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1. Introduction

Let X :={x1,x92,...} be a countably infinite set of symbols called variables. We refer to these

variables as letters, to X as an alphabet, and refer to the set X,, =:{x1,%9,...,%,} as an n-element

alphabet. Let (f;);c; be an indexed set which is disjoint from X. Each f; is called an n;-ary

operation symbol, where n; =1 is a natural number. Let 7 be a function which assigns to every

fi the number n; as its arity. The function 7, on the values of T written as (n;);cs is called a type.
An n-ary term of type 7 is defined inductively as follows:

(i) The variables x1,...,x, are n-ary terms.

(ii) If¢q,...,t,, are n-ary terms then f;(¢1,...,¢,,) is an n-ary term.
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We denote by W, (X,,) the smallest set which contains x1,...,x, and is closed under finite
number of applications of (ii). Then the set W:(X):= 72, W:(X},) is the set of all terms of type
7. An equation of type 1 is a pair (s,?) where s and ¢ are from W;(X); such pairs are commonly
written as s = ¢. An equation s ~ ¢ is an identity of an algebra A, denoted by A |=s ~ ¢ if s4 = ¢4
where s and #2 are the corresponding term functions on A. A generalized hypersubstitution of
type 7 is a mapping o : {f; | i € I} — W;(X) which does not necessarily preserve arities.

We denote the set of all generalized hypersubstitutions of type 7 by Hyp;(7). We define first
the concept of a generalized superposition of terms S™ : W,(X)™ ! — W,(X) by the following
steps:
for any term ¢ € W, (X),

(i) ift=xj, 1=<j<m, then S"(x;,t1,...,tn):=t;,
(ii) if t =x;, m <j €N, then S™(x;,t1,...,tn) :=xj,

(iii) if ¢ = f;(s1,...,8p;), then S™(¢,t1,...,¢,,) := fi(S™(s1,t1,...,tm), ..., S (Sp, t1,. s tm)).
Then the generalized hypersubstitution o can be extended to a mapping 6 : W (X) — W (X)
defined by the following steps:

1) dlx]l:=x€eX,
(ii) Olfi(t1,...,tx)1:= 8" (0(f;),61t1],...,6[t,,]), for any n;-ary operation symbol f; where
6lt;1, 1< j<n; are already defined.

In 2000, Leeratanavalee and Denecke [5] introduced a binary operation og on Hyp;(7) by
010G 09 := 061009 where o denotes the usual composition of mappings and 01,02 € Hyp,(7). Let
0;q be the hypersubstitution mapping which maps each n;-ary operation symbol f; to the term
fi(x1,...,x,,). It turns out that (Hyp;(7);0G,0;4) is a monoid and the monoid (Hyp(7);0p,0;4)
of all arity preserving hypersubstitutions of type 7 forms a submonoid of (Hypg(7);0G,0i4)-

If M is a submonoid of Hyp,(7r) and V is a variety, then an identity s = ¢ of V is called
an M-strong hyperidentity of V if 6[s] = 6[t] is an identity of V for every o € M. A variety
V is called M-strongly solid if every identity satisfies an M-strong hyperidentity. In case of
M = Hyp,(7) we will call strong hyperidentity and strongly solid, respectively.

Let A= (A;(fL.A)id) be an algebra of type 7 and o € Hyp,(7). We let o[A] := (A;(0(f))ier)
which is called generalized derived algebra of type 7, where o(f; YA is the term operation induced
by the term o(f;) on the algebra A.

2. V-Proper Generalized Hypersubstitutions and Normal Forms

Let V be a variety of algebras of type 7 then to test whether an identity s = ¢ of V is a strong
hyperidentity of V, our definition requires that we check, for each generalized hypersubstitution
0 € Hypg(7) that 6[s] = 6[¢] is an identity of V. In practice we restrict our testing to certain
special generalized hypersubstitutions o, those which correspond to V-normal form generalized
hypersubstitutions.

Definition 2.1 ([6]]). Let V be a variety of algebras of type 7. A generalized hypersubstitution
o of type 7 is called a V-proper generalized hypersubstitution if for every s = ¢t € IdV one gets
olsl=oltleldV.
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Definition 2.2 ([7]). Let V be a variety of algebras of type 7. Two generalized hypersubstitutions
o1 and o9 of type T are called V-generalized equivalent if o1(f;) = o2(f;) are identities in V for
all i € I. In this case we write 01 ~yg O2.

