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Periodic Boundary Value Problems for the Second Order

Impulsive Differential Equations

Chatthai Thaiprayoon, Jessada Tariboon, and Preya Khumsup

Abstract. This paper is concerned with solutions of periodic boundary value

problems for the second order impulsive differential equation. We prove the

existence of extreme solutions and present the method of lower and upper

solutions coupled with monotone iterative technique. Some comparison results

are also established.

1. Introduction

Many evolution processes are characterized by the fact that at certain moments

of time they experience a change of state abruptly. Often these short-term

perturbations are treated as having acted instantaneously or in the form of

impulses. Impulsive differential equations have been developed for modelling

impulsive problems in physics, medicine, population dynamics, biotechnology,

control theory, etc. (see also ref. [1, 5]). The monotone iterative technique

combined with lower and upper solutions has been applied to obtain existence

results for first order [4, 7] and second order [2, 3, 6] impulsive differential

equation with initial or boundary value conditions.

In this paper, we consider the second-order impulsive functional differential

equation with boundary conditions,






























−x ′′(t) = f (t, x(t), x(α(t)))− K(t)x ′(t)≡ F x(t),

t 6= tk, t ∈ J = [0, T],

∆x(tk) = Pk(x(tk), x ′(tk)), k = 1, . . . , m,

∆x ′(tk) = Qk(x(tk), x ′(tk)), k = 1, . . . , m,

x(0) = x(T ),

x ′(0) = x ′(T ),

(1.1)
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where f ∈ C(J × R
2,R), 0 ≤ α(t) ≤ t, Pk,Qk ∈ C(R2,R), K ∈ C(J ,R+),

∆x(tk) = x(t+
k
) − x(t−

k
), ∆x ′(tk) = x ′(t+

k
) − x ′(t−

k
), x(t+

k
) and x(t−

k
) denote

the right and left limits of x at tk, respectively. Similarly, x ′(t+
k
) and x ′(t−

k
) denote

the right and left limits of x ′ at tk, respectively.

This paper is organized as follows. In Section 2, we introduce the concepts of

lower and upper solutions and formulate some lemmas which are necessary in our

discussion. In section 3, by using the method of lower and upper solutions and

the monotone iterative technique we prove the existence of extreme solutions for

PBVP (1.1).

2. Preliminaries

J ′ = J \ {t1, t2, . . . , tm}, J0 = [t0, t1], Jk = (tk, tk+1], k = 1, . . . , m, 0 =

t0 < t1 < · · · < tm < tm+1 = T , PC(J ,R) = {x : J → R, x |Jk
∈ C(Jk,R),

k = 0,1, . . . , m and there exist x(t+
k
) for k = 1,2, . . . , m}, PC1(J ,R) = {x : J → R,

x |Jk
∈ C1(Jk,R), k = 0,1, . . . , m and there exist x ′(t+

k
) for k = 1, . . . , m}. Let

PC(J ,R) and PC1(J ,R) be Banach spaces with the respective norms,

‖x‖PC = sup
t∈J

|x(t)|, ‖x‖PC1 =max
t∈J
{‖x‖PC ,‖x ′‖PC}.

A function x ∈ PC1(J ,R)∩ C2(J ,R) is called a solution of PBVP (1.1) if it satisfies

(1.1).

Definition 2.1. We say that the function y0 ∈ PC1(J ,R) ∩ C2(J ,R) is called a

lower solution of the PBVP (1.1) if






















−y ′′
0
(t)≤ f (t, y0(t), y0(α(t)))− K(t)y ′

0
(t)≡ F y0(t), t ∈ J ′,

∆y0(tk) = Pk(y0(tk), y ′
0
(tk)), k = 1, . . . , m,

∆y ′
0
(tk)≥Qk(y0(tk), y ′

0
(tk)), k = 1, . . . , m,

y0(0) = y0(T ),

y ′
0
(0)≥ y ′

0
(T ),

(2.1)

and it is called an upper solution of the PBVP (1.1) if the above inequalities are

reversed.

Lemma 2.2. Assume that p ∈ PC1(J ,R)∩ C2(J ,R),














p′′(t)≥ K(t)p′(t) +M(t)p(t)+ N(t)p(α(t)), t ∈ J ′,

∆p(tk) = Lkp′(tk), k = 1, . . . , m,

∆p′(tk) ≥ L∗
k
p′(tk), k = 1, . . . , m,

p(0) = p(T ), p′(0)≥ p′(T ),

(2.2)

where M, N ∈ C(J ,R+). Also assume that Lk, L∗
k
≥ 0 and

� m
∑

i=1

Li + T

��

1

e
∫ T

0
K(s)ds

+ 1

�

×

� m
∑

i=1

∫ t i

t i−1

H∗(s)ds

� m
∏

j=i

(1+ L∗
j
)

�

+

∫ T

0

H∗(s)ds

�

≤ 1, (2.3)
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where H∗(t)≡ e
∫ T

t
K(s)ds[M(t)+N(t)] and inf{H∗(t); t ∈ J}> 0 hold, then p(t)≤ 0

on J.

