-)-accretive and (H,n)-accretive, (A,n)-accretive mappings,
see for example [4-6,8,|11,/14-16,26].

Motivated and inspired by the work going on in this direction, in this paper, we introduce
and study a new class of variational inclusions called system of generalized variational-like
inclusion problem involving H(:,-)-¢-n-accretive operator in real g-uniformly smooth Banach
spaces. We define the resolvent operator associated with H(-,-)-¢p-n-accretive operator and
prove its single-valuedness and Lipschitz continuity. By using resolvent operator technique, we
prove the existence of solution for this system of inclusions. Further, we suggest a perturbed
Mann iterative scheme with errors for approximating the solution of this system of generalized
variational-like inclusion problem. Furthermore, we discuss the convergence and stability
analysis of the iterative sequence generated by the iterative algorithm.

2. Resolvent Operator and Formulation of Problem

We need the following definitions and results from the literature.

Let X be a real Banach space equipped with norm | - | and X™* be the topological dual space
of X. Let (-,-) be the dual pair between X and X*, and 2X be the power set of X.

Definition 2.1 ([25]). For q > 1, the generalized duality mapping J, : X — 2X" is defined by
Jo@) ={f € X : (x, ) = Iz, lxl L =1£1}, VYxeX.
In particular, Js is the usual normalized duality mapping on X. It is well known (see, e.g., [25])
that
Jg(@) = x| T2 Ja(x), VY x(£0)eX.

Note that if X = H, a real Hilbert space, then J2 becomes the identity mapping on X.

Definition 2.2 ([25]]). A Banach space X is said to be smooth if, for every x € X with |x|| =1,
there exists a unique f € X* such that ||f] = f(x) = 1.
The modulus of smoothness of X is the function px :[0,00) — [0,00), defined by
lx+yl+llx—yl

> _

Px(U)Zsup{ lix,yeX, llxl =1, IIyII=G}.
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Definition 2.3 ([25]]). A Banach space X is said to be

(i) uniformly smooth if lim ex(@) _ 0,

g—0
(i1) g-uniformly smooth, for ¢ > 1, if there exists a constant ¢ > 0 such that px(o) < co9,
o €[0,00).
It is well known (see, e.g., [26]) that
g-uniformly smooth, ifl<g<2,

L, (orl,)is . .
2-uniformly smooth, if g =2.

Note that if X is uniformly smooth, J, becomes single-valued. In the study of characteristic
inequalities in g-uniformly smooth Banach spaces, Xu [25] established the following lemma.

Lemma 2.4. Let q > 1 be a real number and let X be a smooth Banach space. Then the following
statements are equivalent:

(1) X is q-uniformly smooth.
(ii) There is a constant cqy > 0 such that for every x,y € X, the following inequality holds:
lx+ Y117 < 217 + g {y, Jq(x)) +cqllyll?.
Definition 2.5. Let X be a q-uniformly smooth Banach space. Let A,B: X — X, H,n: XxX - X
be single-valued mappings and M : X x X — 2% be a multi-valued mapping. Then
(i) A is said to be n-accretive, if
(Ax—Ay,Jq(n(x,y)) =0, Vx,yeX.

(i) A is said to be strictly n-accretive, if A is n-accretive and equality holds if and only if x = y.

(ii1)) JH(A,-) is said to be a-strongly n-accretive with respect to A if there exists a constant @ >0
such that

(H(Ax,2) - H(Ay,2),Jq(n(x, ) = allx -y, Vx,y,zeX.
(iv) JH(-,B) is said to be f-relaxed n-accretive with respect to B if there exists a constant §>0
such that
<U'C(Z,Bx) - j‘C(Z,By), Jq(n(x,y)» = _ﬁ”x _y”qa v xX,y,2 € X.
(v) JH(,-) is said to be di-Lipschitz continuous with respect to A if there exists a constant
d1 > 0 such that
[H(Ax,2) - H(Ay,2)l =dillx—yll, Vx,y,z€X.

In a similar way, we can define the Lipschitz continuity of the mapping J(:,-) with respect
to second argument.

(vi) n is said to be 7-Lipschitz continuous, if there exists a constant 7 > 0 such that
InGe, Pl <zllx—-yl, Vx,yeX.
(vii) M is said to be n-accretive if
(u—v,Jqnx,y))) =0, Vx,yeX, VueM(x,z),veM(y,z),
for each fixed z € X.
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(viii) M is said to be strictly n-accretive, if M is n-accretive and equality holds if and only if
x=y.
Definition 2.6. J{(-,-) is said to be af-symmetric n-accretive with respect to A and B, if H(A,)

is a-strongly n-accretive with respect to A and JH(-,B) is B-relaxed n-accretive with respect to B
with a« = 8, and a = f if and only if x = y for all x,y € X.

Definition 2.7. Let X be a g-uniformly smooth Banach space. Let A: X - X, H: X xX - X
be single-valued mappings. Then

(i) A is said to be §-strongly n-accretive if there exists a constant § > 0 such that
(Ax—Ay,Jg(nx,y)) =26lx-yl?, Vax,yeX.
(i1) A is said to be A-Lipschitz continuous if there exists a constant A > 0 such that
||Ax—Ay|| <AMx-yll, Vzx,yeX.
(iii) H(.,-) is said to be (v,¢)-mixed Lipschitz continuous if there exist constants v>0, { >0
such that
|9, 93¢0 ] = v]r—y] +&lle ]

, Vax,y,s,teX.

Throughout the rest of the paper unless otherwise stated, we assume that X is a g-uniformly
smooth Banach space.

Definition 2.8. Let ¢,A,B: X — X,H,n: X xX — X be single-valued mappings, M : X xX — 2X
be a multi-valued mapping. Then M is said to be a H(,-)-¢p-n-accretive mapping with respect
to A and B if for each fixed x* € X, o M(x*,-) is n-accretive in the second argument and
(H(A,B)+ ApoM(x*, )X =X, for all 1> 0.

Remark 2.9. If ¢(x) = x, for all x € X, M(:,-) = M(-) and n(x,y) = x — y, then H(,-)-¢p-n-accretive
operator reduces to H(-,-)-accretive operator, which was introduced and studied by Zou and
Huang [27].

Example 2.10. Let X =R. Let Az =0, Bz =sinz, H(Az,Bz)=Az+Bz and M(x*,z) = x*° +22,
for all z € X and for each fixed x* € X. Let ¢po M(x*,z) = %[M(x*,z)] =2z and 1(z1,22) = 252,
for all z1,z9 € X. Then

(poM(x*,2z1)— poM(x*,29),n(21,22)) = <221 —2z9,

21—Z2>

=(21-22)* 20,
that is,
<(poM(x*,21) - (POM(x*,Zg),T](Zl,Zz)) =0,

which means that ¢o M(x*,) is n-accretive in the second argument.
Also, for any z € X, it follows from above that

(H(A,B)+ Apo M(x*,)z) = H(Az,Bz)+ Apo M(x*,2)
=Az+Bz+ApoM(x*,2)
=0+sinz+2Az
=2Az +sinz,
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which means that (H(A,B) + Ap o M(x*,-)) is surjective. Thus M is an H(:,-)-¢p-n-accretive
operator with respect to the mappings A and B.

