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Abstract. For a finite undirected graph G(V ,E) and a non empty subset σ ⊆ V , the switching of
G by σ is defined as the graph Gσ(V ,E′) which is obtained from G by removing all edges between
σ and its complement V -σ and adding as edges all non-edges between σ and V -σ. For σ = {v}, we
write Gv instead of G{v} and the corresponding switching is called as vertex switching. We also call it
as |σ|-vertex switching. When |σ| = 2, it is termed as 2-vertex switching. If G ∼=Gσ, then it is called
self vertex switching. A subgraph B of G which contains G[σ] is called a joint at σ in G if B−σ is
connected and maximal. If B is connected, then we call B as a c-joint and otherwise a d-joint. A graph
with no cycles is called an acyclic graph. A connected acyclic graph is called a tree. In this paper, we
give necessary and sufficient conditions for a graph G, for which Gσ at σ= {u,v} to be connected and
acyclic when uv ∈ E(G) and uv ∉ E(G). Using this, we characterize trees with a 2-vertex self switching.
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1. Introduction
For a finite undirected simple graph G(V ,E) with |V (G)| = p and a non-empty set σ⊆ V , the
switching of G by σ is defined as the graph Gσ(V ,E′) which is obtained from G by removing all
edges between σ and its complement, V −σ and adding as edges all non-edges between σ and
V −σ. Switching has been defined by Seidel [1,4] and is also referred to as Seidel switching. We
also call it as |σ|-vertex switching. When |σ| = 2, we call it as 2-vertex switching [5]. Two graphs
are said to be switching equivalent if they belong to the same switching class [2]. A graph G
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is said to be a connected graph if every pair of vertices are joined by a path in G. A maximal
connected subgraph of G is called a connected component or simply a component of G. A graph
G is called disconnected if it is not connected. Clearly, a graph G is disconnected if and only if G
has more than one component. The number of components of a graph G is represented by k(G).
A graph which contains no cycles is called an acyclic graph. A connected acyclic graph is called
a tree. Any graph without cycles is a forest. Thus the components of a forest are trees.

In [6] the concept of branches and joints in graphs were introduced. A subgraph B of G which
contains G[σ] is called a joint at σ in G if B−σ is connected and maximal. If B is connected,
then we call B as a c-joint and otherwise a d-joint. B is called a total joint if B is the join of σ
and B−σ, that is B =σ+ (B−σ) [3,6].

For the graph G given in Figure 1.1, Gσ is given in Figure 1.2, G[σ] is given in Figure 1.3
and G −σ is given in Figure 1.4, where σ = {u,v}. The c-joint, d-joint and the total joint are
given in Figures 1.5, 1.6 and 1.7, respectively.

Figure 1.1. G Figure 1.2. Gσ Figure 1.3. G[σ] Figure 1.4. G−σ

Figure 1.5. c-joint Figure 1.6. d-joint Figure 1.7. Total joint

2-Vertex Switching of Acyclic joints in Graphs
Now, consider the following results, which are required in the subsequent sections.

Theorem 1.1 ([6]). If B1,B2, . . . ,Bk are the distinct joints at σ in G such that G =
k⋃

i=1
Bi where

k ≥ 2, then Gσ =
k⋃

i=1
Bσ

i .

Theorem 1.2 ([5]). Let G be a graph of order p ≥ 3 and let σ= {u,v} be a subset of V (G) such
that uv ∈ E(G). Let B be a c-joint at σ in G. Then Bσ is a c-joint and acyclic at σ in Gσ if and
only if B−σ is connected, acyclic and {dB(u),dB(v)}= {|V (B)|−1, |V (B)|−2}.
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Theorem 1.3 ([5]). Let G be a graph of order p ≥ 4 and let σ= {u,v} be a subset of V (G) such
that uv ∉ E(G). Let B be a c-joint at σ in G. Then Bσ is a c-joint and acyclic if and only if B−σ
is connected, acyclic, |V (B)| ≥ 4 and dB(u)= dB(v)= |V (B)|−3.

Theorem 1.4 ([5]). Let G be a graph of order p ≥ 3 and let σ= {u,v} be a subset of V (G) such
that uv ∉ E(G). Let B be a c-joint at σ in G. Then Bσ is a d-joint and acyclic if and only if B−σ is
connected, acyclic and either dB(u)= dB(v)= |V (B)|−2 or {dB(u),dB(v)}= {|V (B)|−2, |V (B)|−3}.

