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1. Introduction
Theory of linear matrix differential equations, as an extension of theory of vector differential
equations, is a field of attractive research nowadays. This theory can be applied widely in
scientific fields especially in control theory, statistics, ecometrics, and game theory (see e.g.
[7,8,11,14,18]).
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Let us start with a development of single linear matrix differential equations of Sylvester
type. Denote the set of n-by-n real matrices by Mn. A homogeneous Sylvester matrix differential
equation takes the form

X ′(t)= AX (t)+ X (t)B, (1.1)

where A ∈ Mn is a given constant matrix and X (t) ∈ Mn is an unknown matrix function. A clever
idea to obtain an explicit solution for this equation is to establish a correspondence with a scalar
differential equation. This is done by taking the vector operator to (1.1), so that the solution is
given in terms of matrix exponentials; see [6]. In fact, this idea can be applied for several linear
matrix differential equations of Sylvester type. For a nonhomogeneous linear matrix differential
equation

X ′(t) = AX (t)+U(t), (1.2)

where U(t) ∈ Mn is a given matrix function, a closed form of its general solution is given by a
one-parameter matrix function (see [2])

X (t) = e(t−t0)A X (t0)+
∫ t

t0

e(t−s)AU(s)ds. (1.3)

For the homogeneous case U(t)= 0, the general solution becomes X (t)= eA(t−t0)X (t0). In practice,
the matrix exponentials can be computed efficiently using appropriated methods (see e.g. [9,15]).
See more information about linear matrix differential equations in [14, Chapter 3].

A general system of nonhomogeneous coupled linear matrix differential equations takes the
form

X ′(t) = AX (t)B+CY (t)D+U(t),
Y ′(t) = EX (t)F +GY (t)H+V (t).

}
(1.4)

Here, the constant matrices A,B,C,D,E,F,G,H, the given matrix functions U(t), V (t), and the
unknown matrix functions X (t),Y (t) are square matrices of the same size. The works including
[1–5, 12, 13, 20] investigate certain special cases of the system. A main idea is to reduce the
system of matrix differential equations to a vector differential equation via a certain kind of
vectorizations, e.g. the vector operator or the diagonal-extraction operator. Indeed, the general
solution is given in terms of Kronecker/Hadamard products, and matrix power series concerning
exponentials, hyperbolic functions, or Mittag-Leffler functions. For nonhomogeneous cases, the
general solution can be written in terms of the matrix convolution product (e.g. [20]). For the
case that the unknown matrix functions are diagonal, we can apply the diagonal-extraction
operator to reduce this system to a simple one (e.g. [1,20]). For certain types of linear matrix
descriptor differential equations, their general solutions can be obtained via matrix pencil
theory [17] or canonical forms [22]. Systems of coupled linear matrix differential equations show
up in many application areas, such as, control theory, communication engineering, and stability
of certain differential equations. In particular, the special case B = D = F = H = I and G =−AT

of the system (1.4) appears in an analysis of optimal control with performance index (see [16]).
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In the present work, we consider a rectangular system of coupled generalized Sylvester
matrix differential equations in a general form as follows:

X ′(t) =
p∑

i=1
A i X (t)Bi +

q∑
i=1

CiY (t)D i +U(t),

Y ′(t) =
r∑

i=1
E i X (t)Fi +

s∑
i=1

G iY (t)Hi +V (t).

Here, the given coefficient matrices, the given matrix functions, and the unknown matrix
functions are rectangular matrices, need not be square. To obtain an explicit formula of the
solution, we impose an assumption on the coefficient matrices. We apply the vector operator
and Kronecker products to reduce the system to a simple form so that an explicit formula
of the general solution can be obtained in terms of Mittag-Leffler matrix functions. We also
obtain general solutions of certain special cases of the main system including systems of coupled
matrix/vector differential equations, and single matrix differential equations. In particular, our
results include the results in [2,3,6,12]. We also illustrate initial value problems associated
with systems considered in this paper.

The rest of paper is outlined as follows. In Section 2, we setup basic notations and provide
useful tools for solving linear matrix differential equations. These tools involve the Kronecker
product, the Kronecker sum, the vector operator, and Mittag-Leffler functions. In Section 3, we
solve a rectangular system of coupled linear matrix differential equations. Several interesting
special cases of the main system are then considered in Section 4. Finally, we provide illustrative
examples for our results in Section 5.

