
Communications in Mathematics and Applications
Volume 2 (2011), Numbers 2-3, pp. 77–85
© RGN Publications

http://www.rgnpublications.com

Initial Time Difference Quasilinearization Method
in Banach Space

Coşkun Yakar

Abstract. In this paper, the method of the quasilinearization technique in Banach
space is applied to obtain upper and lower sequences with initial time difference
in terms of the solutions of the linear differential equations that start at different
initial times. It is also shown that these sequences converge to the unique solution
of the nonlinear equation in Banach space uniformly and superlinearly.

1. Introduction

The most important applications of the quasilinearization method in Banach
space has been to obtain a sequence of lower and upper bounds which are
the solutions of linear differential equations in Banach space that converge
superlinear. As a result, the method has been popular in applied areas. However,
the convexity assumption that is demanded by the method of quasilinearization
has been a stumbling block for further development of the theory. Recently, this
method has been generalized, refined and extended in several directions so as
to be applicable to a much larger class of nonlinear problems by not demanding
convexity property. Moreover, other possibilities that have been explored make the
method of generalized quasilinearization universally useful in applications [6]. In
the investigation of initial value problems of differential equations, we have been
partial to initial time all along in the sense that we only perturb the space variable
and keep the initial time unchanged. However, it appears important to vary the
initial time as well because it is impossible not to make errors in the starting time
[4, 5, 7, 8, 9, 10, 11]. Recently, the investigations of initial value problems of
differential equations where the initial time changes with each solution in addition
to the change of spatial variable have been initiated [1, 12] and some results on
the comparison theorems, global existence, the method of variation of parameters,
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the method of lower and upper solutions and the method of monotone iterative
techniques [3, 4, 5, 7, 10] have been obtained.

In this paper, the generalized quasilinearization technique in Banach space is
used to obtain upper and lower sequences in terms of the solutions of linear
differential equations in Banach space that start at different initial times and
bound the solutions of a given nonlinear differential equation in Banach space. It is
also shown that these sequences converge to the unique solution of the nonlinear
equation uniformly and superlinear in Banach space.

2. Preliminaries

In this section, we state some fundamental definitions and useful theorems for
the future reference to prove the main result. First one is comparison result, the
second one is existence result in terms of the upper and lower solutions with initial
time difference.

Let α0, β0 ∈ C1[J , E] with α0(t)≤ β0(t) on J = [t0, t0 + T], t0, T ∈ R+ and

Ω = {u ∈ E : α0(t)≤ u≤ β0(t), t ∈ J}.
Let E be a Banach space and consider the following initial value problem

u′ = N(t, u), u(t0) = u0 for t ≥ t0 (2.1)

where N ∈ C[J×Ω, E] for J = [t0, t0 + T], t0, T ∈ R+ and Ω⊆ E.

Definition 2.1. A cone K is a subset of E such that x , y ∈ K implies that
λx + µy ∈ K when λ,µ ≥ 0. K is called proper if 0 6= x ∈ K implies −x /∈ K .
When x and y are elements of E, x ≥ y means x − y ∈ K , so that in particular,
x ≥ 0 is equivalent to x ∈ K .

Definition 2.2. A proper subset K of a Banach space E is said to be a cone if
λK ⊂ K , λ ≥ 0, K + K ⊂ K , K =

_
K , and K ∩ {−K} = 0 where 0 denotes the null

element of the Banach space E and
_
K denotes the closure of K .

Definition 2.3. K is said to be a distance set, if, for every point x ∈ E has the
norm ‖ · ‖, there corresponds a point y ∈ K such that d(x , K) = ‖x − y‖.

In this paper we assume that K to be a distance set.

Definition 2.4. The cone K induces the order relations in E defined by

x ≤ y if and only if y − x ∈ K

x < y if and only if y − x ∈
◦
K

where
◦
K denotes the interior of K .