Example 2.11. Let X,A,B,H,n and M be same as in above example. Let for each fixed x* € X,
poM(x*,z)= ex*2+zz, for all z€ X. Then
(H(A,B)+ Apo M(x*,)z) = H(Az,Bz)+ Apo M(x*,2)
=Az+Bz+ApoM(x*,z)
2

. * 2
=0+sinz + e 77,

which shows 0 ¢ (H(A,B) + Ap o M(x*,-))(X), that is (H(A,B) + Ap o M(x*,-)) is not surjective,
hence M is not an J(:, )-¢p-n-accretive operator with respect to the mappings A and B.

Proposition 2.12. Let $,A,B: X — X,H,n: X xX — X be single-valued mappings, H: X xX —
X be an af-symmetric n-accretive mapping with respect to A and B (a > ), and M : X x X — 2%
be an H(.,-)-¢p-n-accretive mapping with respect to A and B. If the following inequality
(u—v,J4(n(x,y))) =0, holds for all (iy,v) € Graph(po M(x*,-)), then (x,u) € Graph(po M(x*,-)),
where Graph(¢po M(x*,-)) :={(x,u) e X x X :u € po M(x*,x)}.

Proof. Suppose, on the contrary that there exists some (xo,uo) ¢ Graph(¢o M(x*,-)) such that
(uo - v,Jq(n(xo,y))> =0, V(y,v)e Graph((pOM(x*, ). (2.1)

Since M is an J(-,-)-¢-n-accretive operator with respect to the mappings A and B, we
have that (H(A,B)+ A¢p o M(x*,))(X) = X holds for every A > 0, and hence there exists
(x1,u1) € Graph(¢o M(x*,-)) such that

H(Ax1,Bx1)+ Au1 = H(Axg,Bxg)+ Aupge X. (2.2)
It follows from and that
0< /1<u() - ul,Jq(n(xo,xl))>
= —(H(Axo,on) - .'H(Axl,Bxl), Jq(n(xo,x1)>
< —(H(Axp,Bxo) — H(Ax1,Bxg), J g (n(xg,x1))) — (H(Ax1,Bxo) — H(Ax1,Bx1), 4 (1(x0,%1)))
< —(a-Plxo—x111? <0,

which gives x1 = xg, since a > . From (2.2), we have u; = ug. This is a contradiction. This
completes the proof. O

Proposition 2.13. Let ¢,A,B: X — X, H,n: X xX — X be single-valued mappings, H :
X xX — X be an afi-symmetric n-accretive mapping with respect to A and B (a > f8), and
M :X x X — 2% be an H(-,-)-¢p-n-accretive mapping with respect to A and B. Then the mapping
(H(A,B) + Apo M(x*, )1 is single-valued, for all A > 0.

Proof. For any z* € X, let x,y € (H(A,B) + A¢p o M(x*,))"1(z*). It follows that
1
X(Z* —H(A,B)(x)) € po M(x™,x)

and

1
Z(z* —H(A,B)(y)) € po M(x*,y).
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Since ¢po M(x*,-) is n-accretive in the second argument, H is af-symmetric n-accretive with
respect to A and B, we have

1 1
< <Z(z* ~ (A, B)x)) - 7 (2" ~ H(A,B)Y)), Jq(n(x,y))>
1
= =2 {H(A,B)®) - H(A, B)y), I (n(ax, y)))
1 1
- —ZCH(Ax,Bx) - H(Ay,Bx),J4(n(x,))) - X(%(Ay,Bx) - H(Ay,By),Jy(n(x,y)))

=< —%(a—ﬁ)llx—yllq,

which implies that
1
Z(a -Plx—-yl?=<0.

It follows from a > S8, that x = y and so (J{(A,B)+ ApoM(x*,-))"! is single-valued. This completes
the proof. O

Definition 2.14. Let »,A,B: X — X, H,n: X x X — X be single-valued mappings, H : X x X —
X be an af-symmetric n-accretive mapping with respect to A and B (a > ), and M : X x X — 2X
be an J(-,-)-¢p-n- accretlve mapping with respect to A and B. Then for each fixed x* € X, the

resolvent operator RrR% MG+, /1 : X — X is defined by

RIS ) = (H(A, B + Ao MG, ) \(w), V xeX.

Next, the following result gives the Lipschitz continuity of the resolvent operator.

Proposition 2.15. Let ¢,A, B: X — X,H,n: X xX — X be single-valued mappings, H: X xX —
X be an af-symmetric n-accretive mapping with respect to A and B (a > ), and M : X x X — 2X
be an H(-,-)-¢-n-accretive mapping with respect to A and B. Let 1 be t-Lipschitz continuous.
Then for each fixed x* € X, the resolvent operator Riﬁx*)d;;z
constant L, that is,

H(,)-¢p- H(-,)-¢p-
IRy 1@ =Ry M)l < Llix—yll, Va,yeX,

: X — X is Lipschitz continuous with

72-1

where L := P

Proof. Let x,y € X. Then by definition of resolvent operator, it follows that

Ryl @) = (A, B) + Ao M(x*, ) 7 (x)

and

R0 = (90A, B) + Apo MG, ) ().

and so, we have

1 l=ae(a (RS 1w) B (R o)) € oot (RS o)

and
~y-0(A (R 100) B(Ri ) € w0 b ¥, RECT0T)).
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For the sake of brevity, let E(x) = Ry} *"(x), E(y) = R}, ") *"(y). Since ¢po M(x*,) is an

n-accretive operator in the second argument, we have

0< <%(x - H(A(E(x)), B(E(x)))) - %(y —H(AE(y)),B(E(y))),Jq [n(E(x),E(y)))>
which implies,
(x—y,dq(n(Ex),E(y))) = (H(AE®)),B(E(x))) - H(AE(y)),BE(y)), Jq(n(Ex),E(y)))).
Since J is af-symmetric n-accretive with respect to A and B, we have
l =yl [n(E@), EQ)[|?" 2 (x - 3, d (n(E@), E(»))))
> (H(A(E(x)), B(E(x))) — H(AE(y)),B(E(y)),J,(n(Ex),E(y))))
= (H(A(E(x)), B(E(x))) - H(A(E(y), B(E(x))),J 4 (n(E(x),E(y))))
+(H(AE»)),B(E(x))) - H(AE W), BE(y)),Jq(n(Ex),E(y))))
= allE(x)-Ey)|? - BIE(x)-E(y)|?
=(a-P)Ex)-EWI?,
and so
lx =yl 797" IE@) - E@I? " = (a- P IE@) - EW)|.
This implies

Ew-Epl=
| E(x)— | < la— vyl
M amp
or
HC-)-pn H(-)pon 7771
”RM(x*,-),/l(x) _RM(x*,-),/l(y)” = @—p) Il — Il
This completes the proof. u

Definition 2.16. For n =0, let M",M : X — 2% be H"(-, )-¢p™-n", H(-,-)-¢p-n accretive mappings
with respect to A and B, respectively. A sequence {¢" c M"},>¢ is said to be graph convergent

to ¢ o M, denoted by ¢™ OM”ic/)OM, if for each (x,u) € graph(¢po M), there is a sequence
{(x", u™}n=0 < graph(¢p™ o M™) such that x™* — x, u” — u as n — co.