2. Preliminaries
Let us denote by Mm,n the set of all m-by-n real matrices, and abbreviate Mn,n to Mn. We use
the notation Sp(A) for the set of eigenvalues of A ∈ Mn.

2.1 The Kronecker Product, the Kronecker Sum and the Vector Operator
Recall that the Kronecker product of A = [ai j] ∈ Mm,n and B ∈ Mp,q is defined to be the mp-by-
nq matrix whose the (i, j)-th block is given by ai jB for each i = 1, . . . ,m and j = 1, . . . ,n.

Lemma 1 (e.g. [10]). The following properties hold for matrices of appropriate sizes:

(1) (kA)⊗B = k(A⊗B)= A⊗ (kB) for all k ∈R,

(2) (A+B)⊗C = (A⊗C)+ (B⊗C) and A⊗ (B+C)= (A⊗B)+ (A⊗C),

(3) (A⊗B)T = AT ⊗BT ,

(4) (A⊗B)(C⊗D)= AC⊗BD,

(5) Sp(A⊗B)= {λµ : λ ∈Sp(A),µ ∈Sp(B)}.

The Kronecker sum of A ∈ Mn and B ∈ Mm is defined to be

A⊕B = (A⊗ Im)+ (In ⊗B).
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Let us recall a column-stacking operator, which is useful for solving linear matrix differential
equations. The vector operator Vec : Mm,n →Rmn is defined for each A = [ai j] ∈ Mm,n by

Vec A = [a11 . . .am1 a12 . . .am2 . . .a1m . . .amn]T .

This operator is clearly bijective, linear and continuous.

Lemma 2 (e.g. [10]). For any matrices A,B,C of appropriate sizes, we have

Vec(ABC) = (CT ⊗ A)VecB.

2.2 Mittag-Leffler Functions
The Mittag-Leffler function with two parameters α> 0 and β> 0 is defined for each complex
number z in terms of a convergent series by

Eα,β(z) =
∞∑

k=0

zk

Γ(αk+β)

where Γ is the Gamma function. When β = 1, we set Eα := Eα,1. The class of Mittag-Leffler
functions include the exponential function E1(z)= ez and the hyperbolic functions E2(z2)= cosh z
and zE2,2(z2)= sinh z. See more information in [19] and references therein. For any A ∈ Mn, we
define

Eα,β(A) =
∞∑

k=0

1
Γ(αk+β)

Ak = In + 1
Γ(α+β)

A+ 1
Γ(2α+β)

A2 +·· · .

Lemma 3 (e.g. [21]). Let f be an analytic function defined on a region containing the origin and
Sp(A). Then

f (I ⊗ A) = I ⊗ f (A) and f (A⊗ I) = f (A)⊗ I.

In particular, Eα,β(A⊗ I)= Eα,β(A)⊗ I and Eα,β(I ⊗ A)= I ⊗Eα,β(A) for any α,β> 0.

Lemma 4 (e.g. [21]). The following properties hold for matrices of appropriate sizes:

(1) If AB = BA, then eA+B = eA eB.

(2) eA⊕B = eA ⊗ eB.

The following explicit forms of Mittag-Leffler functions for certain block matrices are used
in later discussions.

Lemma 5 (e.g. [12]). For any A,B ∈ Mn, we have

e

[
A 0
0 B

]
=

[
eA 0
0 eB

]
, e

[
0 A
A 0

]
=

[
cosh A sinh A
sinh A cosh A

]
, e

[
0 A
B 0

]
=

[
E2(AB) [E2,2(AB)]A

[E2,2(BA)]B E2(BA)

]
.

3. The Main System
In this section, we solve a rectangular system of coupled nonhomogeneous generalized Sylvester
matrix differential equations. In particular, we also consider the homogeneous case of the
system. The general exact solution of the system appears in terms of the vector operator, the
Kronecker product, and certain Mittag-Leffler matrix functions.
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Theorem 1. Let m,n,k, l, p, q, r, s be positive integers such that mn = kl. For each i, let A i ∈ Mm,
Bi ∈ Mn, Ci ∈ Mm,k, D i ∈ Ml,n, E i ∈ Mk,m, Fi ∈ Mn,l , G i ∈ Mk, and Hi ∈ Ml be given constant
matrices. Let U(t) ∈ Mm,n and V (t) ∈ Mk,l be given matrix functions. Let us denote