Theorem 1.5 ([5]). Let G be a graph of order p ≥ 3 and let σ= {u,v} be a subset of V (G) such
that uv ∉ E(G). Let B be a d-joint at σ in G. Then Bσ is a c-joint and acyclic at σ in Gσ if and
only if B = 3K1.

Theorem 1.6 ([5]). Let G be a graph of order p ≥ 3 and let σ= {u,v} be a subset of V (G) such
that uv ∉ E(G). Let B be a d-joint at σ in G. Then Bσ is a d-joint and acyclic at σ in Gσ if and
only if B = K1 ∪K2, where K1 is either u or v.

Theorem 1.7 ([5]). If σ= {u,v}⊆V is a 2-vertex self switching of a graph G, then

dG(u)+dG(v)=
{

p if uv ∈ E(G)
p−2 if uv ∉ E(G) .

2. Main Results
2-Vertex Self Switching of Trees
Observation 2.1. If G is a connected graph and let σ = {u,v} be a subset of V (G) such that
uv ∈ E(G). If B1,B2,B3, . . . ,Bk are the k joints at σ in G, then each joint Bi at σ in G is a c-joint,
1≤ i ≤ k.

Consider the graph G given in Figure 2.1. The graph G−σ is the union of three components
K1, P2 and P3 which is given in Figure 2.2. The three joints B1, B2 and B3 are given in Figures
2.3, 2.4 and 2.5, respectively. Clearly, B1, B2 and B3 are c-joints.

Figure 2.1. G Figure 2.2. G−σ Figure 2.3. B1

Figure 2.4. B2 Figure 2.5. B3
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Theorem 2.2. Let G be a connected graph of order p ≥ 3 and let σ= {u,v} be a subset of V (G)
such that uv ∈ E(G). Then Gσ is connected and acyclic if and only if B−σ is connected, acyclic
and {dB(u),dB(v)}= {|V (B)|−2, |V (B)|−1} for all joints B at σ in G.

Proof. Let G be a connected graph and let σ= {u,v} be a subset of V (G) such that uv ∈ E(G).

Let B1,B2,B3, . . . ,Bk be the k joints at σ in G. Then G =
k⋃

i=1
Bi and Gσ =

k⋃
i=1

Bσ
i . Since G is

connected, by Observation 2.1, each Bi is connected and hence a c-joint for 1≤ i ≤ k. Suppose Gσ

is connected and acyclic. Then each Bσ
i is connected and hence a c-joint and acyclic for 1≤ i ≤ k.

By Theorem 1.2, each Bi −σ is connected, acyclic and {dBi (u),dBi (v)}= {|V (Bi)|−1, |V (Bi)|−2}
for 1≤ i ≤ k.

Conversely, let B−σ be connected, acyclic and {dB(u),dB(v)} = {|V (B)| −1, |V (B)| −2} for
all joints B at σ in G. By Theorem 1.2, each Bσ is a c-joint and acyclic. Since Gσ =∪Bσ and
uv ∈ E(Gσ), Gσ is connected and acyclic.

Observation 2.3. Let G be a connected graph and let σ= {u,v} be a subset of V (G) such that
uv ∉ E(G). If B1,B2, . . . ,Bk are the k joints at σ in G, then each Bi is either a c-joint or a d-joint
for 1≤ i ≤ k.

Consider the graph G given in Figure 2.6. The graph G −σ is the union of P2 and P3

which is given in Figure 2.7. The joints B1 and B2 at σ are given in Figure 2.8 and Figure 2.9,
respectively. Here B1 is a d-joint and B2 is a c-joint at σ in G.

Figure 2.6. G Figure 2.7. G−σ Figure 2.8. B1 Figure 2.9. B2

Theorem 2.4. Let G be a connected graph of order p ≥ 4 and let σ= {u,v} be a subset of V (G)
such that uv ∉ E(G). Let k ≥ 1 be the number of joints at σ in G. Then Gσ is connected and
acyclic if and only if there exists at least one c-joint at σ in G, B−σ is connected and acyclic for
each joint B at σ in G, dB(u)= dB(v)= |V (B)|−3 and |V (B)| ≥ 4 for exactly one c-joint B = B∗,
{dB(u),dB(v)}= {|V (B)|−2, |V (B)|−3} for all c-joints B ̸= B∗ and B = K1 ∪K2 for all d-joints B,
if exists, where K1 is either u or v.