Proof. Firstly, we show that inf{p(t); t ∈ J} ≤ 0. If p′(t)> 0 for all t, it follows that

p(t) is increasing and ∆p(tk) = Lkp′(tk) ≥ 0, then p(0) < p(T ), a contradiction.

Hence, there exists a point ť ∈ Jh, h ∈ {0, . . . , m}, such that p′( ť) ≤ 0. Let

inf{p(t); t ∈ J} = b, where b is a constant, and there exists t∗ ∈ Jr , r ∈ {0, . . . , m}

such that p(t∗) = b or p(t+
r
) = b. We only consider p(t∗) = b, for the case

p(t+
r
) = b the proof is similar. Let u(t) = (e

∫ T

t
K(s)ds p′(t)), we have

u′(t) = (e
∫ T

t
K(s)ds p′(t))′ = e

∫ T

t
K(s)ds[p′′(t)− K(t)p′(t)]

≥ e
∫ T

t
K(s)ds[M(t)p(t)+ N(t)p(α(t))]ds≡ η(t), (2.4)

and

∆u(tk) = ∆(e

∫ T

tk
K(s)ds

p′(tk))≥ L∗
k
e

∫ T

tk
K(s)ds

p′(tk),

u(t+
k
) ≥ (1+ L∗

k
)u(tk). (2.5)

Then, we obtain

u( ť) ≥ u(0)

� h
∏

i=1

(1+ L∗
i
)

�

+

h
∑

i=1

∫ t i

t i−1

η(s)ds

� h
∏

j=i

(1+ L∗
j
)

�

+

∫ ť

th

η(s)ds,

0 ≥ u(0)

� h
∏

i=1

(1+ L∗
i
)

�

+ b

h
∑

i=1

∫ t i

t i−1

H∗(s)ds

� h
∏

j=i

(1+ L∗
j
)

�

+ b

∫ ť

th

H∗(s)ds.

Thus

u(0)≤
−b

h
∏

i=1

(1+ L∗i )

� h
∑

i=1

∫ t i

t i−1

H∗(s)ds

� h
∏

j=i

(1+ L∗
j
)

�

+

∫ ť

th

H∗(s)ds

�

. (2.6)

Similarly, we can prove that

u(T ) ≥ u(t)

� m
∏

i=l+1

(1+ L∗
i
)

�

+

m
∑

i=l+1

∫ t̄ i

t̄ i−1

η(s)ds

� m
∏

j=i

(1+ L∗
j
)

�

+

∫ T

t̄m

η(s)ds

≥ u(t)

� m
∏

i=l+1

(1+L∗
i
)

�

+ b

m
∑

i=l+1

∫ t̄ i

t̄ i−1

H∗(s)ds

� m
∏

j=i

(1+L∗
j
)

�

+b

∫ T

t̄m

H∗(s)ds,(2.7)

for t ∈ Jl = (t l , t l+1], where t̄ l = t, t̄k = tk, J̄k = ( t̄k, t̄k+1], k = l + 1, l + 2, . . . , m.

By using (2.2) and inequality (2.6), (2.7), we get that

u(t) ≤
−b

m
∏

i=l+1

(1+ L∗
i
)

�

1

e
∫ T

0
K(s)ds

h
∏

i=1

(1+ L∗
i
)
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×

� h
∑

i=1

∫ t i

t i−1

H∗(s)ds

� h
∏

j=i

(1+ L∗
j
)

�

+

∫ ť

th

H∗(s)ds

�

+

m
∑

i=l+1

∫ t̄ i

t̄ i−1

H∗(s)ds

� m
∏

j=i

(1+ L∗
j
)

�

+

∫ T

t̄m

H∗(s)ds

�

. (2.8)

Substituting u(t) = (e
∫ T

t
K(s)ds p′(t)) into (2.8), we have

p′(t) ≤
−b

e
∫ T

t
K(s)ds

m
∏

i=l+1

(1+ L∗i )

�

1

e
∫ T

0
K(s)ds

h
∏

i=1

(1+ L∗
i
)

×

� h
∑

i=1

∫ t i

t i−1

H∗(s)ds

� h
∏

j=i

(1+ L∗
j
)

�

+

∫ ť

th

H∗(s)ds

�

+

m
∑

i=l+1

∫ t̄ i

t̄ i−1

H∗(s)ds

� m
∏

j=i

(1+ L∗
j
)

�

+

∫ T

t̄m

H∗(s)ds

�

. (2.9)

By (2.9) if b > 0, which implies p′(t) < 0 for all t, ∆p(tk) = Lkp′(tk) ≤ 0,

k = 1, . . . , m and p(0)> p(T ) a contradicts. Then, we have inf{p(t); t ∈ J} ≤ 0.