K =
p∑

i=1
BT

i ⊗ A i, L =
q∑

i=1
DT

i ⊗Ci, M =
r∑

i=1
FT

i ⊗E i, N =
s∑

i=1
HT

i ⊗G i. (3.1)

Assume that KL = LN and NM = MK . Then the system of coupled nonhomogeneous generalized
Sylvester matrix differential equations with X (t) ∈ Mm,n and Y (t) ∈ Mk,l as unknown matrix
functions:

X ′(t) =
p∑

i=1
A i X (t)Bi +

q∑
i=1

CiY (t)D i +U(t),

Y ′(t) =
r∑

i=1
E i X (t)Fi +

s∑
i=1

G iY (t)Hi +V (t),

 (3.2)

has the general solution given by

Vec X (t)= e(t−t0)K{
E2((t− t0)2LM)Vec X (t0)+ (t− t0)[E2,2((t− t0)2LM)]M VecY (t0)

}
+

∫ t

t0

e(t−s)K{
E2((t− s)2LM)VecU(s)+ (t− s)[E2,2((t− s)2LM)]M VecV (s)

}
ds,

VecY (t)= e(t−t0)N{
(t− t0)[E2,2((t− t0)2ML)]LVec X (t0)+E2((t− t0)2ML)VecY (t0)

}
+

∫ t

t0

e(t−s)N{
(t− s)[E2,2((t− s)2ML)]LVecU(s)+E2((t− s)2ML)VecV (s)

}
ds.


(3.3)

In particular, the homogeneous case U(t)=V (t)= 0 of the system has the general solution

Vec X (t)= e(t−t0)K{
E2((t− t0)2LM)Vec X (t0)+ (t− t0)[E2,2((t− t0)2LM)]M VecY (t0)

}
,

VecY (t)= e(t−t0)N{
(t− t0)[E2,2((t− t0)2ML)]LVec X (t0)+E2((t− t0)2ML)VecY (t0)

}
.

Proof. Applying the vector operator to the system (3.2) and then using Lemma 2, we have

Vec X ′(t)=Vec
( p∑

i=1
A i X (t)Bi +

q∑
i=1

CiY (t)D i +U(t)
)

=
p∑

i=1
Vec

(
A i X (t)Bi

)
+

q∑
i=1

Vec
(
CiY (t)D i

)
+VecU(t)

=
p∑

i=1

(
BT

i ⊗ A i

)
Vec X (t)+

q∑
i=1

(
DT

i ⊗Ci

)
VecY (t)+VecU(t)

= K Vec X (t)+LVecY (t)+VecU(t),

and similarly,

VecY ′(t)= M Vec X (t)+N VecY (t)+VecV (t).

Note that the matrices K ,L, M, N are square matrices of the same size. Since the vector operator
is bijective, the above two equations can be equivalently transformed to the following system:[

Vec X ′(t)
VecY ′(t)

]
=

[
K L
M N

][
Vec X (t)
VecY (t)

]
+

[
VecU(t)
VecV (t)

]
.
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We can rewrite it into a vector differential equation z′(t)= Sz(t)+u(t) where

S =
[

K L
M N

]
, z(t)=

[
Vec X (t)
VecY (t)

]
, u(t)=

[
VecU(t)
VecV (t)

]
.

It follows that

z(t)= e(t−t0)S z(t0)+
∫ t

t0

e(t−s)Su(s)ds. (3.4)

To get an explicit form of e(t−t0)S , let us decompose S = P +Q where

P =
[
K 0
0 N

]
andQ =

[
0 L
M 0

]
.

Using a block-matrix multiplication, we get

PQ =
[
K 0
0 N

][
0 L
M 0

]
=

[
0 KL

NM 0

]
, QP =

[
0 L
M 0

][
K 0
0 N

]
=

[
0 LN

MK 0

]
.

The hypotheses KL = LN and NM = MK imply that PQ = QP . From which it follows from
Lemma 4 that

e(t−t0)S = e(t−t0)P+(t−t0)Q = e(t−t0)P e(t−t0)Q .