Lemma 2.17. For n =0, let H" : X xX — X be a (t",v")-mixed Lipschitz continuous and
a” B"-symmetric n"-accretive mapping with respect to A and B, and H : X x X — X be a (t,v)-
mixed Lipschitz continuous and af-symmetric n-accretive mapping with respect to A and
B. Let * be t"-Lipschitz continuous and n be t-Lipschitz continuous, M" : X — 2% be an
H(-,-)-¢"-n" accretive mapping with respect to A and B, and M : X — 2% be a H(-,")-¢p-n

. . . " +v") (Tn)q—l (Tn)q—l
accretive mapping with respect to A and B. Assume that {—( =) }nzo and {—( e ﬁn)}nzO
are bounded and lim H"(A,B)(x) = H(A,B)(x) for each x € X. If ¢" o M™ 3, ¢poM, then

n—-oo

Tim Ry 57 (@) = Ry "), for alll x € X where a" > .

Proof. Since (H(A,B)+ ApoM)X =X, for each z* € X. Hence there exists (x,u) € graph(¢po M)

such that z* = H(A,B)(x) + Au. Further, ¢" o M" 3, ¢oM, it follows there exists a sequence
{(x™,u™ M=o S graph(¢p” oM™) such that x” — x, u"™ — u as n — oco. Put z*" = H"(A,B)(x") + Au"
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and that
Ry 7 NHA B0 + Aw) =x and Ry, 7" (H"(A,B)a™) + Au™) = 2"
Mn™ A
Using Lipschitz continuity of R M( /{) ¢ 7 we have
”Rﬂﬂ/f[:if-/{)@"-n”( *)_ Rﬂ'f( )</>Tl( *)”
< ”Rﬂj/{;f,{)(pn " (z*")— Rﬂ{( )(PTI(Z*)H + ”RUA;Z('/{-)-W-?I"(Z*n)_Rg’;(y;i')@"-ﬂ"(z*)”
H )" " qrn n n fH( )(PT] (Tn)q—l *n _ _*
< | Ry (00U A, B + Au™) - Ry (J-C(A,B)(x)+/1u)||+{—(an_ﬂn)}||z ol
nyg-1
<[l — x| + {((;%ﬁn)} |34, BYa™) - H(A, BY@)] + AJu" - u
nyg—1
<|[lx" - x| + {((;n;—ﬁ”)} [3¢"(A, B)a™) - 3C"(A, B)@)| + | 7(A, B)x)-H(A, B)o)|| + Al u" ~u
nyqg—1
s”xn—x”+{é;)ﬁn}(ﬂ+wﬁﬂhn—xu+”ﬁﬁ&LBXx%%HULBX@”+Aﬂu”—uM
" +vM(EM)h @™t n n
<(1+ @ B +(an—_ﬁn)[||9{ (4,B)(x) - HA, BY@)| + AJu" ~u|]

— 0 as n — oo.

This completes the proof. O

Lemma 2.18 ([18]]). Let {{"},{A"*} and {c"*} be nonnegative sequences satisfying
(- "+ "R 4", ¥ n 2,

where {0"}>2 , <[0,1], Z " =+oo, lim A" =0 and Z ¢" <oo. Then lim (" =

n—o00 n=0 n—o0

Definition 2.19. The Hausdorff metric D(-,-) on CB(X), is defined by
D(S,T) = max{sup infd(u,v), sup infd(u,v)} , S, TeCB(X),

ueS veT veT UE€
where d(-,-) is the induced metric on X and CB(X) denotes the family of all nonempty closed
and bounded subsets of X.

Definition 2.20 ([3]). A set-valued mapping T : X — CB(X) is said to be y-D-Lipschitz
continuous, if there exists a constant y > 0 such that

D(T(x), Ty <ylx—yll, Vx,yeX.

Theorem 2.21 (Nadler [22]). Let T : X — CB(X) be a set-valued mapping on X and (X,d) be a
complete metric space. Then, we have the following statements:

(i) For any given u>0, x,y € X and u € T'(x), there exists v € T(y) such that
d(u,v) <1+ wWD(T(x), T(y)).

(i) If T : X — C(X), then (i) holds for u =0, where C(X) denotes the family of all nonempty
compact subsets of X.
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Definition 2.22 ([23]). Let A : X — X be a single-valued mapping, x° € X, x"*1 = f(A,x") be
an iteration procedure which yields a sequence of points {x"},>9 < X, where f is a continuous
mapping. Suppose that {x € X : Ax = x} # @ and {x"},,>¢ converges to a fixed point x* of A. Let
Y=o X, B = |ly" 1 = F(A, y™)|. If ,}E&hn =0 implies that Y}Lr{.loy” =x*. Then the iteration

procedure defined by x™*! = f(A,x") is said to be A-stable or stable with respect to A.

Now, we formulate our main problem.
Let for each i =1,2,j€{1,2}\ i, X; be a g;-uniformly smooth Banach space with norm | - ||;. Let
d)i,Ai,Bi,fi,g,- :Xi —>Xi, }Ci,’l]i :Xi ><Xi —>Xi, Ni :Xi XXJ' XXi —>Xi be single-valued mappings
and M; : X; x X; — 2%i be an H;(-,-)-¢i-n; accretive mapping with respect to A; and B;. Let
S;,T;,G;:X; — C(X;) be set-valued mappings.
We consider the following system of generalized variational-like inclusion problem (SGVLIP):
Find (x;,u;,v;,w;) where x; € X;, u; € S;(x;), v; € T;(x;), w; € Gi(x;) such that
01 € Ha(f1(x1),x1) — Hi(x1,81(x1) + A1(N1(u1,v2,w1) + M1(x2,81(x1))),
02 € Ha(xg, g2(x2)) — Ha(fo(x2),x2) + A2(No(ug,v1,w2) + Ma(x1, g2(x2))),
where 01 and 6y are zero vectors of X; and X, respectively.

(2.3)

We remark that for appropriate and suitable choices of the above defined mappings, SGVLIP
(2.1) includes a number of variational and variational-like inclusions as special cases, see for
example [1,2,/5,/7-10,16,28] and the related references cited therein.