Next, we will prove that p(t) ≤ 0 for all t ∈ J . Suppose, to the contrary, that

p(t∗) > 0 for some t∗ ∈ Jv , v ∈ {0, . . . , m}. By letting b = −d where d ≥ 0 from

(2.9), we have

p′(t) ≤
d

e
∫ T

t
K(s)ds

m
∏

i=l+1

(1+ L∗
i
)

�

1

e
∫ T

0
K(s)ds

h
∏

i=1

(1+ L∗
i
)

×

� h
∑

i=1

∫ t i

t i−1

H∗(s)ds

� h
∏

j=i

(1+ L∗
j
)

�

+

∫ ť

th

H∗(s)ds

�

+

m
∑

i=l+1

∫ t̄ i

t̄ i−1

H∗(s)ds

� m
∏

j=i

(1+ L∗
j
)

�

+

∫ T

t̄m

H∗(s)ds

�

≤ d

�

1

e
∫ T

0
K(s)ds

+ 1

�� m
∑

i=1

∫ t i

t i−1

H∗(s)ds

� m
∏

j=i

(1+ L∗
j
)

�

+

∫ T

0

H∗(s)ds

�

. (2.10)

Assume that t∗ > t∗ then v > r. For the case t∗ < t∗, the proof is similar and thus

we omit it. By mean value theorem, we have

p(t∗)− p(tv) = p(t∗)− p(t+
v
) + Lv p′(tv)

= p′(sv)(t
∗− t+

v
) + Lv p′(tv), sv ∈ (tv, t∗)

≤ d
�

Lv + (t
∗ − t+

v
)
�

�

1

e
∫ T

0
K(s)ds

+ 1

�
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×

� m
∑

i=1

∫ t i

t i−1

H∗(s)ds

� m
∏

j=i

(1+ L∗
j
)

�

+

∫ T

0

H∗(s)ds

�

p(tv)− p(tv−1) ≤ d
�

Lv−1+ (tv − t+
v−1
)
�

�

1

e
∫ T

0
K(s)ds

+ 1

�

×

� m
∑

i=1

∫ t i

t i−1

H∗(s)ds

� m
∏

j=i

(1+ L∗
j
)

�

+

∫ T

0

H∗(s)ds

�

...

p(t r+1)− p(t∗) ≤ d
�

Lr + (t r+1− t∗)
�

�

1

e
∫ T

0
K(s)ds

+ 1

�

×

� m
∑

i=1

∫ t i

t i−1

H∗(s)ds

� m
∏

j=i

(1+ L∗
j
)

�

+

∫ T

0

H∗(s)ds

�

.

Summing up we obtain

p(t∗)− p(t∗) ≤ d

� m
∑

i=1

Li + T

��

1

e
∫ T

0
K(s)ds

+ 1

�

×

� m
∑

i=1

∫ t i

t i−1

H∗(s)ds

� m
∏

j=i

(1+ L∗
j
)

�

+

∫ T

0

H∗(s)ds

�

.

Finally, we have the next two cases.

(i) if b < 0, then

0< p(t∗) ≤ p(t∗) + d

� m
∑

i=1

Li + T

��

1

e
∫ T

0
K(s)ds

+ 1

�

×

� m
∑

i=1

∫ t i

t i−1

H∗(s)ds

� m
∏

j=i

(1+ L∗
j
)

�

+

∫ T

0

H∗(s)ds

�

0 < −d + d

� m
∑

i=1

Li + T

��

1

e
∫ T

0
K(s)ds

+ 1

�

×

� m
∑

i=1

∫ t i

t i−1

H∗(s)ds

� m
∏

j=i

(1+ L∗
j
)

�

+

∫ T

0

H∗(s)ds

�

.

Hence

� m
∑

i=1

Li + T

��

1

e
∫ T

0
K(s)ds

+ 1

�� m
∑

i=1

∫ t i

t i−1

H∗(s)ds

� m
∏

j=i

(1+ L∗
j
)

�

+

∫ T

0

H∗(s)ds

�

>1,

which contradicts (2.3).

(ii) if b = 0, then p′(t)≤ 0. This yields ∆p(tk) = Lk p′(tk)≤ 0 so p(t) is decreasing

and therefore p(T )≤ p(0)≤ 0 which is a contradiction. The proof is complete. �
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Consider the PBVP














p′′(t) = K(t)p′(t) +M(t)p(t)+ N(t)p(α(t))−σ(t), t ∈ J ′,

∆p(tk) = Lk p′(tk) + γk, k = 1, . . . , m,

∆p′(tk) = L∗
k
p′(tk) + λk, k = 1, . . . , m,

p(0) = p(T ), p′(0) = p′(T ),

(2.11)

with

(H0): K , M , N ∈ C(J ,R+), σ ∈ C(J ,R), α ∈ C(J ,R) and L, L∗ ≥ 0, γk, λk ∈ R,

k = 1, . . . , m.