Using Lemma 5, we have

e(t−t0)P =
[

e(t−t0)K 0
0 e(t−t0)N

]
,

e(t−t0)Q =
[

E2((t− t0)2LM) (t− t0)[E2,2((t− t0)2LM)]M
(t− t0)[E2,2((t− t0)2ML)]L E2((t− t0)2ML)

]
.

Thus, we obtain

e(t−t0)S =
[
Ψ11(t, t0) Ψ12(t, t0)
Ψ21(t, t0) Ψ22(t, t0)

]
,

where

Ψ11(t, t0)= e(t−t0)KE2((t− t0)2LM), Ψ12(t, t0)= (t− t0)e(t−t0)K [E2,2((t− t0)2LM)]M,

Ψ21(t, t0)= (t− t0)e(t−t0)N[E2,2((t− t0)2ML)]L, Ψ22(t, t0)= e(t−t0)NE2((t− t0)2ML).

It follows from (3.4) via a block-matrix multiplication that

Vec X (t)=Ψ11(t, t0)Vec X (t0)+Ψ12(t, t0)VecY (t0)

+
∫ t

t0

[Ψ11(t, s)VecU(s)+Ψ12(t, s)VecV (s)]ds,

VecY (t)=Ψ21(t, t0)Vec X (t0)+Ψ22(t, t0)VecY (t0)

+
∫ t

t0

[Ψ21(t, s)VecU(s)+Ψ22(t, s)VecV (s)]ds.

Therefore, the solution of (3.2) is given by (3.3).

Once we get Vec X (t) and VecY (t), we can recover X (t) and Y (t) due to the injectivity of the
vector operator.
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4. Special Cases of the Main System
In Theorem 1, the hypothesis KL = LN and NM = MK is not restrictive since it includes many
interesting special cases and previous works. We shall consider systems of coupled matrix/vector
differential equations, and single matrix differential equations. In these cases, the general
solutions are given in terms of matrix series concerning exponentials, hyperbolic functions and
certain Mittag-Leffler functions.

4.1 Systems of Coupled Matrix Differential Equations
Corollary 1. From the hypothesis and notations in Theorem 1, assume further that L = M. Then
the general solution of the system (3.2) is given by

Vec X (t)= e(t−t0)K{
(cosh(t− t0)L)Vec X (t0)+ (sinh(t− t0)L)VecY (t0)

}
+

∫ t

t0

e(t−s)K{
(cosh(t− s)L)VecU(s)+ (sinh(t− s)L)VecV (s)

}
ds,

VecY (t)= e(t−t0)N{
(sinh(t− t0)L)Vec X (t0)+ (cosh(t− t0)L)VecY (t0)

}
+

∫ t

t0

e(t−s)N{
(sinh(t− s)L)VecU(s)+ (cosh(t− s)L)VecV (s)

}
ds.

In particular, the homogeneous case U(t)=V (t)= 0 of the system has the general solution

Vec X (t)= e(t−t0)K{
(cosh(t− t0)L)Vec X (t0)+ (sinh(t− t0)L)VecY (t0)

}
,

VecY (t)= e(t−t0)N{
(sinh(t− t0)L)Vec X (t0)+ (cosh(t− t0)L)VecY (t0)

}
.

Proof. The desire formulas of Vec X (t) and VecY (t) follow from (3.3) in Theorem 1 together with
the facts that E2(Z2)= cosh Z and (E2,2(Z2))Z = sinh Z for any square matrix Z.

Corollary 2. Let m,n,k, l be positive integers such that mn = kl. Let A ∈ Mm, B ∈ Mn, C ∈ Mm,k ,
D ∈ Ml,n, E ∈ Mk,m, F ∈ Mn,l , G ∈ Mk, and H ∈ Ml be given constant matrices. Let U(t) ∈ Mm,n

and V (t) ∈ Mk,l be given matrix functions. Denote K = BT ⊗ A, N = HT ⊗G, R = (FD)T ⊗CE,
and S = (DF)T ⊗EC. Assume that

(DB)T ⊗ (AC)= (HD)T ⊗ (CG), (FH)T ⊗ (GE)= (BF)T ⊗ (EA). (4.1)

Then the general solution of the system:
X ′(t)= AX (t)B+CY (t)D+U(t),

Y ′(t)= EX (t)F +GY (t)H+V (t),

}
(4.2)

in unknown X (t) ∈ Mm,n and Y (t) ∈ Mk,l is given by

Vec X (t)= e(t−t0)K{
E2((t− t0)2R)Vec X (t0)+ (t− t0)[E2,2((t− t0)2R)](FT ⊗E)VecY (t0)