3. Existence of Solution

First, we give the following lemma which guarantees the existence of solution of SGVLIP (2.1).
The proof of this result can be followed by the definition of the resolvent operator RJ\};zEx])()PLA:h()
and hence is omitted.
Lemma 3.1.For i = 1,2, j e {1,2}\ i, let A;,B;,fi,gi : Xi — Xi, Hi,ni + X; xX; - X,
N; : X; xX; x X; — X; be single-valued mappings, let ¢; : X; — X; be a mapping satisfying
Gixi+x7) = i(x;)+pi(x}) for all x;,x; € X; and Ker(¢p;) = {0}, where Ker(¢p;) = {x; € X; : ¢;(x;) = 0}
and M; : X;jx X; — 2%i pe a H;(-,-)-i-n;-accretive mapping with respect to A; and B;. Then
(x;,u;,vi,w;) is a solution of SGVLIP where x; € X;, u; € S;(x;), v; € Ti(x;), w; € Gi(x;) if
and only if it satisfies
g1(x1) = R;ﬁﬁx;gpfl [H1(A1(g1(-), B1(g1(x1) — A1¢p1 o N1(u1,v,w1)
—p10Ha(f1(x1),x1) + P10 H1(x1,81(x1))]
82(x2) = Ry 2712 [35(An(g2(), Ba(g2()))(x2) — Aagpg 0 Na(uz, v1,w2)
—pg 0 Ha(xa, g2(x2)) + o 0 Ha(falxo), x2)],
where A1, A9 >0 are constants and

Ry i) = (HG(Ai, Bi) + A o MiCeej, ) (i), ¥ € Xy € X,

Theorem 3.2. For i = 1,2, j € {1,2}\ i, let A;,B;,fi,8i : X; — X;, H;,n; : Xi xX; — X,
N;:X; xX;jxX; — X; be single-valued mappings. Let ¢; : X; — X; be a mapping satisfying
Gilx; +x1) = ¢ilx;) + pi(x}) for all x;,x; € X; and Ker(¢p;) = {0}, H; : X; x X; — X; be an a;p;-

3.1)
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symmetric 1;-accretive mapping with respect to A;(g;(-)) and Bi(g;()), (v;,&;)-mixed Lipschitz
continuous and let n;, f; be 1;,lf,-Lipschitz continuous, respectively and g; be 6;-strongly n;-
accretive and lg,-Lipschitz continuous. Let ¢; o N; be a p;-strongly n;-accretive mapping in the
first argument and d;,s; and p;-Lipschitz continuous in the first, second and third arguments,
respectively and ¢; o H; be (p;,y;)-mixed Lipschitz continuous. Let M; : X; x X; — 2%i pe an
H;(-,-)-¢i-n;-accretive mapping with respect to A; and B; and S;,T;,G; : X; — C(X;) be such
that S; is Lg,-D-Lipschitz continuous, T; is Lr,-D-Lipschitz continuous and G; is Lg,;-D-
Lipschitz continuous. Suppose that there are constants A1,A2,r1,re > 0 satisfying the following
conditions:

k= mi+{Lj)ljstTi+rj}<1, (3.2)
where
)1/%‘

mii= (1= qidi+ qilg, < (L4784 e 1

+L{(1-qi@i = B +qi(vi +E) x (L4771 4 eg (v +E9) VY
+ (1= Aiqipti + AiqidiLs, x A+ 787 + A% cq,df L)V

qi—1
T
+AipiLa, +pi(L+1g)+yi(1+1g, ], Lj:=——
iPi~G; Pz( fl) YL( gl)} i (“i_ﬁi)
and further assume that
Hi)-pimmi o, * HiC)-dirmi % / * /
”RMi(xj,-),AL- (x; )_RMi(x};),]Li (x; )|| Sri”xj—xj”j, Vo EXi,xj,xjer. (3.3)

Then SGVLIP (2.1) has a solution.

Proof. For each (x1,x9) € X1 x X9, define a mapping @ : X1 x X9 — X1 x X9 by

Q(x1,x2) = (P1(x1,%2), Pa(x1,%2)), (3.4)
where P;: X7 x X9 — X7 and Py : X1 x X9 — X are given by

Py (x1,29) = 1 — g1(x1) + Ry (09 [H1(A1(10)), Ba(g1 (D))

—A1¢1oN1(u1,v2,w1) — P10 Hi(f1(x1),x1) + P10 Hilx1,g1(x1))], (3.5)
Po(x1,%9) = %3 — ga(x2) + Ry 2 422 [ Fa(Aa(g2(), Ba(ga(-)x2)
— Ao 0 No(uz,v1,wa) — do 0 Hao(xz, g2(x2)) + o 0 Holfa(x2), x2)], (3.6)

for 11,12 > 0, respectively. Then, for any (x1,x2), (x],%5) € X1 x Xg, it follows from (3.5), (3.6)

j{l(’,')'ﬁbl'ﬂl and Rj{z('s’)'()bz'n2 that

and the Lipschitz continuity of R M) Ay Mooy ) o

[ P1(x1,22) — P1(x,29) | ;
< [lx1 - g1eD) + Ry, (P [H( A1 (g1(), Ba(g1(D))(wn)
—A1p1oN1(u1,ve,w1) — 1o Hi(f1(x1),x1) + P10 Hilxy, g1(x1))]
~ {oh — g1 + Ry [30(Aa(g100), Bu(g 1)
— A1¢p1oN1(u,vh,w}) —p1 o Hi(f1(x)), 1) + P10 Hilxy, g1(x))]
< [ (e1 — ) — (g1(x1) — g1 (x))||;
+ Ry [H1(Ar(g1()), B1(g1 (1) = Arpr o N (u1,v2,11)
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— 10 IH1(f1(x1),%1) + P10 Hi(x1, 81(x1))]

Ry [H1(Aa(10), Bi(g10D)) ~ Mg o Niu, v, wh)

—p1 0 Hy(f1(x),x]) + 10 Halx], g1x))] | ;- (3.7

Since g; is 0;-strongly n;-accretive, /4, -Lipschitz continuous and 7; is 7;-Lipschitz continuous,
by using Lemma 2.4, we have

[[ (1 =) = (g1(x1) — g1 T
|7 — g1{g1(x1) — g1(x)), T, (N1(x1,27)));
—q1(g1(x1) — g1(x}), J g, (x1 — ) — I, (N1(x1, 1)), + cq, || g1(x1) — g1(x))|

< e =24 |71 = q1{g1(x1) — g1(x}), T4y (1 (1,27,
o

< [lx1 =1
ki

a1 gD - gDy x (e =217 + s eDI ) + eq, lgrten - g1

<(1-q161+q1lg x(1+ 1‘1“_1) +eg lat) |l =24 [T
This implies that
1 =) = (gD — g1 @)y = (1= q161+ g1l x A+ 8D+ e, 18) " a1 - il (3.8)
Now, we have
IRy o3 [Ha(A1(g1(), Ba(g1(-W)xn) — Arpy o N1(us,v2,w1)
— 10 Hy(f1(x1),x1) + p1 0 H1(x1,81(x1))]

—R;};ix;?lafl [H1(A1(g1()), B1(g1(:))(x}) — A1p1 o N1(ul,vg,w))