Proof. Let G be a connected graph and σ = {u,v} be a subset of V (G) such that uv ∉ E(G).
By Observation 2.3, G is connected implies that each joint at σ in G is either a c-joint or a
d-joint. Let BC1 ,BC2 , . . . ,BCm be the m c-joints and Bd1 ,Bd2 , . . . ,Bdn be the n d-joints at σ in G

so that m+n = k. Then by Theorem 1.1, G =
( m⋃

i=1
Bci

)
∪

( n⋃
j=1

Bd j

)
and Gσ =

( m⋃
i=1

Bσ
ci

)
∪

( n⋃
j=1

Bσ
d j

)
.

By Observation 2.3, each Bσ
ci

is either a c-joint or a d-joint at σ in Gσ for 1 ≤ i ≤ m, and
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each Bσ
d j

is either a c-joint or a d-joint at σ in G for 1 ≤ j ≤ n. Without loss of generality,
let Bσ

c1
,Bσ

c2
, . . . ,Bσ

cr
,Bσ

d1
,Bσ

d2
, . . . ,Bσ

ds
be the c-joints at σ in Gσ and Bσ

cr+1
,Bσ

cr+2
, . . . ,Bσ

cm
,Bσ

ds+1
,

Bσ
ds+2

, . . . ,Bσ
dn

be the d-joints at σ in Gσ.

Case 1. B is a c-joint at σ in G and Bσ is a c-joint at σ in Gσ.
Then B = Bci , 1 ≤ i ≤ r. By Theorem 1.3, B − σ is connected, acyclic, |V (B)| ≥ 4 and
dB(u) = dB(v) = |V (B)| −3. If r > 1, then there exist c-joints B1 and B2 at σ in G such that
dB1(u)= dB1(v)= |V (B1)|−3 and dB2(u)= dB2(v)= |V (B2)|−3. dB1(u)= |V (B1)|−3 implies that
u is non-adjacent to only one vertex, say a, of V (B1)−σ in B1 and hence u is adjacent to the
unique vertex a in Bσ

1 . In a similar argument, v is adjacent to the unique vertex, say b, in Bσ
1 ,

u is adjacent to the unique vertex, say c, in Bσ
2 and v is adjacent to the unique vertex, say d,

in Bσ
2 . Since B1 −σ and B2 −σ are connected, there exist paths a− b and c−d in B1 −σ and

B2 −σ, respectively and hence in Bσ
1 and Bσ

2 , respectively. Now, the edge ua, the path a−b, the
edge bv is a u−v path P in Bσ

1 and hence in GσȦlso, the edge uc, the path c−d and the edge
dv form a u−v path P ′ in Bσ

2 and hence in Gσ. Thus P and P ′ are two distinct u−v paths in
Gσ and hence Gσ contains a cycle, which is a contradiction to Gσ is acyclic. Therefore, r = 1 and
hence dB(u)= dB(v)= |V (B)|−3 and |V (B)| ≥ 4 for exactly one c-joint B = B∗ at σ in G.

Case 2. B is a c-joint at σ in G and Bσ is a d-joint at σ in Gσ

Here B = Bci , 2≤ i ≤ m. By Theorem 1.4, B − σ is connected, acyclic and either dB(u)= dB(v)=
|V (B)| −2 or {dB(u),dB(v)} = {|V (B)| −2, |V (B)| −3}. If dB(u) = dB(v) = |V (B)| −2, then both u
and v are isolated vertices in Bσ since uv ∉ E(G). This implies that B−σ is a component of Gσ

which is a contradiction to Gσ is connected. Hence {dB(u),dB(v)}= {|V (B)|−2, |V (B)|−3}.

Case 3. B is a d-joint at σ in G and Bσ is a c-joint at σ in Gσ.
In this case, B = Bσ

d j
, 1≤ j ≤ s. By Theorem 1.5, B = 3K1. This implies that K1 is a component

of G which is a contradiction to G is connected. Hence there do not exist any joint B at σ in G.

