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Commutativity of Involutorial Rings with

Constraints on Left Multipliers

L. Oukhtite and L. Taoufiq

Abstract. Let (R,∗) be a ring with involution and let Z(R) be the center of R.

The purpose of this paper is to explore the commutativity of R if it admits a left

multiplier F satisfying certain identities on Lie ideals. Furthermore, some results

for left multipliers in prime rings are extended to Lie ideals. Finally, examples

are given to prove that the restrictions imposed on the hypothesis of the various

theorems were not superfluous.

1. Introduction

Throughout this paper, R will represent an associative ring with center Z(R).

For any x , y ∈ R, the symbol [x , y] denotes the commutator x y − y x . Recall that

R is said to be 2-torsion free if whenever 2x = 0, with x ∈ R, then x = 0. R is

prime if aRb = 0 implies a = 0 or b = 0. If R is equipped with an involution ∗,

then R is ∗-prime if aRb = aRb∗ = 0 yields a = 0 or b = 0. Note that every prime

ring having an involution ∗ is ∗-prime but the converse is in general not true. For

example, if Ro denotes the opposite ring of a prime ring R, then R× Ro, equipped

with the exchange involution ∗ex , defined by ∗ex(x , y) = (y, x), is ∗ex -prime but

not prime. This example shows that every prime ring can be injected in a ∗-prime

ring and from this point of view ∗-prime rings constitute a more general class of

prime rings.

An additive subgroup U of R is said to be a Lie ideal of R if [u, r] ∈ U for all

u ∈ U and r ∈ R. A Lie ideal U which satisfies U∗ = U is called a ∗-Lie ideal. If U

is a Lie (resp., ∗-Lie) ideal of R, then U is called a square closed Lie (resp., ∗-Lie)

ideal if u2 ∈ U for all u ∈ U . The fact that uv+ vu= (u+ v)2−u2− v2 ∈ U together

with [u, v] ∈ U , implies that 2uv ∈ U for all u, v ∈ U .

An additive mapping F : R→ R is called a left multiplier if F(x y) = F(x)y for all

x , y in R. A derivation of R is an additive mapping d satisfying d(x y) = d(x)y +

xd(y) for all x , y in R. An additive mapping F : R → R is called a generalized
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derivation if there exists a derivation d : R→ R such that F(x y) = F(x)y + xd(y)

holds for all x , y ∈ R. Hence generalized derivation covers both the concepts of

derivation and generalized inner derivation. Moreover, generalized derivation with

d = 0 covers the concept of left multipliers.

There has been an ongoing interest concerning the relationship between the

commutativity of a prime ring R and the behavior of a generalized derivation

of R, with associated nonzero derivation. Many of obtained results extend other

ones proven previously just for the action of the generalized derivation on the

whole ring. In this direction, it seems natural to ask what we can say about the

commutativity of R if the generalized derivation is replaced by a left multiplier.

Our aim in this paper is to investigate the commutativity of a ring with involution

(R,∗) satisfying certain identities involving left multiplier acting on Lie ideals.

2. Main Results

Throughout, (R,∗) will be a 2-torsion free ring with involution and Sa∗(R) :=

{r ∈ R/r∗ =± r} the set of symmetric and skew symmetric elements of R.

Lemma 1 ([7, Lemma 4]). If U 6⊆ Z(R) is a ∗-Lie ideal of a 2-torsion free ∗-prime

ring R and a, b ∈ R such that aU b = a∗U b = 0, then a = 0 or b = 0.

Lemma 2 ([8, Lemma 2.3]). Let 0 6= U be a ∗-Lie ideal of a 2-torsion free ∗-prime

ring R. If [U , U] = 0, then U ⊆ Z(R).

Theorem 1. Let U be a square closed ∗-Lie ideal of R and F a left multiplier such that

F(x y)− x y ∈ Z(R) for all x , y ∈ U. If R is ∗-prime, then F is trivial or U ⊆ Z(R).

Proof. Assume that U 6⊆ Z(R). From F(x y)− x y ∈ Z(R) it follows that

F(x)y − x y ∈ Z(R) for all x , y ∈ U . (1)

Hence [F(x)y − x y, r] = 0 for all r ∈ R so that

(F(x)− x)[y, r] + [F(x)− x , r]y = 0. (2)

Writing 2xu instead of x in (2) and using (1) we find that (F(x)− x)u[y, r] = 0

and therefore

(F(x)− x)U[y, r] = 0 for all x , y ∈ U , r ∈ R . (3)

Since U is a ∗-ideal, from (3) it follows that

(F(x)− x)U[y, r]∗ = 0. (4)

As U 6⊆ Z(R), (3) together with (4) assure that

F(x) = x for all x ∈ U . (5)