—p1 0 Ha(f1(x)), x]) + 10 Halxh, g1(x))] |4

< | Ry 9 [F1(Ar(g1()), Bi(g1 () - A1y o N1(u,vg,w1)
— 10 H1(f1(x1),21) + P10 Hi(x1, g1(x1))]
— Ry [90(A1(g10)), Bi(g1 ) — A1py 0 Ni(u)y, v, wh)
—p1 0 Ha(f1(x)), x]) + 10 Halxh, g1(x))] |4
+ Ry [Ha(Ar(g1(), Ba(g1ON)) — A o Ny(w], v, w))
— 10 Hy(f1(x)),x)) + p1 0 Halx], g1(x)))]

—Rziix,;(fhlnl [H1(A1(g1()), B1(g1(:Mx}) — A1¢p1 o N1(uf,vg,w)

—p1 0 Ha(f1(x)),x1) + P10 Hy(xh, g1(x))] |
< L1|[[H1(A1(g1(-)), B1(g1(:))(x1) — A1¢p1 o N1(w1,v2,w1)
—p1 0 Hi(f1(x1),21) + P10 Hilx1, g1(x1))]
—[H1(A1(g1(), B1(g1())@}) — A1¢p1 0 N1(u'y, vh,wh)
~¢1 0 H1(f1(xy), 1) + 1o Hy(xh, g1(x))] || + 7122 — x5
< L1||H1(A1(g1()), B1(g1(:M)(x1) — H1(A1(g1()), B1(g1(:N)x}) — (x1 — x|
+ Ly |(x1 = %)) — A1(¢1 0 N1(u1,vg,w1) — p1 0 N1(u], v9,w0)))|
+ Ly || 1 0 H1(F1ler), x1) — 1 0 Hi(frlx)), x|
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+ L1 0 Ha (1, 81(x1) — 1 0 Hy(xh, 1G]], + 71wz — x5 [
< L1||H1(A1(g1()), B1(g1(:)(x1) — H1(A1(g1()), B1(g1(:NNx}) — (x1 — x| ;
+ L1 | (x1 — x7) = A1(¢p1 0 N1(u1,v9,w1) — 1o Ni(uh,ve,w1))||;
+L1A1]|¢10N1(u’,ve,w1) — ¢p1 0o N1(ul,vp,w1)|
+ L1 |10 N1(ul, v, w1) — 1o Ni(ul, vy, wh)|;
+ L[| 1 0 H1(f1ler), x1) — 1 o Hi(fr(x)), x|
+ L1 10 Hi(x1,81(x1)) — P10 Hilx, g1(x))||; + 7122 — x5 5. (3.9)

Since JH; is an a;fB;-symmetric n;-accretive mapping with respect to A;(g;(-)) and B;(g;(-)),
(v;,¢;)-mixed Lipschitz continuous and 7; is 7;-Lipschitz continuous, by using Lemma [2.4] we
have

| H1(A1(g1(), B1(g1(:(x1) — H1(A1(g1()), B1(g1 (D)) — (1 — x|
< [Jo1 — || 7" = g1{FH1(A1(g1()), B1(g1(:))x1) — H1(A1(g1()), B1(g1(: &), I, (1 (a1, 7)) )4
- q1{H1(A1(g1()), B1(g1(:M(x1) = H1(A1(g1(-)), B1(g1(:N(x)), J g, (x1 — x7) — J g, (n1(x1,x1)))4
+cg, | H1(A1(g1()), B1(g1(:)(x1) — H1(A1(g1()), B1(g 1D
< [loe1 =4 |7 — q1(FH1(A1(g1()), B1(g1(:D)x1) — H1(A1(g1()), Bilg 1)), I gy (1 (21, %)),
+q1]|H1(A1(g1()), B1(g1())x1)~H1(A1(g1(), B1(g1ONGED |1 (|e1 =4 |27+ | maaer, )| 271
+ g, | H1(A1(g1(), B1(g1(:))(x1) — H1(A1(g1(), B1(g1(:N)||
<(1-qi(a1-P1)+qi1(vi+&) x (1 + 1‘1’1‘1) +eg,(vi+ &) |x1 =3
This implies
[ H1(A1(g1()), B1(g1(Mx1) — H1(A1(g1(), B1(g1(:))x)) — (x1 — x|
<(1-qil@1— B +q1vi+&D) x A +1 Yt eq (vy + &)Y |y -2 - (3.10)
Now, since ¢; o N; is a pu;-strongly n;-accretive mapping in the first argument and is d;,s;
and p;-Lipschitz continuous in the first, second and third arguments, respectively and
S;,T;,G;:X; — C(X;) are Lg,-D-Lipschitz continuous, L r,-D-Lipschitz continuous and Lg,-D-
Lipschitz continuous, respectively and 7; is 7;-Lipschitz continuous, by using Lemma [2.4] and
Nadler [22, Theorem 2.21], we have
|1 —x7) = A1(p1 0 N1(u1,v2,w1) — 1 o N1(uy,vz,w1)| 7"
< [l =24 | I = A1 g1 {1 0 N1(u1,v2,w1) — 10 N1(ul,va,w1), Jg, (n1(x1,27)) ),
—A1q1{p10oN1(u1,v2,w1) — p1oN1(ul,v2,w1), Iy, (x1 — x7) = I, (1(x1,57)))4
+Aleq, |10 N1(uw1,v2,w1) — 1 0 N1(ul,va,w1)| T

< |log =24 |3 = Arqap o1 =2 |7+ A1g1]|p1 o N1(u,v2,w1) — P10 N1y, va,w1)||;
x (Jler = 157+ e, e[ §71) + A eq, 1 0 Nawa, vz, w1) = 1 0 Nawh, vz, w1) |
<l =4 19" = Magupllor =4 |1+ Aagada s - | x (aer =7

8 =2 1) + A g, T un —u |
< er =241 = Argapa |1 =4 |7 + 21¢1d1 D(S1(x1), S1(x))n

(e =)+ o = ) + AT eq d D(S1n), S1D!
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< [oer =2 |T" - Arqupa o1 — 2 |77 + AgadaLs, o1 = 2 [
x(laer =y |57+ 78 e = | 171) 4 A equd L8 on =T
<(1-MA1qip1 +A1q1d1Ls, x (1 + T‘{l_l)+ A({lcqldglﬁgi) |1 —x'1||‘fl.
This implies that
[l Ce1 — x4) = A1(p1 0 N1(u,v2,w1) — 10 N1y, va,w1))|
<(1-A1gqip1 +A1q1d1Ls, x (1 + 7(1“_1)+ /l‘lncqldtlhﬁgll)llql loe1 = || (8.11)
Also, we have
10 N1(u}, v2,w1) = P10 N1(uh,vp, w1, < s1]ve —vs ],
< 51D(To(x2), To(x5))2
<s1L7, ||xg—x'2||2 (3.12)
and
11 0 N1(uy, v9,w1) = 1 0 N1y, vh, wh)||; < pafwi —wy [
< p1D(G1(x1),G1(x))1
<pi1Lla, |lx1 - ;- (3.13)

Again, since ¢; o }{(; is (p;,y;)-mixed Lipschitz continuous, f;,g; is lf,,l ¢,-Lipschitz continuous,
respectively, we have