Theorem 2.3 ([7]). Let V be a variety of algebras of type 1, and let 01,02 € Hyps(t). Then the
following statements are equivalent:
() 01~vGo2.
(i1) For all t € W(X), the equations 61[t] = 62olt] are identities in V.
(1i1) For all A€V, 01[A]l = o3[A] where op[A] = (A;(Jk(fi)A)id), for k=1,2.

Proposition 2.4 ([7]). Let V be a variety of algebras of type 1. Then the following statements
hold:

(1) For all 01,09 € Hypg(7), if 01 ~vg 02 then 01 is a V-proper generalized hypersubstitution
iff o2 is a V-proper generalized hypersubstitution.

(ii) For all s,t € W (X) and for all 01,02 € Hypg(7), if 01 ~yvg 02 then 61ls]l = 61lt] is an
identity in V iff 6alsl = 62lt] is an identity in V.

The relation ~yq is an equivalence relation on Hyp,(7), but it is not necessarily a congruence
relation. Since ~y ¢ is not always a congruence, the structure obtained by factoring Hyps(7) by
this relation is not necessarily going to be a monoid. Recall that the quotient set gives a monoid
if and only if the equivalence relation used to factor it is a congruence. We factorize Hypg(7) by
~yg and consider the submonoid Pg(V) of Hyp,(7) is the union of equivalence classes of the

relation ~yg. This may also be done for a submonoid M of Hyp;(7) and the relation ~yglu.

Lemma 2.5 ([7]). Let M be a submonoid of Hyps(7) and let V be a variety of type 1. Then the
monoid Pg(V)N M is the union of all equivalence classes of the restricted relation ~vgluy.

Definition 2.6 ([7]). Let M be a monoid of generalized hypersubstitutions of type 7, and let
V be a variety of type 7. Let ¢ be a choice function which chooses from M one generalized
hypersubstitution from each equivalence class of the relation ~yg|yr, and let N g[ (V) be the set
of generalized hypersubstitutions which are chosen. Thus N, 3;4 (V) is a set of distinguished
generalized hypersubstitutions from M, which we might call V-normal form generalized
hypersubstitutions. We will say that the variety V is N, (24 (V)-strongly solid if for every identity
s=teIdV and for every generalized hypersubstitution 0 € N (2’1 (V), 6lsl=altleldV.

Theorem 2.7 ([7]). Let M be a monoid of generalized hypersubstitutions of type T and let V
be a variety of type 1. For any choice function ¢,V is M-strongly solid if and only if V is
N (]y (V)-strongly solid.

Definition 2.8 ([8]). A generalized hypersubstitution o € Hypg(r) is called a regular
generalized hypersubstitution if for every i € I, each of the variables x1,x2,...,x,, occur in
a[fl(xlyxz, et ,xni)]-
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Let Reg(7) be the set of all regular generalized hypersubstitutions of type 7. Then we have
Regs(1) € Hypg (7).

Proposition 2.9 ([8]). For any type 1, Regq(7) is a submonoid of Hyp (7).

3. Tree Transformations defined by Regular Generalized
Hypersubstitution

In 2014, Busaman [3] studied concept of tree transformations defined by the regular
hypersubstitution o and then we generalize this concept to tree transformations defined by the
regular generalized hypersubstitution. In this section we study some properties of VRG-tree
transformations as the following definition.

Definition 3.1. Let o be a regular generalized hypersubstitution. Then TLIfG ={(t,oltD |t e
W.(X)} is called a tree transformation defined by the regular generalized hypersubstitution o.

We denote by TfflG o TUR2G the composition of the tree transformation TfflG and T§2G. Let
TRegy(r) = {TffG | 0 € Reg;(1)} and prove that

Theorem 3.2. (TRegG(T);O,Tg"g) is @ monoid which is isomorphic to the monoid Regg(7) of all
regular generalized hypersubstitutions of type t.