Let r ∈ R, for all x ∈ U the fact that F([u, r]) = [u, r] implies that

(F(r)− r)u= 0 for all u ∈ U .
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Replacing u by 2uw in (5), where w ∈ U , we get (F(r)− r)uw = 0 and thus

(F(r)− r)Uw = 0 for all w ∈ U . (6)

Since U∗ = U , the relation (6) forces

(F(r)− r)Uw∗ = 0 for all w ∈ U . (7)

Applying Lemma 1, from (6) and (7) it follows that F(r) = r for all r ∈ R. �

Theorem 2. Let U be a square closed ∗-Lie ideal of R and F a left multiplier such that

F(x y) + x y ∈ Z(R) for all x , y ∈ U. If R is ∗-prime, then −F is trivial or U ⊆ Z(R).

Proof. If F is a left multiplier satisfying the property F(x y) + x y ∈ Z(R) for all

x , y ∈ U , then the left multiplier (−F) satisfies the condition (−F)(x y)− x y ∈

Z(R) for all x , y ∈ U and hence Theorem 1 forces U ⊆ Z(R). �

Remark. If we choose the underlying subset as a ∗-ideal instead of a square closed

∗-Lie ideal, then Theorems 1 and 2 remain valid even without the characteristic

assumption on the ring.

Corollary 1. Let R be a ∗-prime ring and I a nonzero ∗-ideal of R. If R admits a left

multiplier F such that F (resp., (−F)) is nontrivial and F(x y)− x y ∈ Z(R) (resp.,

F(x y) + x y ∈ Z(R)) for all x , y ∈ I , then R is commutative.

The following example proves that Theorems 1 and 2 are not true in the case of

arbitrary rings.

Example 1. Let R be the ring of real numbers. Set R =

��

x y

0 z

�
�

�

�

�

x , y, z ∈ R

�

and U =

��

0 y

0 0

�
�

�

�

�

y ∈ R

�

. If we set

�

x y

0 z

�∗

=

�

z −y

0 x

�

and

F

�

x y

0 z

�

=

�

x y − z

0 z

�

, then it is straightforward to check that ∗ is an

involution and F is a nontrivial left multiplier. Moreover, U is a square closed ∗-Lie

ideal of R such that F(x y)− x y ∈ Z(R) for all x , y ∈ U and F(x y)+ x y ∈ Z(R) for

all x , y ∈ U; but U 6⊆ Z(R). Accordingly, the ∗-primeness hypothesis in Theorems 1

and 2 is crucial.

The following theorem extends Theorem 3.1 and Theorem 3.2 of [1] to Lie ideals.

Theorem 3. Let R be a 2-torsion free prime ring and U a square closed Lie ideal of

R. If R admits a left multiplier F such that F(x y)− x y ∈ Z(R) (resp., F(x y)+ x y ∈

Z(R)) for all x , y ∈ U, then F (resp., (−F)) is trivial or U ⊆ Z(R).

Proof. Assume that F(x y)−x y ∈ Z(R) for all x , y ∈ U . LetF be the left multiplier

defined on the ∗ex-prime ring R = R × R0 by F (x , y) = (F(x), y). It we set

W = U × U , then W is a square closed ∗ex-Lie ideal of R . Moreover, from

F ((x , y)(u, v))− (x , y)(u, v) = (F(xu)− xu, 0) for all (x , y), (u, v) ∈W
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it follows that F ((x , y)(u, v))− (x , y)(u, v) ∈ Z(R). Applying Theorem 1, either

F is trivial or W ⊆ Z(R). Accordingly, F is trivial or U ⊆ Z(R).

If F(x y) + x y ∈ Z(R) for all x , y ∈ U; then F (x , y) = (F(x),−y) is a left

multiplier on R such that F (x y) + y x ∈ Z(R) for all x , y ∈ R . Reasoning as

above and using Theorem 2, we get the required result. �

As an application of Theorem 3, we obtain the following results.

Corollary 2. Let R be a prime ring and I a nonzero ideal of R. If R admits a left

multiplier F such that F (resp., (−F)) is nontrivial and F(x y)− x y ∈ Z(R) (resp.,

F(x y) + x y ∈ Z(R)) for all x , y ∈ I , then R is commutative.

Theorem 4. Let U be a square closed ∗-Lie ideal of R and F a left multiplier such

that F(x y)− y x ∈ Z(R) for all x , y ∈ U. If R is ∗-prime, then U ⊆ Z(R).

Proof. Assume that U 6⊆ Z(R). From F(x y)− y x ∈ Z(R) it follows that

F(x)y − y x ∈ Z(R) for all x , y ∈ U .