Let K∗ be the set of all continuous linear functionals φ on E such that φ(x)≥ 0
for all x ∈ K and let K∗0 be the set of all continuous linear functionals on E such

that φ(x)> 0 for all x ∈
◦

K .
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Definition 2.5. A function f : E → E is said to be quasimonotone nondecreasing
if x ≤ y and φ(x) = φ(y) for some φ ∈ K∗0 , then φ( f (x))≤ φ( f (y)).

Definition 2.6. Let α0,β0 ∈ C1[J , E] be the natural lower and upper solutions of
(2.1) satisfying the following inequalities

α′0 ≤ N(t,α0), α0(t0)≤ u0 for t ≥ t0 (2.2)

β ′0 ≥ N(t,β0), β0(t0)≥ u0 for t ≥ t0 (2.3)

respectively.

Definition 2.7. Let f ∈ C[J × E, E]. At x ∈ E

f (t, x + h) = f (t, x) + L(t, x , h) + ‖h‖η(t, x , h)

where lim
‖h‖→0

‖η(t, x , h)‖ = 0 and L(t, x , ·) is a linear operator. L(t, x , h) is called

the Fréchet differential of the function f at x with increment h, η(t, x , h) is called
the remainder of the differential, and the operator L(t, x , ·) is called the Fréchet
derivative of f at x .

First we state the following Theorem 2.1, whose proof is given in [4].

Theorem 2.1. Let K be a cone in E. Assume that

(i) α0,β0 ∈ C1[J , E], N ∈ C[J × E, E] and N(t, x) is quasimonotone non-
decreasing in x relative to K for each t ∈ J;

(ii) α′0(t)≤ N(t,α0(t)), N(t,β0(t))≤ β ′0(t), t ∈ J;
(iii) ‖N(t, x)−N(t, y)‖ ≤ L‖x− y‖, L > 0, x ∈ E−K, y ∈ ∂ K, where ∂ K denotes

the boundary of K;
(iv) K is a distance set.

Then α0(t0)≤ β0(t0) implies α0(t)≤ β0(t), t ∈ J.

When the lower and upper solutions do not start the same point we state also
the following existence result whose proof is given in [6].

Theorem 2.2. Assume that

(i) Let α0 ∈ C1[[t0, t0 + T], E], t0, T > 0, β0 ∈ C1[[τ0,τ0 + T], E], τ0 > 0
and N ∈ C[R+ × E, E], α′0(t) ≤ N(t,α0), t0 ≤ t ≤ t0 + T and β ′0(t) ≥
N(t,β0),τ0 ≤ t ≤ τ0 + T with α0(t0)≤ β0(τ0);

(ii) t0 ≤ τ0, N(t, u) is nondecreasing in t for each u and α0(t) ≤ β0(t + η) for
t0 ≤ t ≤ t0 + T, η= τ0 − t0.

Then there exists a solution u(t) of (2.1) with u(t0) = u0, satisfying α0(t) ≤ u(t) ≤
β0(t +η) for t0 ≤ t ≤ t0 + T.
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3. Main Results

In this section, we will prove the main theorem that gives several different
conditions to apply the method of generalized quasilinearization to the nonlinear
differential equations in Banach space with initial time difference and state
remarks and corollaries for special cases.

Theorem 3.1. Assume that

(i) N ∈ C[J × E, E] and there exists a constant M such that ‖N(t, u)‖ ≤ M on
J ×Ω;

(ii) N(t, u) is quasimonotone nondecreasing in u relative to K for each t ∈ J, where
K is a cone in E is distance set ;

(iii) α0 ∈ C1[[t0, t0 + T], E] and β0 ∈ C1[[τ0,τ0 + T], E] for τ0 ≥ t0 > 0 and
T > 0,

α′0 ≤ N(t,α0) for t0 ≤ t ≤ t0 + T

β ′0 ≥ N(t,β0) for τ0 ≤ t ≤ τ0 + T,

where N ∈ C[[t0,τ0 + T]× E, E] and α0(t0)≤ β0(τ0);
(iv) t0 < s0 < τ0, N(t, u) is nondecreasing in t for each u;