}
+

∫ t

t0

e(t−s)K{
E2((t− s)2R)VecU(s)ds+ (t− s)[E2,2((t− s)2R)](FT ⊗E)VecV (s)

}
ds,

VecY (t)= e(t−t0)N{
(t− t0)[E2,2((t− t0)2S)](DT ⊗C)Vec X (t0)+E2((t− t0)2S)VecY (t0)

}
+

∫ t

t0

e(t−s)N
{
(t− s)[E2,2((t− s)2S)](DT ⊗C)VecU(s)ds+E2((t− s)2S)VecV (s)

}
ds.
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Proof. The desire result follows from Theorem 1 by considering the case p = q = r = s = 1. Note
that (DT ⊗C)(FT ⊗E)= R and (FT ⊗E)(DT ⊗C)= S by Lemma 1.

Corollary 2 includes the work [2, Theorem 3.7] as a special case.

Corollary 3. Let A ∈ Mm, D ∈ Ml,n, and F ∈ Mn,l be given constant matrices. Let U(t) ∈ Mm,n

and V (t) ∈ Mm,l be given matrix functions. The general solution of the system

X ′(t) = AX (t)+Y (t)D+U(t),

Y ′(t) = X (t)F + AY (t)+V (t),

with X (t) ∈ Mm,n and Y (t) ∈ Mm,l as unknown matrix functions is given by

X (t)= e(t−t0)A{
X (t0)E2((t− t0)2FD)+ (t− t0)Y (t0)FE2,2((t− t0)2FD)

}
+

∫ t

t0

e(t−s)A{
U(s)E2((t− s)2FD)+ (t− s)V (s)FE2,2((t− s)2FD)

}
ds,

Y (t)= e(t−t0)A{
(t− t0)X (t0)DE2,2((t− t0)2DF)+Y (t0)E2((t− t0)2DF)

}
+

∫ t

t0

e(t−s)A{
(t− s)U(s)DE2,2((t− s)2DF)+V (s)E2((t− s)2DF)

}
ds.

Proof. From Corollary 2, put k = m, B = In, C = E = Im, H = I l and G = A. Then the condition
(4.1) is satisfied. It follows that

Vec X (t)= e(t−t0)I⊗A{
[E2((t− t0)2(FD)T ⊗ I)]Vec X (t0)

+ (t− t0)[E2,2((t− t0)2(FD)T ⊗ I)](FT ⊗ I)VecY (t0)
}

+
∫ t

t0

e(t−s)I⊗A{
[E2((t− s)2(FD)T ⊗ I)]VecU(s)

+ (t− s)[E2,2((t− s)2(FD)T ⊗ I)](FT ⊗ I)VecV (s)
}

ds.

Lemmas 1 and 4 together imply that e(t−t0)I⊗A = I ⊗ e(t−t0)A and

[E2,2((t− t0)2(FD)T ⊗ I)](FT ⊗ I)= [E2,2((t− t0)2(FD)T)⊗ I](FT ⊗ I)

= {
[E2,2((t− t0)2FD)]T ⊗ I

}
(FT ⊗ I)

= [FE2,2((t− t0)2FD)]T ⊗ I.

Thus, by Lemma 2, the linearity and the continuity of Vec(·), we have

Vec X (t)= [I⊗e(t−t0)A]
{{

[E2((t−t0)2FD)]T⊗I
}
Vec X (t0)+(t−t0)

{
[FE2,2((t−t0)2FD)]T⊗I

}
VecY (t0)

}
+

∫ t

t0

[I ⊗ e(t−s)A]
{{

[E2((t− s)2FD)]T ⊗ I
}
VecU(s)

+ (t− s)
{
[FE2,2((t− s)2FD)]T ⊗ I

}
VecV (s)

}
ds

=
{
[E2((t−t0)2FD)]T⊗e(t−t0)A

}
Vec X (t0)+(t−t0)

{
[FE2,2((t−t0)2FD)]T⊗e(t−t0)A

}
VecY (t0)

+
∫ t

t0

{{
[E2((t− s)2FD)]T ⊗ e(t−s)A}

VecU(s)