Case 4. B is a d-joint at σ in G and Bσ is a d-joint at σ in Gσ.
Here B = Bd j , 1≤ j ≤ n. By Theorem 1.6, B = K1 ∪K2, where K1 is either u or v.
From Cases 1, 2, 3 and 4, we see that B−σ is connected and acyclic for all joints B at σ in
G, dB(u) = dB(v) = |V (B)| −3 and |V (B∗)| ≥ 4 for exactly one c-joint B = B∗, {dB(u),dB(v)} =
{|V (B)|−2, |V (B)|−3} for all c-joints B ̸= B∗ and B = K1 ∪K2 for all d-joints B, if exists, where
K1 is either u or v.
Conversely, let B−σ be connected and acyclic for each joint B at σ in G, d∗

B(u)= dB(v)= |V (B)|−3
and |V (B)| ≥ 4 for exactly one c-joint B = B∗, {dB(u),dB(v)}= {|V (B)|−2, |V (B)|−3} for all c-joints
B ̸= B∗ and B = K1∪K2 for all d-joints B, if exists, where K1 is either u or v. By Theorem 1.3,
B∗σ is an acyclic c-joint at σ in Gσ. Hence there exists a u− v path in B∗. Let B ̸= B∗ be a
c-joint at σ in G. Then {dB(u),dB(v)} = {|V (B)|−2, |V (B)|−3}. By Theorem 1.4, Bσ is a d-joint
and acyclic at σ in Gσ. This implies that either dBσ(u)= 0 or dBσ(v)= 0. If B is a d-joint, then
B = K1 ∪K2 where K1 is either u or v. Now, Bσ = K1 ∪K2, where K1 is either u or v and hence
a d-joint at σ in Gσ.
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Each Bσ is acyclic, exactly B∗σ is a c-joint at σ in Gσ and all other joints at σ in Gσ are d-joints
implies that Gσ is acyclic. B∗σ is a c-joint at σ in Gσ implies that there exists a u−v path in
Gσ. To prove Gσ is connected. Let x and y be any two vertices in Gσ. We consider the following
three cases.

Case 1. {x, y} ̸= {u,v}.

Subcase 1.1. x and y are in different joints at σ in Gσ.
Let Bσ

1 and Bσ
2 be two joints at σ in Gσ such that x ∈V (Bσ

1 ) and y ∈V (Bσ
2 ). Since B∗σ is the only

c-joint at σ in Gσ, we have the following possibilities:

Subcase 1.1.a. Bσ
1 is a c-joint and Bσ

2 is an d-joint at σ in Gσ.
Then Bσ

1 = B∗σ . The paths x−u and u−v in B∗σ and either the v− y path in Bσ
2 if dBσ

2
(u)= 0 or

the u− y path in Bσ
2 if dBσ

2
(v)= 0 form ax− y walk in Gσ and hence there is a x− y path in Gσ.

Subcase 1.1.b. Bσ
1 and Bσ

2 are d-joints at σ in Gσ

If dBσ
1
(u)= 0 and dBσ

2
(u)= 0, then x−v and v− y form a x− y path in Gσ.

If dBσ
1
(v)= 0 and dBσ

2
(u)= 0, then the x−u path in Bσ

1 , u−v path in B∗σ and the v− y path in
Bσ

2 form a x− y path in Gσ.

Subcase 1.2. x and y are in the same joint at σ in Gσ

Let x, y ∈ V (Bσ
i ), 1 ≤ i ≤ k. Clearly x, y ∈ V (Bσ

i )−σ. Since Bσ
i −σ is connected, there is a x− y

path in Bσ
i −σ and hence in Bσ

i .

Case 2. {x, y}= {u,v}.
Then x, y ∈V (B∗σ). Since B∗σ is connected, there is a x− y path in B∗σ and hence in Gσ.

Case 3. x = u and y ̸= v.
Then x ∈ V (B∗σ). Since B∗σ is connected, there is a x− v path in B∗σ and hence in Gσ. Since
y ̸= v, y ∈V (B) such that B may be a c-joint or a d-joint.

Subcase 3.a. B is a c-joint
Then there exist a v− y path in Bσ and hence a x− y path in Gσ.

Subcase 3.b. B is a d-joint
Here B = K1 ∪ K2 where K1 is either u or v. If K1 = u = x, then K2 is the edge vy. Now
Bσ = K1∪K2 where K1 is v and K2 is the edge uy which is same as xy and hence there is ax− y
path in Gσ.
If K1 = v, then K2 is the edge xy. This implies that Bσ = K1 ∪K2 where K1 is x = u and K2 is
vy. Now x−v path in B∗σ and vy edge form a x− y path in Gσ.
From Cases 1, 2 and 3, Gσ is connected. Hence the theorem is proved.