α0,β0 ∈ C1[J , E] such that α′0 ≤ N(t,α0), N(t,β0) ≤ β ′0 and α0(t) ≤ β0(t),
t ∈ J;

(v) the Fréchet derivative Nx(t, x) exists and is continuous and ‖Nx(t, x)‖ ≤ L1 for
(t, x) ∈ J ×Ω, for some L1 > 0 and N(t, y)≤ N(t, x)−Nx(t, y)(x− y) where
α0(t)≤ y ≤ x ≤ β0(t), t ∈ J;

(vi) ‖Nx(t, x)− Nx(t, y)‖ ≤ L2‖x − y‖γ, t ∈ J, where L2 is a positive constant and
0≤ γ < 1.

Then there exist monotone sequences {eαn(t)} and {eβn(t)} which converge uniformly
to the unique solution of (2.1) with x(s0) = x0 where s0 is between initial time t0

and τ0 and the convergence is superlinear.

Proof. Since β̃0(t) = β0(t + η1), we get β̃0(t0) = β0(τ0) ≥ α0(t0) = α̃0(t0) and
β̃ ′0(t) ≥ N(t + η1, β̃0) for t0 ≤ t ≤ t0 + T . Using the assumptions (iv) it is clear
that N(t, x) satisfies the Lipschitz condition in x for (t, x) ∈ J ×Ω. Furthermore,
we have the following inequalities

N(t, x)≥ N(t, y) + Nx(t, y)(x − y) whenever α̃0(t)≤ y ≤ x ≤ β̃0(t) on J
(3.1)

and also by using (iv) we see that whenever α̃0(t)≤ y ≤ x ≤ β̃0(t)

N(t, x)− N(t, y)≤ L(x − y) (3.2)

for some L > 0.
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Consider the linear initial value problems such that

eα′1 = N(t +η2, α̃0) + Nx(t +η2, α̃0)(eα1 − α̃0), eα1(t0) = u0 (3.3)

eβ ′1 = N(t +η2, eβ0) + Nx(t +η2, α̃0)(eβ1 − eβ0), eβ1(t0) = u0 (3.4)

where α̃0(t0) ≤ u0 ≤ eβ0(t0). We shall show that α̃0 ≤ α̃1 on J . To do this, let
p = α̃0(t)− α̃1(t), so that p(t0)≤ 0. Then

p′ = α̃′0 − α̃′1
≤ N(t +η2, α̃0)− [N(t +η2, α̃0) + Nx(t +η2, α̃0)(eα1 − α̃0)]

= Nx(t +η2, α̃0)p.

Theorem 2.1 gives p(t) ≤ 0 on J proving that α̃0(t) ≤ α̃1(t) on J . Now set
p = eα1 − eβ0 and note that p(t0)≤ 0. Also, using (3.1)

p′ = eα′1 − eβ ′0
≤ N(t +η2, α̃0) + Nx(t +η2, α̃0)(eα1 − α̃0)− N(t +η1, eβ0)

≤ N(t +η2, eβ0)− Nx(t +η2, α̃0)(eβ0 − α̃0)

+ Nx(t +η2, α̃0)(eα1 − α̃0)− N(t +η2, eβ0)

≤ Nx(t +η2, α̃0)p,

which again implies eα1(t)≤
s
β0(t) on J .

Similarly, we can obtain that α̃0(t)≤ β̃1(t)≤ β̃0(t) on J . In order to prove that
α̃1(t)≤ β̃1(t) on J , we proceed as follows, since α̃0 ≤fα1 ≤ β̃0, using (3.1), we see
that

α̃′1(t) = N(t +η2, α̃0) + Nx(t +η2, α̃0)(eα1 − α̃0)≤ N(t +η2, α̃1).

Similarly, N(t + η2, eβ1) ≤
s
β
′
1(t) and therefore by Theorem 2.1 it follows that

α̃1(t)≤ eβ ′1(t) on J which shows that

α̃0(t)≤ α̃1(t)≤ β̃1(t)≤ β̃0(t) on J.