+ (t− s)
{
[FE2,2((t− s)2FD)]T ⊗ e(t−s)A)}VecV (s)

}
ds
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=Vec
{
e(t−t0)A X (t0)E2((t− t0)2FD)

}+ (t− t0)Vec
{
e(t−t0)AY (t0)FE2,2((t− t0)2FD)

}
+

∫ t

t0

Vec
{
e(t−s)AU(s)E2((t− s)2FD)

}+ (t− s)Vec
{
e(t−s)A)V (s)FE2,2((t− s)2FD)

}
ds

=Vec
[
e(t−t0)A{

X (t0)E2((t− t0)2FD)+ (t− t0)Y (t0)FE2,2((t− t0)2FD)
}

+
∫ t

t0

e(t−s)A{
U(s)E2((t− s)2FD)+ (t− s)V (s)FE2,2((t− s)2FD)

}
ds

]
.

From the injectivity of Vec(·), we obtain the exact formula of X (t) as desire. To get the formula
of Y (t), apply the same process.

The next corollary was firstly obtained in [12].

Corollary 4. Let A,B,C,D ∈ Mn be such that AC = CA and BD = DB. Then the system

X ′(t)= AX (t)B+CY (t)D,

Y ′(t)= CX (t)D+ AY (t)B,

in unknown matrix functions X (t),Y (t) ∈ Mn has the general solution given by

Vec X (t)= e(t−t0)(BT⊗A){[cosh(t− t0)(DT ⊗C)]Vec X (t0)+ [sinh(t− t0)(DT ⊗C)]VecY (t0)
}
,

VecY (t)= e(t−t0)(BT⊗A){[sinh(t− t0)(DT ⊗C)]Vec X (t0)+ [cosh(t− t0)(DT ⊗C)]VecY (t0)
}
.

Proof. It is a special case of Corollary 1 when all given matrices are square and of the same
size, K = N = BT ⊗ A and L = M = DT ⊗C.

4.2 Single Matrix Differential Equations
Now, we discuss certain single matrix differential equations from the main system (3.2).

Corollary 5. For each i, let A i ∈ Mm, Bi ∈ Mn, and U(t) ∈ Mm,n. Denote K =∑p
i=1 BT

i ⊗A i . Then
the generalized Sylvester matrix differential equation

X ′(t)=
p∑

i=1
A i X (t)Bi +U(t)

in unknown matrix function X (t) ∈ Mm,n has the general solution given by

Vec X (t)= e(t−t0)K Vec X (t0)+
∫ t

t0

e(t−s)K VecU(s)ds.

For its homogeneous case U(t)= 0, its general solution is reduced to Vec X (t)= e(t−t0)K Vec X (t0).

Proof. From Theorem 1, we can make a system of coupled equations into uncoupled equations
by putting Ci = E i = 0 for all i. In this case, L = M = 0.

The next result was firstly obtained in [3, Theorem 1].

Corollary 6. Let A,B,U(t) ∈ Mn be given, and let X (t) ∈ Mn be unknown. Then the Sylvester
matrix differential equation

X ′(t)= AX (t)+ X (t)B+U(t)
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has the general solution given by

X (t)= e(t−t0)A X (t0)e(t−t0)B +
∫ t

t0

e(t−s)AU(s)e(t−s)B ds.

Proof. From Corollary 5, we have K = I ⊗ A+BT ⊗ I = BT ⊕ A, the Kronecker sum of BT and A.
Applying Lemmas 1 and 4, we get

e(t−t0)(BT⊕A) = e(t−t0)BT⊕(t−t0)A = e(t−t0)BT ⊗ e(t−t0)A = [e(t−t0)B]T ⊗ e(t−t0)A.

Now, Lemma 2 yields

Vec X (t)=Vec
{
e(t−t0)A X (t0)e(t−t0)B}+∫ t

t0

Vec
{
e(t−s)AU(s)e(t−s)B}

ds.

Since the vector operator is linear and continuous, we obtain

Vec X (t)=Vec
{
e(t−t0)A X (t0)e(t−t0)B +

∫ t

t0

e(t−s)AU(s)e(t−s)B ds
}
.

We finally get X (t) from Vec X (t) due to the injectivity of the vector operator.

The explicit form of the solution for the homogeneous case U(t)= 0 in Corollary 6 was firstly
obtained in [6].