Hence [F(x)y − y x ,u] = 0 for all u ∈ U so that

[F(x),u]y + F(x)[y,u] = y[x ,u] + [y,u]x . (8)

Replacing y by 2yu in (8), we conclude that

[y,u]xu+ y[x ,u]u− [y,u]ux − yu[x ,u] = 0

and therefore

[y,u][x ,u]+ y[[x ,u],u] = 0. (9)

Substituting 2w y for y in (9) and employing (9) we obtain

[w,u]y[x ,u] = 0 for all w,u, x , y ∈ U .

Consequently,

[w,u]U[x ,u] = 0 for all w,u, x ∈ U . (10)

If u ∈ U ∩ Sa∗(R); then (10) yields

[w,u]U[x ,u]∗ = 0 for all w,u, x ∈ U . (11)

By Lemma 1, equations (10) and (11) give [u, U] = 0 for all u ∈ U ∩ Sa∗(R). Let

u ∈ U , as u∗ − u ∈ U ∩ Sa∗(R), then [x ,u∗ − u] = 0 for all x ∈ U and therefore

[x ,u] = [x ,u∗] for all u, x ∈ U . (12)

Writing u∗ instead of u in (10) and using (12) we find that

[w,u]U[x ,u∗] = 0 for all w,u, x ∈ U . (13)

Since U∗ = U , from (13) it follows that

[w,u]U[x ,u]∗ = 0 for all w, x ∈ R. (14)

In view of Lemma 1, equations (10) and (14) give [y,u] = 0 for all y,u ∈ U .

Hence, [U , U] = 0 which, in view of Lemma 2, contradicts U 6⊆ Z(R). �
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Using similar arguments as above, we can prove the following:

Theorem 5. Let U be a square closed ∗-Lie ideal of R and F a left multiplier such

that F(x y) + y x ∈ Z(R) for all x , y ∈ U. If R is ∗-prime, then U ⊆ Z(R).

Example 2. In hypothesis of Theorem 4 and Theorem 5 the ∗-primeness condition

is necessary. Indeed, in Example 1 it is clear that F(x y) − y x ∈ Z(R) and

F(x y) + y x ∈ Z(R) for all x , y ∈ U , but U 6⊆ Z(R).

Corollary 3. Let R be a ∗-prime ring and I a nonzero ∗-ideal of R. If R admits a left

multiplier F such that F(x y)− y x ∈ Z(R) (or F(x y) + y x ∈ Z(R)) for all x , y ∈ I ,

then R is commutative.

Theorem 6. Let U be a square closed ∗-Lie ideal of R and F a left multiplier such

that F(x)F(y)− y x ∈ Z(R) for all x , y ∈ U. If R is ∗-prime, then U ⊆ Z(R).

Proof. Assume that U 6⊆ Z(R) and

F(x)F(y)− y x ∈ Z(R) for all x , y ∈ U . (15)

Replacing y by yu in (15), we obtain

(F(x)F(y)− y x)u+ y[x ,u] ∈ Z(R) for all u, x , y ∈ U

so that

[(F(x)F(y)− y x)u+ y[x ,u],u] = 0 for all u, x , y ∈ U ,

which, by view of (15), leads us to [y[x ,u],u] = 0 and hence

[y,u][x ,u]+ y[[x ,u],u] = 0 for all u, x , y ∈ U . (16)

Replace y by w y in (16) and then employ (16) to obtain

[w,u]y[x ,u] = 0 for all w,u, x , y ∈ U .

Hence

[w,u]U[x ,u] = 0 for all w,u, x ∈ U . (17)

Since equation (17) is the same as equation (10), arguing as in the proof of

Theorem 4, we obtain [U , U] = 0 which, by view of Lemma 2, contradicts the

fact that U 6⊆ Z(R). �

Using similar arguments as used in the proof of Theorem 6 we can prove the

following result.

Theorem 7. Let U be a square closed ∗-Lie ideal of R and F a left multiplier such

that F(x)F(y) + y x ∈ Z(R) for all x , y ∈ U. If R is ∗-prime, then U ⊆ Z(R).

Example 3. In Theorem 6 and Theorem 7 the ∗-primeness condition cannot be

omitted. Indeed, in Example 1, the left multiplier F satisfies F(x)F(y)− y x ∈ Z(R)

and F(x)F(y) + y x ∈ Z(R) for all x , y ∈ U , but U 6⊆ Z(R).
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As an application of Theorems 6 and 7, we obtain the following results.

Corollary 4. Let R be a ∗-prime ring and I a nonzero ∗-ideal of R. If R admits a

left multiplier F such that F(x)F(y)− y x ∈ Z(R) or F(x)F(y) + y x ∈ Z(R) for all

x , y ∈ I , then R is commutative.
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