Assume that for some n > 1, eα′n ≤ N(t + η2, α̃n), N(t + η2,
s
βn) ≤ eβ ′n and

eαn(t)≤ eβn(t), t ∈ J.
We must show that

α̃n(t)≤ α̃n+1(t)≤ β̃n+1(t)≤ β̃n(t) on J (3.5)

where α̃n+1(t) and β̃n+1(t) are the solutions of linear IVPs

eα′n+1 = N(t +η2, α̃n) + Nx(t +η2, α̃n)(eαn+1 − α̃n), eαn+1(t0) = u0 (3.6)

eβ ′n+1 = N(t +η2, eβn) + Nx(t +η2, α̃n)(eβn+1 − eβn), eβn+1(t0) = u0. (3.7)
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Hence, setting p = α̃n(t)− α̃n+1(t), it follows as before p′ ≤ Nx(t +η2, α̃n)p on J
and we get α̃n(t) ≤ α̃n+1(t) ≤ β̃n(t) on J . In a similar manner, we can prove that
α̃n(t)≤ β̃n+1(t)≤ β̃n(t) on J .

Using (3.1), we obtain

α′n+1 = N(t +η2, α̃n) + Nx(t +η2, α̃n)(eαn+1 − α̃n)

≤ N(t +η2, α̃n+1)− Nx(t +η2, α̃n)(eαn+1 − α̃n)

+ Nx(t +η2, α̃n)(eαn+1 − α̃n)

= N(t +η2, α̃n+1).

Similar arguments yield N(t+η2, eβn+1)≤ eβ ′n+1and hence Theorem 2.1 shows that
α̃n+1(t)≤ β̃n+1(t) on J which proves (3.5) is true. So by using induction we obtain

α̃0 ≤ α̃1 ≤ · · · ≤ α̃n ≤ α̃n+1 ≤ β̃n+1 ≤ β̃n ≤ · · · ≤ β̃1 ≤ β̃0 on J .

Now using standard arguments (Arzela-Ascoli and Dini’s Theorems, see [2]),
it can be shown that the sequences {α̃n(t)} and {β̃n(t)} converge uniformly and
monotonically to the unique solution of u(t) of (2.1) on J .

eu′(t) = N(t +η2,eu(t)), eu(t0) = u0. (3.8)

But letting s = t + η2 and changing the variable, we can show that (3.8) is
equivalent to

u′(s) = N(s, u(s)), u(s0) = u0.

Finally, to prove superlinear convergence, we let

pn(t) = eu(t)− α̃n(t) and qn(t) = β̃n(t)− eu(t).

Note that pn(t0) = qn(t0) = 0.

p′n(t)

= eu′(t)− α̃′n(t)

= N(t +η2,eu)− [N(t +η2, α̃n−1) + Nx(t +η2, α̃n−1)(eαn − α̃n−1)]

=

∫ 1

0

Nx(t +η2, seu+ (1− s)α̃n−1)(eu− α̃n−1)ds− Nx(t +η2, α̃n−1)(eαn − α̃n−1)

=

∫ 1

0

Nx(t +η2, seu+ (1− s)α̃n−1)pn−1ds− Nx(t +η2, α̃n−1)(pn−1 − pn)

=

∫ 1

0

[Nx(t +η2, seu+(1−s)α̃n−1)−Nx(t+η2, α̃n−1)]pn−1ds+ Nx(t +η2, α̃n−1)pn.
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From (iv) and (v), it follows that

‖p′n(t)‖ ≤
∫ 1

0

L2‖seu+ (1− s)α̃n−1 − α̃n−1)‖γ‖pn−1‖ds+ L1‖pn‖

≤
∫ 1

0

L2‖seu− sα̃n−1‖γ‖pn−1‖ds+ L1‖pn‖

≤
∫ 1

0

L2‖spn−1‖γ‖pn−1‖ds+ L1‖pn‖

= L2‖pn−1‖γ+1 + L1‖pn‖.
Then setting an = ‖pn‖, we find,

a′n ≤ ‖p′n‖ ≤ L2(an−1)
γ+1 + L1an.