10 H1(F1(x1),x1) — P10 Hi(f1(x)), x| < p1f| Frlxr) = FrleD|; +v1fx =,
<pilp =2y +raflen -], (3.14)
and

|1 0 FH1(x1,81(x1)) — P10 Ha(xy, g1 )| < p1 |1 — 7 ||, +11] g1(x1) — 812D

<p1fxr -1l +rile e -2 (3.15)
From (3.5), (3.7)-(3.15), we have
[ P1(x1,22) — P1(xy, x5) || ; < mallxs =2 ||; + (L1dis1 L, +71) |22 — x5 |5 (3.16)
Similarly, we have
|Pa(a1, 29) = Polay, a5) ||, < ma|xe — a3 ||y + (LoAzse L, +r2) |21 —ai |- (3.17)

From and (3.17), we have

|P1Ce1,209) = Py, 2))|; + | Paes,x2) = Polay, ) | < B[l = oy || + ko[l wa — a5

<kffler -2l + [lx2—25fof,  (3.18)

where & = max{kq,ks}.
Now, define the norm | - ||« on X7 x X9 by

||(x1,x2)||* = ||x1||1 + ||x2 ||2, V (x1,%9) € X1 x Xo. (3.19)
Then we observe that (X1 x Xo, | - |x) is a Banach space. Hence, it follows from (3.4), and
that

|Qx1,x2) - Qx,x5)|, < [[(P1(x1,%2), Pa(x1,x2)) — (P1(x],x5), Pax],x)) |,

< || P1(x1,%2) — P1(x],x5), Pa(x1,x2) — Pa(x], x5)||
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< || P1(x1,22) — P1(xy, 25) ||| + | Pa(xc1, x2) — Palay, x5)||
= kf[|Ger =2y | + ooz — 5 [ o} (3.20)
Since k& = max{k1,ks} <1 by (3.2), it follows from that @ is a contraction mapping. Hence,

by Banach contraction principle, it admits a unique fixed point (x1,x2) € X1 x X9 such that
Q(x1,x9) = (x1,%9), which implies that

g1(x1) = Ry [H1(Ax(g1()), Ba(g1 (D)) = Arp o N1 (u1,v2,w1)
—¢1 0 Hy(f1(x1),21) + P10 H1(x1, g1(x1))]
ga(xg) = Ry %2 [Hy(An(g()), Ba(ga()) ) — Aagpa 0 Na(us, v1,w9)

— g 0 Hao(xg,g2(x2)) + Pa 0 Ha(falxs),x2)] .

It follows from Lemma [3.1] that (x;,u;,v;,w;) is a solution of SGVLIP (2.1). This completes the
proof. O

4. Mann Type Perturbed Iterative Algorithm, Convergence and
Stability Analysis
Lemma [3.1]is very important from the numerical point of view as it along with Nadler [22]

allows us to suggest the following Mann type perturbed iterative algorithm (in short, MTPIA)
for finding the approximate solution of SGVLIP (2.1).

Algorithm 4.1 (Mann Type Perturbed Iteration). For each i = 1,2, j € {1,2} \ i, given
(x?,u,0?,w?), where x? e X;, u?€8;(x)), v? e Ti(x)), w? € G;(x)) such that S;, T;,G; : X; — C(X;),
compute the sequences {x'}, {u’}, {v}'}, {w}} by the iterative schemes:
n ny..n nf.n n :Hn('»')'(/)n' 1 n
= (1-a™x] +a & —g1(x1)+RM§(xg’.)’f1 [H1(A1(g1()), B1(g1 (]
—A1¢1 o N1(ul,v5,wi) — p1 0 Hy(f1(a]), x7) + P10 Hi(xT, g1(x1))] } +a”el,
n+l

H (-, )= -n
xptr=(1-a")xh +a” {xy —gz(x;‘)+RMZ,(x¥,fj:2 [F2(A2(g2(-), Ba(ga(N)(x3)

—A2¢pz 0 No(ug,v],ws) — d2 0 Halxy, g2(xp)) + d2 0 Ha(fa(x3),x5)] } +a" ey,
u? € S;e!): luftt —ulll; = DS ), 8!,
o} € Ti(a]) : o] = vl < DTl ™), Ti(x));,
w? €G! w!™ —w?; < DG, Gy,
where n = 0,1,2,---, 1; > 0 are constants, M:L is an 5{;‘(-,-)-¢?-n’i‘-accretive mapping and
{(e7,e5)}ln=0 is sequence in X7 x X introduced to take into account possible inexact computation
which satisfies Y}Ln()lo letll = ,lanolo le5ll =0 and {a"} is a sequence of real numbers such that

a” €[0,1] and % a” = +oo.

n=0
Theorem 4.2. For i = 1,2,j € {1,2}\ i, let A;,B;,fi,gi : X;i — X;, Hi,n; : X; xX; — X,
N;:X; xX;xX; — X, be single-valued mappings. Let ¢, : X; — X; be a mapping satisfying
¢i(x; +x)) = ¢i(x;) + Pi(x)) for all x;,x; € X; and Ker(¢p;) = {0}, H; : X; x X; — X; be an a;p;-
symmetric 1;-accretive mapping with respect to A;(g;(-)) and Bi(g;()), (v;,¢;)-mixed Lipschitz
continuous and let n;,f; be 1;,lr,-Lipschitz continuous, respectively and g; be 6;-strongly
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n;-accretive and lg,-Lipschitz continuous. Let ¢;oN; be a u;-strongly n;-accretive mapping
in the first argument and d;,s; and p;-Lipschitz continuous in the first, second and third
arguments, respectively and ¢;oH; be (p;,y;)-mixed Lipschitz continuous. Let M; : X j x X; — 2Xi
be an H;(-,-)-¢;-n;-accretive mapping with respect to A; and B; and S;,T;,G; : X; — C(X;) be
such that S; is Lg,-D-Lipschitz continuous, T; is Lr,-D-Lipschitz continuous and G; is Lg,-
D-Lipschitz continuous. Let ¢7 be a single-valued mapping, 0} : X; x X; — X; be 77 -Lipschitz
continuous and H? : X; x X; — X; be an a} }-symmetric n};-accretive mapping. Further, let
M?:X;x X; — 2%i satisfy the followings:
Q) M (xj,):X;i— 2%i jsq HZ(,)-d7 -0} -accretive mapping for each xj € X,

(ii) (P;l OM?(xj,')i (Pi OMi(xJ','), }C?(Ai,Bi)(xi)—>9'Ci(A,-,Bi)(xi) as n — oo fOI‘ each Xj EX]',

xiEXi,
(1i1)
HIC)=ot =T HIC)—7 -1} & ok * * .k
IRy ts @ = Bagn g, OOl LY = 3%l ¥ 2%, 9% € X,
(4.1)
HECA=@r =2 DIt
i i _ i i n WA * . Yy .
IRriceynns @By a, @Ol srillag =y, V2™ € X, 2505 € X,
(r7)9i 1
(v) af —a;, B} — Bi, r} —ri, T — 1, as n — oo where, L;" := m