4.3 A System of Coupled Vector Differential Equations
Corollary 7. Let A ∈ Mm, C ∈ Mm,k, E ∈ Mk,m, G ∈ Mk be given constant matrices such that
AC = CG and GE = EA. Let u(t) ∈ Rm, v(t) ∈ Rk be given vector functions. Then the general
solution of the system of coupled vector differential equations

x′(t)= Ax(t)+Cy(t)+u(t),

y′(t)= Ex(t)+G y(t)+v(t)

in unknown vector functions x(t) ∈Rm and y(t) ∈Rk is given by

x(t)= e(t−t0)A{
E2((t− t0)2CE)x(t0)+ (t− t0)[E2,2((t− t0)2CE)]Ey(t0)

}
+

∫ t

t0

e(t−s)A{
E2((t− s)2CE)u(s)+ (t− s)[E2,2((t− s)2CE)]Ev(s)

}
ds,

y(t)= e(t−t0)G{
(t− t0)[E2,2((t− t0)2EC)]Cx(t0)+ [E2((t− t0)2EC)]y(t0)

}
+

∫ t

t0

e(t−s)G{
(t− s)[E2,2((t− s)2EC)]Cu(s)+ [E2((t− s)2EC)]v(s)

}
ds.

If in addition C = E, then

x(t)= e(t−t0)A{
(cosh(t− t0)C)x(t0)+ (sinh(t− t0)C)y(t0)

}
+

∫ t

t0

e(t−s)A{
(cosh(t− s)C)u(s)+ (sinh(t− s)C)v(s)

}
,

y(t)= e(t−t0)G{
(sinh(t− t0)C)x(t0)+ (cosh(t− t0)C)y(t0)

}
+

∫ t

t0

e(t−s)N{
(sinh(t− s)C)u(s)+ (cosh(t− s)C)v(s)

}
ds.

Proof. It is a special case of Corollary 2 when l = n = 1 and B = D = F = H = [1].
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5. Illustrative Initial Value Problems
In this section, we illustrate initial value problems associated with systems of matrix differential
equations considered in the previous section. When initial conditions are imposed to such system,
its solution is unique and appeared in an explicit form.

Example 1. Let A,C ∈ Mn be such that AC = CA. Consider the following system of coupled
matrix differential equations:

X ′(t)= AX (t)+CY (t), (5.1)

Y ′(t)= CX (t)+ AY (t), (5.2)

in unknown matrix functions X (t),Y (t) ∈ Mn. From Corollary 4, we have

Vec X (t)= e(t−t0)(I⊗A){[cosh(t− t0)(I ⊗C)]Vec X (t0)+ [sinh(t− t0)(I ⊗C)]VecY (t0)
}
.

Using Lemma 1, we can reduce the above formula as follows:

Vec X (t)= (I ⊗ e(t−t0)A)
{
[I ⊗cosh(t− t0)C]Vec X (t0)+ I ⊗ [sinh(t− t0)C]VecY (t0)

}
= (I ⊗ e(t−t0)A cosh(t− t0)C)Vec X (t0)+ (I ⊗ e(t−t0)A sinh(t− t0)C)VecY (t0).

Thus, by Lemma 2, we get

X (t)= e(t−t0)A[
(cosh(t− t0)C)X (t0)+ (sinh(t− t0)C)Y (t0)

]
, (5.3)

Y (t)= e(t−t0)A[
(sinh(t− t0)C)X (t0)+ (cosh(t− t0)C)Y (t0)

]
. (5.4)

Now, consider the system (5.1) under initial conditions X (0)=W1 and Y (0)=W2, where

A =
[
1 0
2 2

]
, C =

[
2 0
−2 1

]
, W1 =

[
1 0
1 2

]
, and W2 =

[
1 0
−2 2

]
.

First, note that AC = CA. Now, we compute the following matrix exponentials:

etA =
[

et 0
2(e2t − et) e2t

]
, etC =

[
e2t 0

2(et − e2t) et

]
, e−tC =

[
e−2t 0

2(e−t − e−2t) e−t

]
.

Then we have the following matrix hyperbolic functions:

cosh tC = 1
2

(etC + e−tC)=
[

cosh2t 0
2cosh t−2cosh2t cosh t

]
.

sinh tC = 1
2

(etC − e−tC)=
[

sinh2t 0
2sinh t−2sinh2t sinh t

]
.