Proof. Let o € Regi(1). Then we define a mapping ¢ : Regg (1) — Treg,r) by 0 — TURG. It
clearly ¢ is well-define and surjective. Next, we will show that ¢(o1 0 02) = @(o1) 0 @p(02), i.e.
TfflG o Tfsz = T(Ifl(:', w0y W€ have

(5,0 € TR o TEG & 3 p((s,p) e TES and (p,t)e TEG)
© p=62ls] and t=61[p]
< t=d1loalsl]

o t=(010q6 02)lt]
TRG

< (5,0 €Tg 5q 0,
This shows that Treg (1) is closed under composition and that ¢ preserves the operation. Next,
we will show ¢ is one-to-one. Assume that T§1G = T(?ZG. Then for all ¢t € W, (X) we get d1[t] = oalt].
Thus for all operation f; we have d1[f;(x1,...,%,,)] = 01(fi) = 02(f;) = Falfi(x1,...,%,)] and then
T(Ifg qoq» the tree transformation T?g
with respect to the composition o. O

01 =02. Finally, since TfflG o T?ZG = is an identity element

Theorem 3.3. Let 0 € Hyp;(7) be a regular generalized hypersubstitution of type T and let T§G
be the corresponding tree transformation. Then

1) T?G is transitive iff o is idempotent,
>i1) T(IfG is reflexive iff 0 = 04,

(i1i) T(?G is symmetric iff 0 og 0 =0;4.
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Proof. (i): Assume that o is idempotent. Then Tﬁ%a = TEG o TRG = TEG by Theorem 2.2 and
so TEC is transitive. Conversely, assume that T2¢ is transitive, we have TR o TEG c TEG 50
that TXS | < TEG Then (t,(0 0g 0)lt]) € TES, | = (¢,(0 0g 0)t]) € TEE = (0 0 0)t] = 61¢], for all
t e W;(X). So o is idempotent.

(ii): Assume that THC is reflexive, so TXG = Ay, (x) = TEG. Therefore (¢,t) € TEC for all t € W;(X)
and then 6[¢t] =t¢ for all t € W (X) so we set 0 = g;4. Conversely, assume that 0 = g;4. Then
TEG = ((¢,61t]) | t € W (XD} = {(£,2) | £ € Wo(X)} = Aw,x) and TEC is reflexive.

(iii): Assume that TR is symmetric. Then for all ¢ € W,(X) we have (¢,6[t]) € TES = (61t],¢) €
T(IfG. Therefore t = 6[6[¢]1] and 6;4[t] = (0 oG o)[t] for all t € W;(X) and we have gog o =0;4.
Conversely, assume that 0 og 0 = 0;4. Then we have TEG¢ =T, o0 TffG = Tffg. This means

goGgo
TEG = (TEG)~1 thus TEC is symmetric. O

A tree transformation is called injective if o is injective, i.e., if d[¢] = 6[¢] then ¢t = ¢, and
T(IfG is called surjective if o is surjective. Then we consider 6[W (X)] ={¢|3 t € W (X),61t] =&}
is a subset of W;(X). Therefore, we consider TﬁG as a relation between W;(X) and 6[W;(X)],
so that T2 ¢ W,(X) x 6[W(X)]. We notice that TE% o (TE%)~! = Ay x) and (TEG)~1o TEG =
{(t,8) | 6[t] = 6[¢]} = kero. Then, we have

Proposition 3.4. Let 0 € Hyp;(7) be a regular generalized hypersubstitution of type T and
let TCISG = W; x 6[W;(X)] be the corresponding tree transformation. Then TCISG is bijective iff
kero = AWT(X) = T?g.

Proof. TEC is bijective iff TXG o(TEG)™1 = (TBG)" 1o TEG = TEG = Ay (). O

As an example now we consider the variety Rec := Mod{x1(x2x3) = (x1x2)x3 = x1x3} is the
nontrivial strongly solid variety of semigroup. By using Theorem [2.7|together with the identities
of Rec, we can restrict our checking to the following regular generalized hypersubstitutions o;
where ¢ € {x1209} U {xgx1} U {100 | 7 > 2} U {xox1aj | j > 2} Ufagxgxs} U {waxrag} U {ajxqxe | j > 24U
{xjxgxs | j > 2 U{xjxixoxs | j,k > 2f Ufxjxexixr | 7,k > 2}. Here o, for a term ¢ € Wi2)(X) denotes
the hypersubstitution which maps the binary operation symbol to the term ¢. The multiplication
of o is described by the following tables.