Notation 2.5. Let G be a connected graph and let {v1,v2, . . . ,vn} ⊆ V (G) such that
G[{v1,v2, . . . ,vn}] = Pn and each edge of Pn is a bridge in G. Without loss of generality, let
Pn be v1v2 . . .vn. Let Bi1 ,Bi2 , . . . ,Biri

be the r i (> 0) branches at vi in G, 1≤ i ≤ n. We denote the
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graph G by Pn(v1−vn)

( r1⋃
i=1

B1i ,
r2⋃

i=1
B2i , . . . ,

rn⋃
i=1

Bni

)
. If there is no branch at v j , then we put 0 in the

place
r1⋃

i=1
B j i .

Example 2.6. Consider the graph G given in Figure 2.10. It can be denoted by P6(u−v)(2P2,C3,P2,
C4∪P2,2P2∪P3) or P6(u−w)(2P2,C3,P2,C4∪P2,2P2,P2) or P7(u−x)(2P2,C3,P2,C4∪P2,2P2,0,0).

Figure 2.10. G

Theorem 2.7. Let G be a connected acyclic graph of order p ≥ 4 and let σ= {u,v} be a subset of
V (G). Then G has a 2-vertex self switching at σ in G if and only if one of the following holds:

(i) G = Bm,n where m+n = p−2 is the number of c-joints at σ in G, uv is an edge in G and u
and v are the central vertices of G.

(ii) G is either P4(u−v)(mP2,0,0,nP2) or P3(u−v)(mP2,P2,nP2) where p−4= m+n is the number
of d-joints at σ in G, u and v are end vertices of both P3 and P4 and uv is not an edge
of G.

Proof. Let G be a connected acyclic graph and σ= {u,v} be a subset of V (G). Let B1,B2, . . . ,Bk

be the k joints at σ in G. Then by Theorem 1.1, G =
k⋃

i=1
Bi and Gσ =

k⋃
i=1

Bσ
i . Let σ be a 2-vertex

self switching of G. Then G ∼=Gσ. We consider the following two cases.

Case 1. uv ∈ E(G).
Since G is connected and uv ∈ E(G), by Observation 2.1, each Bi is a c-joint, 1 ≤ i ≤ k. Since
G is acyclic, each Bi is acyclic, 1 ≤ i ≤ k. By Theorem 1.2, Bi −σ is connected, acyclic and
{dBi (u),dBi (v)}= {|V (Bi)|−1, |V (Bi)|−2}, 1≤ i ≤ k. Without loss of generality, let B1 be a joint
at σ in G such that dB1(u)= |V (B1)|−1 and dB1(v)= |V (B1)|−2.
If |V (B1)| ≥ 4, then dB1(u)≥ 3 and dB1(v)≥ 2. uv ∈ E(G) and dB1(u)≥ 3 implies that there exist
at least two vertices, say a and b, in V (B1)−σ such that u is adjacent to a and b in B1. Since
B1 −σ is connected, there is an a− b path in B1 −σ and hence in B1. Now the edge ua, the
path a−b and the edge bu form a cycle in B, which is a contradiction to G is acyclic. Therefore,
|V (B1)| = 3. This implies that dB1(u)= 2 and dB1(v)= 1 and hence B1 = P3.
Let B2 be a joint at σ in G such that dB2(u)= |V (B2)|−2 and dB2(v)= |V (B2)|−1. Then as before
B2 = P3 where dB2(u)= 2 and dB2(v)= 1. Hence, each Bi = P3 in which {dBi (u),dBi (v)}= {1,2},

1 ≤ i ≤ k and hence either u or v is an end vertex of P3. Therefore, G =
k⋃

i=1
P3 = Bm,n, where
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m+n = k and u and v are central vertices of G. Clearly, dG(u)+dG(v)= m+n+2. By Theorem 1.7,
dG(u)+dG(v) = p. This implies that m+n = p−2, which is the number of c-joints at σ in G.
Thus (i) is proved.