Now by using Gronwall’s inequality we obtain,

0≤ an(t)≤ L2

∫ t

0

exp[L1(t − s)](an(s))
γ+1ds on J

which yields the estimate

max
J
‖pn(t)‖ ≤ L2

exp(L1T )
L1

max
J
‖pn−1(t)‖γ+1.

Similarly,

q′n(t) = β̃
′
n(t)− eu′(t)

= N(t +η2, β̃n−1) + Nx(t +η2, α̃n−1)(β̃n − β̃n−1)− N(t +η2,eu(t))

=

∫ 1

0

Nx(t +η2, sβ̃n−1+(1−s)eu(t))(β̃n−1−eu)ds+Nx(t+η2, α̃n−1)(β̃n−β̃n−1)

=

∫ 1

0

Nx(t +η2, sβ̃n−1 + (1− s)eu(t))qn−1ds+ Nx(t +η2, α̃n−1)(qn − qn−1)

=

∫ 1

0

[Nx(t +η2, sβ̃n−1 + (1− s)eu(t))− Nx(t +η2,eu(t))]qn−1ds

+[Nx(t +η2,eu(t))− Nx(t +η2, α̃n−1)]qn−1 + Nx(t +η2, α̃n−1).qn.

We find, using (iv) and (v), that

‖q′n(t)‖ ≤
∫ 1

0

L2‖sβ̃n−1 + (1− s)eu− eu‖γ‖qn−1‖ds

+ L2‖eu− β̃n−1‖γ‖qn−1‖+ L1‖qn‖

≤ L2‖qn−1‖γ+1 + L2‖pn‖γ‖qn−1‖+ L1‖qn‖.
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Setting bn = ‖qn‖ and an−1 = ‖pn−1‖, it is easily follows that

b′n ≤ ‖q′n‖

≤ L2(bn−1)
γ+1 + L2(an−1)

γbn−1 + L1 bn.

An application of Gronwall’s inequality yields,

0≤ ‖qn‖

≤ L2

∫ t

0

exp[L1(t − s)][‖qn−1(s)‖γ+1 + ‖pn−1(s)‖γ‖qn−1(s)‖]ds on J ,

and hence

max
J
‖qn(t)‖ ≤ L2

exp(L1T)
L1

�
max

J
‖qn−1(t)‖γ+1 +max

J
‖pn−1(t)‖γ‖qn−1(t)‖

�
.

This completes the proof. ¤

Next we give the following remarks and corollaries for special cases.

Remark 3.1. Instead of assumption (v) in Theorem 3.1 if we assume that

‖Nx(t, x)− Nx(t, y)‖ ≤ L2‖x − y‖, t ∈ J

where L2 is a positive constant, then we can see that the convergence is quadratic.

Remark 3.2. Let the assumption of Remark 3.1 valid. If we assume that N(t, x) is
uniformly convex in x instead of condition

N(t, y)≤ N(t, x)− Nx(t, y)(x − y) where y ≤ x , t ∈ J ;

assumption (iv) in Theorem 3.1, then by Lemma 4.5.1 in [2], the assumed
inequality results. Moreover, the quasimonotonicity of N(t, x) in x implies by
Lemma 4.2.5 in [2] that Nx(t,α(t))x is also quasimonotone in x .

Corollary 3.1. If the assumptions of the Theorem 3.1 hold with s0 = t0, then the
conclusion of the theorem remains valid.

Proof. For the proof, we let β̃0(t) = β(t + η1), α̃0(t) = α(t) and ũ(t) = u(t) and
proceed, as we have done in Theorem 3.1. ¤

Corollary 3.2. If the assumptions of the Theorem 3.1 hold with s0 = τ0, then the
conclusion of the theorem remains valid.

Proof. Similarly, we let α̃0(t) = α(t − η1), β̃0(t) = β(t) and ũ(t) = u(t) and
proceed, as we have done in Theorem 3.1. ¤
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