°G O x1x9 Oxox1 O xyx9x; O xox1x; O x1x9%1 O x9x1%9
Ox1x9 O x1x9 O xox1 Oxix0x; O xox1x;j O x1x9x1 O xox1x9
O x9x1 Ox9x1 O x1x9 O xjx9x1 Oxjx1x9 O x1x9%1 O x9x1%9
O x1x9x; Ox1x9x; O xox1x; O x1x9x; O xox1x; O x1x9x; O xox1x;j
O xox1x; O xox1xj O xix9x; Oxjxoxix;  Oxjxixox; Ox1x9x; Oxgx1x;
O x1x9x1 O x1x9x1 O x9x1%9 O x1x9x1 O xox1%9 O x1x9x1 O x9x1%9
O x9x1%9 O x9x1%9 O x1x9x1 Oxjxixox;  Oxjxixex; O x1x9%1 O x9x1%9
O xjx1x2 O xjx1%2 O xjxox1 Oxjxixgx;  Oxjxoxix; O xjxox1 Oxjx1x9
O xjxox1 O xjxox1 O xjx1x2 Oxjxox1 O xjx1x2 Oxjxox1 Oxjx1xo
Oxjxixoxy, | Oxjxixgxy,  Oxjxoxixg  Oxjxixgxy,  Oxjxoxixy  Oxjxixgxr,  Oxjxoxixp
Oxjxoxixp | Oxjxoxixy  Oxjxixoxy  Oxjxoxixg  Oxjxixoxr  Oxjxoxixng  Oxjxixoxy
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°G O x;x1x2 O x;xox1 Oxjxixox  Oxjxoxiag,

O x1x9 Oxjxixo Oxjxgx1 Oxjxixoxr  Oxjxgxixg

O xox1 O xox1xj O x1x9x; Oxjxoxixy  Oxjxixany,
O x1x9x; Oxjxixoxy,  Oxjxoxixy,  Oxjaxixexy O xjxoxixg
O xox1x; O xox1x; O xqx9x; Oxpxoxix;  Oxpxixox;
O x1x9x1 Oxjxixex; Oxjxgxix;  Oxjaxixex;  Oxjxoxixj
O xox1x9 O xox1x9 Oxix9x1  Oxpxoxing, Oxpxixexy
Oxjx1x9 Oxjx1x9 Oxjxgx1 Oxjxixoxr  Oxjxgxixg
O xjxox1 Oxjxgxix; Oxjrixex; Oxjroxixj  Oxjxixox;
Oxjxixoxy, | Oxjxixoxy  Oxjxoxiag,  Oxjxixoxr  Oxjxoxixg
Oxjxoxiay, | Oxjxoxixp,  Oxjxixoxr  Oxjxoxixy  Oxjxixoxy

Now, we want to describe the tree transformations corresponding to these regular generalized

hypersubstitutions. By leftmost(t) and by rightmost(t) we denote the first and the last variable,

respectively, of the term ¢.

Tgffxz = {(t’ t) | te W(2)(X)} = AVV(Z)(X)?
T3 ={(t,0) ]t € WX} = A0,

Oxgx

TRec = {(t,t')| ' € Wi(X) and rightmost(t') = x,}

lexzxj

u{(,t) |t € Wg)(X) and rightmost(t') = leftmost(t') = x,},

gf;xlxj ={(t,t) | ' € W)(X) and rightmost(t') = x}

U{(t,t) | ¢ € Wio)(X) and rightmost(t') = leftmost(t') = x j}

U{(t,t) | ¢ € Wio)(X) and rightmost(t') = x; and leftmost(t') = xj, where j # k},
§:fx2x1 ={(z,¢) | t' € Wig)(X) and t’ = xqx9x1 or ¢’ = xox12x9}

U{(t,t) |t € W) (X) and rightmost(t') = leftmost(t') = x;}
ff;m ={(t,t) |t € Wg)(X) and ¢' = x1209x71 or ¢’ = xox1x2}

U{(t,t) |t € Wi)(X) and rightmost(t') = leftmost(t') = x,},

TR = {(t,t') | ' € Wigy(X) and leftmost(t') = x;}

ijxlxz
U{(t,¢) | ¢ € Wio)(X) and rightmost(t') = leftmost(t') = x j}
U{(t,¢) | ¢ € Wio)(X) and rightmost(¢') = x; and leftmost(t') = x;, where j # k},

TR = {(t,t')| ¢ € W)(X) and leftmost(t') = x,}

ijxle

U{(t,t) | ¢ € Wio)(X) and rightmost(t') = leftmost(t') = x},

T Rec ={(t,t') | t' € W2)(X) and rightmost(t') = x; and leftmost(¢') = x; where j # k}

ijxlexk

Rec
ijxgxlxk

={(t,t') | t' € W2)(X) and rightmost(t') = x; and leftmost(t') = x;, where j # k}.
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4. Properties of VRG-tree Transformations

Definition 4.1. Let V be a variety of algebras of type 7 and o € Regs(7). The set TXRG =
{(t,DIt,f € W(X) and 6[¢t] = £ € IdV} is called the VRG-tree transformation defined by the
regular generalized hypersubstitution o.