Further, suppose that {(x},a7,07,w})}ln=0 is a sequence in X; and define €" = €7 +¢€; for n =0 by

g{n .- n_nn _
el = & - [ -a™; +a (& - 1@+ Ryt T [Ha(A1@10), Bulg 1)

—A1¢p1oN1(@?,05,w) — 1o Hi(f1(&]), 1) + p1o Hi(x], g1(&]))] } +a"e]]
(-, )-pl-n _
e = 2" ~ [ - 0™z +a" (& - g2E) + Ry 4 [Ha(An(g2(), Ba(ga( )
—Agpg 0 No(iiy, 07, 5) — o 0 Ho(Fy, g2(%3)) + P2 0 Ha(fa(F3), %) | +a”ep]
€ S |artt —al|; = DEEH,S:E),
of € Ty(&P): |07 =07 ||, = DT @), Ti@!)s,
Wl e G@EN: |t -w?|, = DGiEMY),Gi(ED);. (4.2)
If there exist positive constants A1, s such that (3.2) holds then we have the following statements:

(a) The iterative sequence {(x},u?,v},w!)},=0 generated by MTPIA (4.1) converges to the
solution {(x;,u;,v;,w;)} of SGVLIP (2.1).

(b) For any sequences {(x},u?,07,w} }n>0, ’}LI?glo(X?,ﬁ?,E?,w?) = (xj,ui,vi,w;) if and only if

1°

2

i
lim €" =0, where €" = €7 +€;, for all n = 0.
n—oo

Proof. SGVLIP has a solution (x;,u;,v;,w;) by Theorem [3.2] From Lemma [3.1], we have
x1=(1—a")xy +a" g - g1(en) + By (790 [31(A1(21()), B1(g1(-))x1)
—A1¢10N1(u1,v9,w1) — P10 Hi(f1(x1),%1) + P10 Hilxg, g1(x1))]},
xo = (1—a")xg +a"{xg — gaug) + By 227 [Ta(As(ga (), Ba(g2())(x2)

—Agpo 0 No(ug,v1,we) — o 0 Haolxa, g2(x2)) + o 0 Ha(falxa), x2)]}. (4.3)

Commaunications in Mathematics and Applications, Vol. 12, No. 1, pp. , 2021



44 Convergence and Stability of a Perturbed Mann Iterative Algorithm ... : J. K. Kim et al

Now, from MTPIA (4.1), (4.3) and using the same arguments used in estimating (3.7)-(3.15), we
have
g.cn(.’.)_ n_nn
ot =, = L= 0™ o = 1)+ B 578 36104110, B D)
— M1 oN1(ul, vy, w) — P10 Hi(f1(x]), x7) + P10 Hi(x], g1(x])]} +a” el

= [(= a0 far - gaen) + Ry (90 31 Ax (1)), Ba(ga(D)x)

—A1¢p10oN1(u1,v2,w1) = 10 Hi(f1(x1),21) + 1 °9f1(x1,g1(x1))]}] B

< e sy + a6} ) a1,
g_(n(_,‘)_ n_nn
+a" ||RM%(xg,f’l;L?l [j{l(Al(g1(')),Bl(g1(')))(xil) —A1p1oN1(uf,vg,w7)
— 10 FH1(f1(x]),x7) + P10 Hi(x, g1(x7))

F (-, )-pT -
~Ryghon S [H1(A1(10), Bilg () ~ dagy o Ni(uz, vz, w1)

— P10 FH1(f1(x1),21) + 10 %1(x1,g1(x1))] I,

g_cn(_’.)_ n_nn
+a" [Byyho T #0041 @100, Bu(gr ) ~ Aapr o Na(ug, vz, 1)

— 10 Hq(f1(x1),x1) + P10 %1(x1,g1(x1))]

I

~ Ry [H1(A1(10), Bilg (D) = dagr o Ni(un, vz, w1)

— 1o Ha(f11),x1) + 1 0 Ha(wr, g1G61) ||
0" Ryt o4 [31(A1 (810, Ba(ga (D)) = Axby o N, va, 1)
— 10 H1(F1(x0), 1) + b1 0 Hi (1, 81x0))]

Ry (T 31(A1(81()), Br(g1 (@) — Aap o N1, v, 1)

—p1oHi(f1(x1),x1) + P10 j'cl(xlagl(xl))j |l +a”{let,
=1 -a") o] —x1]|; +a” || (] —21) - (g106D) — g1(x));

+a"L|||H1(A1(g1()), B1(g1(:))(x]) = A1¢p1 o N1(uT, vy, w])

— 10 Ha(f(x),x7) + P10 Halxy, g1(x7))

— [H1(A1(g1()), B1(g1(:))(x1) — A1p1 0 N1(u1,v2,w1)
—p1 0 Ha(f1(x1),x1) + P10 Hixr, g1(x1))] |
+a"r||lxg — 22y +a" by, +a” e,

<1 —a")”x’l‘ —ac1||1 +a”

ml [l =21y + (L3 A1, + ) | - ol

+a”b7ul +a”||e’1L||1, (4.4)
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where

n g_fn(',.)_ n_nn
by, = ”RM%L(xz,f;)jl:l [H1(A1(g1(-), B1(g1()(x1) = A1¢p1 0 N1(u1,v2,w1)

— 10 Ha(f1(x1),x1) + P10 H1(x1, 81(x1))]
—Rﬂg}ﬁx;?ifl [H1(A1(g1(-), B1(g1()(x1) — A1¢p1 0 N1(u1,v2,w1)
—p1oH1(f1(x1),21) + P10 Hi(x1,81(x1))] | ;.-

Similarly, we obtain

g+ —x2||2 =1 —a”)||xg —x2||2 "‘an[mrzl”xg —x2||2 + (Lg/1232£T1 +’J21)||xr11 —X1 ”1]

B
+a”b”]‘,12 +a”||e’2‘||2, (4.5)
where

:}(n -)- n_nn
by, = ||RMZL§x1),-(f,2/1:2 [H2(A2(g2()), Ba(g2(-))x2) — Aoz 0 No(ug,v1,ws)
—pg 0 Halxg, g2(x2)) + g 0 Ha(fa(xa), x2)]
— Ry [35(Ag(g2()), Ba(g2())(x2) — Aaba 0 Na(ua, v1,w2)
—¢pg 0 Ha(x2, g2(x2)) + P2 0 Ha(falxa),x2)] | -
It follows from (4.4) and (4.5) that
B —x1||1 B —x2||2 <[1-a"(1=kD||2] — 21| + [1-a"A - kD12 — 22
+a” (b, + b, + le]ls+ ez ])
<[1-a"A-EMI([la] — ey + |23 —22[5)
+a”(byy, + b4, + e+ ez ), (4.6)
where
ki i=my +{L"Ajs;Lr; + 17,
= [(1-qibi+qilg, xA+777 )+cqllq‘)1/q‘
+LH{(1-qila; = B) +qi(vi+ &) x A+ Yt g, (vi +E)T)
+ (1= Aiqips + higidiLs, x A+ 18D+ A% ddi L)V

1/q;

+Aipila, +pi(L+1p)+yi(1+1g)}],
k™ = max(k7,k5) and from Lemma , bh, —0asn—oco.