Figure 2.11. G = B4,5

Case 2. uv ∉ E(G).
Let B1,B2, . . . ,Br the r c-joints and Br+1,Br+2, . . .,Bk be the (k− r) d-joints at σ in G. Since
G ∼=Gσ and Gσ is connected and acyclic, G is also connected. By Theorem 2.4, there exist at least
one c-joint at σ in G, B−σ is connected and acyclic for each joint B at σ in G, dB(u)= dB(v)=
|V (B)|−3 and |V (B)| ≥ 4 for exactly one c-joint B = B∗, {dB(u),dB(v)}= {|V (B)|−2, |V (B)|−3} for
all c-joints B ̸= B∗ and B = K1 ∪K2 for all d-joints B, if exists, where K1 is either u or v. Let
B1 = B∗. If |V (B∗)| ≥ 5, then dB∗(u) = dB∗(v) ≥ 2. This implies that there exists at least two
vertices, say a and b, in V (B∗)−σ which are adjacent to u in B∗ and at least two vertices, say c
and d, in V (B∗)−σ which are adjacent to v in B∗. Since B∗−σ is connected, there exist paths
a− b and c−d in B∗−σ and hence in B∗. Then the edge ua, the path a− b and the edge bu
form a cycle in B∗ and hence in G, which is a contradiction to G is acyclic. Hence |V (B∗)| = 4.
This implies that dB∗(u)= dB∗(v)= 1. All possible connected acyclic graphs on four vertices are
given in Figure 2.12 and Figure 2.13. Clearly, Pσ

4
∼= P4 and Kσ

1,3
∼= K1,3 where u and v are end

vertices and hence P4 and K1,3 are self switching joints at σ.

Figure 2.12. B∗ = P4 Figure 2.13. B∗ = K1,3

Now, {dBi (u),dBi (v)}= {|V (Bi)|−2, |V (Bi)|−3}, 2≤ i ≤ r. If |V (Bi)| ≥ 4, then either dBi (u)≥ 2 and
dBi (v) ≥ 1 or dBi (u) ≥ 1 and dBi (v) ≥ 2. If either dBi (u) ≥ 2 or dBi (v) ≥ 2 then as before we get
a cycle in G, which is a contradiction to G is acyclic. If |V (Bi)| = 3, then either dBi (u)= 1 and
dBi (v)= 0 or dBi (u)= 0 and dBi (v)= 1. This implies that B = K1 ∪K2, where K1 is either u or v
and hence Bi is a d-joint which is a contradiction to Bi is a c-joint, 2≤ i ≤ r.
Thus there exists exactly one c-joint B∗ at σ in G which is either P4 or K1,3, where u and v are
the end vertices and each of the remaining (k−1) d-joints is K1∪K2 where K1 is either u or v.
Let m be the number of d-joints with K1 as u and n be the number of d-joints with K1 as v so
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that m+n = k−1. Clearly, dG(u)= m+1 and dG(v)= n+1 and hence dG(u)+dG(v)= m+n+2.
By Theorem 1.7, dG(u)+dG(v)= p−2 which implies that m+n = p−4, the number of d-joints.
Therefore, G is either P4(u−v)(mP2,0,0,nP2) or P3(u−v)(mP2,P2,nP2) where m+n = p−4 is the
number of d-joints at σ in G and u and v are end vertices of P3 and P4.

Figure 2.14. P4(u−v)(4P2,0,0,5P2)

Figure 2.15. P3(u−v)(7P2,P2,6P2)

Thus from Cases 1 and 2, if uv ∈ E(G), then G = Bm,n where n+m = p−2 is the number of
c-joints at σ in G and u and v are central vertices of G and if uv ∉ E(G), then G is either
P4(u−v)(nP2,0,0,mP2) or P3(u−v)(mP2,P2,nP2), where n+m = p−4 is the number of d-joints at
σ in G and u and v are end vertices of both P3 and P4.
Conversely, let G = Bm,n where n+ m = p − 2 is the number of c-joints at σ = {u,v} in G,
where u and v are central vertices and uv ∈ E(G) or G is either P4(u−v)(nP2,0,0,mP2) or
P3(u−v)(mP2,P2,nP2), where n+m = p−4 is the number of d-joints at σ = {u,v} in G, where
u and v are end vertices of both P4 and P3 and uv ∉ E(G). Then each case leads to G has a
2-vertex self switching at σ in G.

3. Conclusion
In this paper, we have given necessary and sufficient conditions for a graph G, for which Gσ at
σ= {u,v} to be connected and acyclic when uv ∈ E(G) and uv ∉ E(G). Finally, we characterized
trees with a 2-vertex self switching.
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