Definition 4.2 ([9]). Let V be a variety of algebras of type 7. Two regular generalized
hypersubstitutions 01,09 of type 1 are called V-regular generalized equivalent if and only
if 01(f;) = o9(f;) € IdV for all i € I. In this case we write 01 ~yrg 02.

Theorem 4.3 ([9]). Let V be a variety of algebras of type 1, and let 01,02 € Reg(7). Then the
following are equivalent:

(i) 01 ~vRG O2.
(i1) For every t € W;(X), the equation 61[t] = 69ltl€ IdV.
(iii) For every A€V, o1[A] = 05[A] where g1[Al = (A;(01(fi)Yier);k = 1,2.

Proposition 4.4 ([9]). Let V be a variety of algebras of type 1. Then the following hold:
(i) For all 01,02 € Regg(7), if 01 ~vrg 02 then o1 is a V-proper regular generalized
hypersubstitution iff o9 is a V -proper regular generalized hypersubstitution.
(ii) For all s,t € W(X) and for all 01,09 € Reg(7), if 01 ~vRrRG 02 then 61[s]l = 61[¢1€1dV iff
O9olsl = 69ltle IdV.

Proposition 4.5. Let 01,02 € Regg(1) and let V be a variety of type 1. Then o1 ~yrg 02 iff
TVRG _ pVRG
o1 g9 *

Proof. (=) We have to show that TXIRG = T},’ZRG. Let 01 ~vrg 02 and (¢,f) € TXIRG. Then by
Theorem ii) we have ¢1[t] = do[t]l € IdV, for all t € W,(X) and &1[t] = { € IdV. Therefore
(t,t) e TXZRG and thus TXIRG c TXzRG. Let 01 ~vrg 02 and (¢,f) € TXzRG. Then by Theorem ii)
we have ¢1[t] = ds[t] € IdV, for all ¢t € W,(X) and &s[t] ~ £ € IdV. Therefore (t,{) € Ty E¢ and
thus TXfG c TXFG. Thus we conclude that TXQRG = TXIRG.

(<) Assume that T) EC = TVEG Let ¢,t€ W,(X) and (¢,t) € TYF% = TYRG . Then o4[t] ~ ¢ and
oolt] = t and so we get o1[t] = oo[t] for all t € W, (X). Then o1(f;) = o2(f;) € IdV for all i € I and

thus 01 ~yvgrg 02. Ol

Definition 4.6 ([9]). Let V be a variety of algebras of type 7. A regular generalized
hypersubstitution o € Reg;(7) is called a V-proper regular generalized hypersubstitution if
for every s =t € IdV one gets 6[s]l = 6[t]l€ IdV.

We denote Prg(V) for the set of all V-proper regular generalized hypersubstitutions of
type 7.

Proposition 4.7 ([9]). The algebra (Prg(V);oq,0q) is a submonoid of (Regg(7);0G,0iq)-

Lemma 4.8.If V is a variety of algebras of type 1, 01 € Prg(V), and o3 € Regy(1) then

VRG VRG _ mVRG
TUl OTUz _T¢71°G¢72'
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Proof. Let (¢,t') € TYEG o TYEG. Then there is a term ¢’ such that (¢,¢") € TyX% and

(t",t') e TYEG Then dslt] ~ ¢" € IdV and ¢1[¢"] = ¢ € IdV. Since 01 € Prg(V), so ¢1[d3ltl] ~
d1lt"] = t' € IdV. Thus (010 09)l¢] = t' € IdV and then (¢,¢') € TyEC, . This shows that
TVRG o TVRG c TVRG

o1 02 — T 01°G02°

Let (¢,)e TVEG  Thus (01 0q02)[t]l = ¢ € IdV and so ¢1[dalt]] = t' € IdV with t" = o[t €

01°G02
I1dV we have &1[t"] = t' € IdV because o1 € Prg(V). Then (¢,t") € TXfG,(t”,t’) € TXZRG and
therefore (¢,¢/) € TY. IRG o TXZRG. This shows that TXlR;gUQ c TXIRG o TXQRG. O

We consider the set Ip,,(V):= {ry RG|5 € Pra(V)} and we may take the relation product as
a binary relation with TVEG .= {(t,8) |t = t€ IdV} = IdV as identity element. Then we get

Oid

Proposition 4.9. The monoid (%RG(V);O,TVRG

viq ) 1S @ homomorphic image of (Prg(V);oG,0;4).