Clearly, for &' = %(k +1) € (k,1), there exists Ny = 1 such that 2" < %’, for all n = Nj.
Therefore, for any n = Ny,

[+ g™ = xally = 01— Q= IO =+ 1 v}
ra by, + b, + e, + ek}
= [1-a" A=Wt = | + 1 — )

10, + 0, + el +lle5 ]}

+a™(1-k') T , k' <1.
Let (" = ||«} —x1]|; + |2 —x2] 5, A" = 164 bl :1”21,”1+”e2” i and 0™ = a™(1-k’'). Then, we have

M =(1-0™ + 0"
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Using Lemma , we have (" — 0 as n — oo (since by Lemma ban and b”M2 both tend to
0 as n — o0o). This implies x] — x1, x; — x2 as n — co. Since S; is L, — D-Lipschitz continuous,
it follows from MTPIA [4.1]that

luf —uill; = DS, Silxi))i < L, [l — i
This implies that u? — u; as n — co. Further, claim that u; € S;(x;). We have
d(ui,Si(x)) < ||u; —ul ||, +d@],Si(x:);
< [lui —ul]l; + DSi}), Six));

< lwi=uil;+Ls,

x?—xi”i — 0 as n — oo.

Since S;(x;) is compact, we have u; € S;(x;). Similarly, we can prove that v; € T;(x;),w; € G;(x;).

Thus the approximate solution (x7,u”,v?,w!) generated by MTPIA (4.1) converges strongly to

a solution (x;,u;,v;,w;) of (2.1).

Now, we demonstrate (b). By using (4.2) and (4.3), and proceeding as in (4.6) we deduce that
[ty = 27 - (-0 + 0 - 1)

HEC)-p1 - _ n o~n -
Mil(x;,f}l?l [H1(A1(g1()), B1(g1(N&]) — A1¢p1 0 N1(@], 03, w07)

— 1 0 H1(F1ED, BN + 10 H1 (&}, g1EN] } +a"el] |,

+[|[(1—a™z] +a™{x] - g1(x])

+Bybon 7 30418100, BilgrONE) ~ dar o Na(at, 05, 07)

— 10 (f1ED),ZD) + 10 H1(2],81(&1)] } +ael] -1,
<el+|[Q-a™a] +a™x] — g1(x])

FC)-pT-nT _ “n -n -
M%L(jg’_(f}hnl [H1(A1(g1()), B1(g1(NE]) — A1¢p1 0 N1(a}, 05 ,w07)

~p10H1(F1(ED),X]) + P10 H1(Z], g1(RT)]} +a"e]]
— [ -a™x1+a™{x1 — g1(x1)

PRI 30, (A1(g1(), B1(g1()x1) ~ Ay o Ni(us, vz, w1)

—¢10H1(f1x1),x1) + p1o Hilxr,g1x )]} | ;
<ef+(1-a"|&] —x1][; +a" [m] 2] — a1

+R

+R

+(LiAs1L7, +71) %5 —x2,] +a" Ry, +a” el 4.7
where
Bigy = Ry it [31(A1(g1(), Ba(gr (0w = Ay o Na(us, vz, 1)
— 1 0 H1(f1(x1),21) + 10 H1(x1, g1(x1))]
_Rz‘j}ix;%fl [F1(A1(g1(-), B1(g1(:N)(x1) — A1¢p1 0 N1(u1,v2,w1)
—p1 0 Ha(f1(x1),21) + 10 Hylxr, g1(x1))] |-
Similarly, we have
|75+~ x2]ly < €f + (1 a™)||75 — 22y +a" [m3 25 — 22,
C(Thasrtr, + )| -]+ @B, +a”esl s
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where
Bty = Rty [36a(A(ga(), Ba(ga(0)(wa) ~ Azthy 0 Naua, v1,2)
—pg 0 Halxg, g2(x2)) + g 0 Ha(fa(x2), x2)]
— Ry [5(Ag(ga()), Ba(@a())(x2) — dagpg 0 Na(ug,v1,w2)

—(pg 0 Holxra, g2(x2)) + 2 0 Ha(falx2),x2)] || -

By I]:;bmmah h”M1 and hnM2 both tend to 0 as n — oco. Hence from (4.7) and (4.8), for all
n =Ny, we have

127 =21l + 125 — 20lle < [1-a™(1 - EDHIEY —21ll1 + 125 — xall2}
A L PR P Py,
+a™(1-kH)—= 2 +e”. (4.9)
(1-k")
. {3, +h%, +leTl1+le]ll2}
Suppose that lim €" = 0. Let {" = [x] — %1ll1 + X5 — %2ll2, 7" = M M%I_k,l) 2~ an

n—oo
o™ =a™(1-Fk'). Then we have

M sA-0™ 0"
Using Lemma 2.18, we have {" — 0 as n — co. This implies X} — x1,%; — x2 as n — oo.
Proceeding as in the convergence of the sequence of (u7, v?, w?), it follows that (&,07,w?) —
(ui,v;,w;) as n — oco.

Conversely suppose that (x7,a7,07,w?) — (x;,u;,v;,w;) as n — co. In view of (4.9), we have
€" =€ +e;
-n+l -n+l / - =
<1277 =2l + 1%57 —x2ll2 +[1—a" (1 = )NIET —x1ll1 + 125 —x2ll2}
{han + hnM2 +llels+lleglie}

+a” 1_k/ s Vn =Ny.
a”™( ) A=) n=No
Therefore, we have r}im €" = 0. This completes the proof. O
—00

Remark 4.3. Theorem extend, improve and unify Theorem 3.1 of Fang and Huang [7]],
Theorem 4.1 of Fang et al. [8], Theorem 4.1 of Huang [10], Theorem 2.1 of He, Lou and He [9]],
Theorem 3.1 of Kazmi and Bhat [13]], Theorem 3.5-3.8 of Liu, Kang and Ume [20], Theorem 4.3 of
Bhat and Zahoor [[1], Theorem 4.2 of Bhat and Zahoor [2], Theorem 4.1 of Liu et al. [21]. The class
of H(-,-)-¢p-n-accretive operator is much wider and more general than those of (A,n)-accretive
operator in [5], (H,n)-monotone operator in [8] and H(-,-)-accretive operator in [16].

5. Conclusion

In this paper, we consider a new class of variational inclusions which is called a system of
generalized variational-like inclusion problem involving H(-,-)-¢-n-accretive operator in real
g-uniformly smooth Banach spaces. By using the new resolvent operator technique, we prove
the existence of solution for this system of inclusions. And also, we discuss the convergence
and stability analysis of the iterative sequence generated by perturbed Mann iterative scheme
with errors. The our main Theorem is an extension, improvement and unification of the
well-known results (see [[7], [8], [9l, [[100, [13[l, [20], [21]).
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