From (5.3) and (5.4), we have

X (t)=
[

e3t 0
−1

2 e3t + 3
2 et 2e3t

]
, Y (t)=

[
e3t 0

−1
2 e3t − 3

2 et 2e3t

]
.

One can check that the formulas of X (t) and Y (t) satisfy the above initial value problem.

Example 2. Consider the following coupled matrix differential equations:
X ′(t) = AX (t)B+CY (t)D,
Y ′(t) = CX (t)D+ AY (t)B,

}
(5.5)
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under initial conditions X (0)=W1 and Y (0)=W2, where

A =
[
1 0
2 2

]
, B =

[
0 1
1 0

]
, C =

[
2 0
−2 1

]
, D =

[
1 1
1 1

]
, W1 =

[
1 0
3 −1

]
, W2 =

[
0 −1
1 2

]
.

First, note that AC = CA and BD = DB. From Corollary 4, we have

Vec X (t)= etBT⊗A{
[cosh(tDT ⊗C)]Vec X (0)+ [sinh(tDT ⊗C)]VecY (0)

}
, (5.6)

VecY (t)= etBT⊗A{
[sinh(tDT ⊗C)]Vec X (0)+ [cosh(tDT ⊗C)]VecY (0)

}
. (5.7)

Note that by Lemma 1(5), we have Sp(BT ⊗ A) = {1,2,−1,−2}. So, to get an explicit formula
of etBT⊗A , we apply Cayley-Hamilton theorem to write it as a matrix polynomial of degree at
most 3:

etBT⊗A =
3∑

k=0
rk(t)(BT ⊗ A)k

for some r0(t), r1(t), r2(t), r3(t) satisfying etλ =∑3
k=0 rk(t)λk for all λ ∈Sp(BT ⊗ A). This leads to

the Vandermonde system:
et

e2t

e−t

e−2t

=


1 1 1 1
1 2 4 8
1 −1 1 −1
1 −2 4 −8




r0(t)
r1(t)
r2(t)
r3(t)

 .

Solving this linear system to get

r0(t)= 1
12

(8et −2e2t +8e−t −2e−2t), r1(t)= 1
12

(8et − e2t −8e−t + e−2t),

r2(t)= 1
12

(−2et +2e2t −2e−t +2e−2t), r3(t)= 1
12

(−2et + e2t +2e−t − e−2t).

Thus,

etBT⊗A = r0(t)I + r1(t)(BT ⊗ A)+ r2(t)(BT ⊗ A)2 + r3(t)(BT ⊗ A)3

=


r0(t)+ r2(t) 0 r1(t)+ r3(t) 0

6r2(t) r0(t)+4r2(t) 2r1(t)+14r3(t) 2r1(t)+8r3(t)
r1(t)+ r3(t) 0 r0(t)+ r2(t) 0

2r1(t)+14r3(t) 2r1(t)+6r3(t) 6r2(t) r0(t)+4r2(t)

 .

Using Lemma 5 to compute the following:

etDT⊗C = e

[
tC tC
tC tC

]
= e

[
tC 0
0 tC

]
e

[
0 tC
tC 0

]
= 1

2

[
e2tC + I e2tC − I
e2tC − I e2tC + I

]
.

Now, we have

e2tC =
[

e4t 0
2(e2t − e4t) e2t

]
, etDT⊗C =


e4t +1 0 e4t −1 0

2(e2t − e4t) e2t +1 2(e2t − e4t) e2t −1
e4t −1 0 e4t +1 0

2(e2t − e4t) e2t −1 2(e2t − e4t) e2t +1

 .

Hence, one can get the solutions X (t) and Y (t) from (5.6) and (5.7).
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6. Conclusion
We investigate certain systems of coupled generalized Sylvester matrix differential equations
in both nonhomogeneous and homogeneous cases. To solve for its general solution, we apply
the vector operator to the matrix systems, so that they are reduced to simple equivalent vector
differential systems. We obtain explicit forms of its general solution in terms of Kronecker
products, and matrix series concerning Mittag-Leffler functions, exponentials, and hyperbolic
functions. Our assumptions on coefficient matrices are not too restricted anymore since
they include many interesting special cases. Our results includes certain systems of coupled
matrix/vector differential equations, and single matrix differential equations as special cases.
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