Proof. Let ¢ : Prg(V) — Ip,.(v) be defined by ¢(0) := TXRG. It is clear that o is well defined.
Then by Lemma we have p(010Gg02) = TVEG — TXIRG o TXZRG =@(o1)o (o). So we get ¢

01°G02
is a homomorphism and ¢(o;g) = T(‘,’L,?G. O

Definition 4.10 ([9]). Let V be a variety of algebras of type 7. A regular generalized
hypersubstitution o € Regg(7) is called an inner regular generalized hypersubstitution of a
variety V if for every i €I,

a-[fi(xly---;xni)] zfi(x]_,---,xni)EIdV.

Let PgG(V) be the set of all inner regular generalized hypersubstitutions of V.
By Deﬁnition Pg (V) is the equivalence class [0;q]~y ;-

Proposition 4.11 ([9]). The algebra (PgG(V);oG,aid) is a submonoid of (Pra(V);oq,0iq).

Proposition 4.12. Let V be a variety of algebras of type T and let o € Regg(t). Then TX RG i
reflexive iff o € P} (V).

Proof. Assume that TVEC is reflexive. Then 6[t] =t € IdV for all t € W.(X). This is valid also
for t = fi(x1,...,%5,),i €I and then 6[f;(x1,...,x, )] = fi(x1,...,2,,) €IdV ,ie. Olfi(x1,...,2,,)] =
Oialfi(x1,...,x,,)1 € IdV and o ~ygqg 0iq. Therefore, o € PgG(V). Conversely, assume that
g€ PgG(V). Then 0 ~yrg 0;q and by Theorem We have 6[t] =t € IdV for all t € W, (X). But
this means (t,t) € TV R and TYEC is reflexive. O

Definition 4.13. Let 0 € Reg;(7) and V be a variety of algebras of type 7. The set
kerga ={(t,t)|t,t' e W(X) and 6[t]l=6[t'1eIdV}

will be called the kernel of o with respect to V or semantical kernel of o.
Proposition 4.14. If 01 ~yrg 02, then kergal = kergag.

Proof. By Proposition O
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Proposition 4.15. Let V be a variety of algebras of type 1 and let 0 € Regg(tr). Then
kerga c ker‘(f-(p og o) for all p e Prg(V).

Proof. For any (¢,t')€ kerga we have 6[t] = 6[t'] € IdV . Since p is a V-proper regular generalized
hypersubstitution this implies that p[6[¢]] ~ pl6[t']]1 € IdV and so (¢,t') € kerg(p oG 0). O

Proposition 4.16. Let V be a variety of algebras of type v and let 0 € Regy(1). Then
(TYEG) Lo TYRE = kerlio.

Proof. We have
@, t"e(TyEHToTYRG & 3¢ ((¢,t) e TYRY and (¢,t") e (TyRE)™)
&3¢, t") e TYRG and (t",¢)e TYEY)
©3¢(6lt1=t' €eIdV and 6[t"1 =t €IdV)
& 6lt1 = 61t e IdV

o (t,the ker‘(io. O

Theorem 4.17. For any V-proper generalized hypersubstitution o, the following are equivalent:
() TYVEG is transitive.

(ii) oog o ~yRrG 0.

VRG G
(i) T5™" Ckeryo.

Proof. ()=(ii): Assume that TYEC is transitive. Then TV EC¢ o TVEG ¢ TVRG and therefore
TYRG o TVEG Tﬁgg c TYRG This means, if (¢,t') € T},{fgﬁ, ie. (0ogoltl = ¢ € IdV then
(t,t") € TVRG je. 6[t]l = t' € IdV. But (0 og o)t] = 6[t] € IdV for all t € W,(X) and so
0 0G0 ~yrg 0 by Theorem

(ii))=(i): Assume that o og 0 ~ygg 0. By Lemma we get TyEG = TVEG and TYRCG o TYRG =
TXOIZ(% = TVEG and so TYEC is transitive.

(ii)=(iii): Assume that o og o ~yrg o and let (t,t') € TYEC ie. 6[t] = t' € IdV. Then
6[6[t1] = 6[t'1 € IdV since o is V-proper regular generalized hypersubstitution and we have
(ooqolltl = 6[t'1€ IdV . From (cogo)lt] = 6[t'1 € IdV we obtain that 6[t] = 6[t'] € IdV and then
(t,t') € ker$o. This shows that Ty R c ker$o.

(iii)=(ii): Assume that Ty B¢ c ker$o. Then (t,t') € TYEC  ie. 6[t] ~ ¢ € IdV and since o is
V-proper regular generalized hypersubstitution we get 6[6[¢]]1 = 6[¢t'1€ IdV . Since (¢,t') € kerga
we have 6[t] = 6[t'1€ IdV and then 6[6[t]l = 6[t]1€ IdV,ie. cogo ~vRrag 0. O

Theorem 4.18. Let V be a variety of algebras of type 1. Then:
() TYEC is surjective iff TYEC o (TYRG)"1 = [dV.

(ii) TYRG is injective iff (TYEG) Lo TVEC = kerlo = Aw.(X).
(i) TYEC is bijective iff TV G o(TVEG)~1 = (TVEG)=1o TVEG = Ay (X).

Proof. (i): Assume that TVEC is surjective. We will show that TVEC o (TVEG)~1 = IdV. Let
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(t,t') € IdV. Assume that ¢t ~ £ € IdV . Since T};RG is surjective, for any ¢' there is a term
t"” such that (¢",¢) € T}T/RG, i.e. 6[t"1 =t € IdV. Then we have also 6[t']1 = t € IdV and
(t",t) e TYEG e (¢,t") e (TYEG)™L, Let (t,t') € TYRCG o (TYEG)~1 Thus IdV < TY o(TYEG)™ 1,
Since (¢,t") € TYEG o (TYEG)~1 there exists t” such that (,t") € (TYEG%)~1 and (¢,¢) € TYEC,
Then we have (t",t) € TYEC and (¢",t') e TYEC, ie. 6[t"1 =t € IdV and 6[t"1 = t' € IdV. So
t ~t' € IdV. Conversely, we assume that T 2 o (TVEG)"1 = [dV . Let t € W,(X). We will show
that there is a term ¢' € W(X) with 6[t'1 =t € IdV. From ¢ = t € IdV = TYECG o (TVEG)~1 we
obtain existence of ¢’ € W,(X) such that (#,t) € TYE¥ but this means 6[t] =~ t € IdV and this
shows that TVEC surjective.

(ii): TYRG o(TYEG)~1 = ker‘(,;-a is clear. Assume that TV E¥ is injective and let (¢,t') € (TYE%)™1o
TYRG, Then we have (t,t") e TYEC and (t',t") e TYEC so t =t'. We get (¢,') € Aw,(x) and thus
(TYRG)-1oTVEG Ay x). Assume that (¢,¢') € Ay, (x). Then ¢ =t' and 6[¢] = 6[¢']:= t". Thus
6ltl=t" € IdV and 6[t'] = t" € IdV and (t,t') e TV ,(t',t") € TYEG Then (t,t') e (TYEC)" 1o TYRG
ie. Aw.cx) S(TYEG) 1o TVEG This gives Aw,x) = (TYEG) Lo TYEG, Conversely, assume that
AWT(X) = (TXRG)_IOTXRG and that (¢, t”),(t’, te TXRG. Then (¢, the (TXRG)_IOTXRG = AWT(X),
i.e. t = ¢’ and therefore TV Y is injective.

(iii): Assume that TX RG g bijective. Since o is V-proper regular generalized hypersubstitution,
then by (i) and (ii): TV B¢ o (TVECG) ™1 = IdV cker§o = (TYEG) Lo TYRG = Ay, (x) and therefore
1dV = Aw,x) and Ty RGo(TYRG) ™1 = (TYRG) Lo TYEG = Ay, (x). Conversely, T) ¢ o(TYEG)™1 =
(TYRG) Lo TYRCG = Ay, (x), then by (ii) TY®¢ is injective. Therefore, Ty X% = {((t,t) |6 ~t' €
1dV}=1dV = Aw,x). O

5. Conclusion

We use the extension of regular generalized hypersubstitutions to define tree transformations
which is useful for abstract data type specifications in Theoretical Computer Science and this
work we study some algebraic properties of tree transformations.
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