Lemma 2.3. Assume that (H0) holds. Then p ∈ PC1(J ,R) ∩ C2(J ,R) is a solution

of (2.11) if and only if p ∈ PC1(J ,R) is a solution of the following impulsive integral

equation:

p(t) =

∫ T

0

G1(t, s)σ1(s, p(s), p(α(s)), p′(s))ds

+

m
∑

k=1

[−G1(t, tk)(L
∗
k
p′(tk) +λk) + G2(t, tk)(Lkp′(tk) + γk)], (2.12)

where

σ1(t, p(t), p(α(t)), p′(t))

= −K(t)p′(t)+
�

W 2 −M(t)
�

p(t)− N(t)p(α(t))+σ(t), (2.13)

for fixed W > 0, and

G1(t, s) =
1

2W
�

eW T − 1
�

¨

eW (T−t+s)+ eW (t−s) , 0≤ s < t ≤ T,

eW (T+t−s)+ eW (s−t) , 0≤ t ≤ s ≤ T,

G2(t, s) =
1

2
�

eW T − 1
�

¨

eW (T−t+s)− eW (t−s) , 0≤ s < t ≤ T,

−eW (T+t−s)+ eW (s−t) , 0≤ t ≤ s ≤ T.
(2.14)

Proof. Substituting σ1 from Eq. (2.13) into the differential equation in (2.11), we

obtain

−p′′(t) +W 2p(t) = σ1(t, p(t), p(α(t)), p′(t)), t ∈ J ′.

Then by using Lemma 2.1 of [2] we have the assertion. �

Lemma 2.4. Let assumption (H0) hold and W > 0. Moreover, assume that

ξ≡
1+eW T

2W (eW T−1)

�
∫ T

0

K(s)+|W 2−M(s)|+N(s)ds+

m
∑

k=1

L∗
k

�

+
1

2

m
∑

k=1

Lk<1, (2.15)

ψ ≡
1

2

�
∫ T

0

K(s)+|W 2−M(s)|+N(s)ds+

m
∑

k=1

L∗
k

�

+
1+eW T

2(eW T−1)
W

m
∑

k=1

Lk<1. (2.16)

Then problem (2.11) has a unique solution p ∈ PC1(J ,R)∩ C2(J ,R).
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Proof. Some ideas are taken from Lemma 2.3 of [2]. For any p ∈ PC1(J ,R) ∩

C2(J ,R), define an operator A by

(Ap)(t) =

∫ T

0

G1(t, s)σ1(s, p(s), p(α(s)), p′(s))ds

+

m
∑

k=1

[−G1(t, tk)(L
∗
k
p′(tk) + λk) + G2(t, tk)(Lkp′(tk) + γk)], t ∈ J ,

where G1, G2 are given by Lemma 2.3. We need to find a fixed point of the operator

A. By computing directly, we obtain

max
t∈J
{G1(t, s)}=

1+ eW T

2W (eW T − 1)
, max

t∈J
{G2(t, s)}=

1

2
.

For any x , y ∈ PC1(J ,R), we have

‖Ax − Ay‖PC

= sup
t∈J

|Ax − Ay |

≤ sup
t∈J

�

�

�

�

∫ T

0

G1(t, s)[σ1(s, x(s), x(α(s)), x ′(s))−σ1(s, y(s), y(α(s)), y ′(s))]ds

�

�

�

�

+ sup
t∈J

�

�

�

�

m
∑

k=1

�

− G1(t, tk)L
∗
k
(x ′(tk)− y ′(tk)) + G2(t, tk)Lk(x

′(tk)− y ′(tk))
�

�

�

�

�

≤ ξ‖x − y‖PC1 . (2.17)

Similarly,

‖Ax ′ − Ay ′‖PC

= sup
t∈J

|Ax ′ − Ay ′|

≤ sup
t∈J

�

�

�

�

∫ T

0

−G2(t, s)[σ1(s, x(s), x(α(s)), x ′(s))−σ1(s, y(s), y(α(s)), y ′(s))]ds

�

�

�

�

+ sup
t∈J

�

�

�

�

m
∑

k=1

[G2(t, tk)L
∗
k
(x ′(tk)− y ′(tk))−W 2G1(t, tk)Lk(x

′(tk)− y ′(tk))]

�

�

�

�

≤ ψ‖x − y‖PC1 . (2.18)

Hence

‖Ax − Ay‖PC1 ≤max{ξ,ψ}‖x − y‖PC1 . (2.19)

By the Banach fixed point theorem, the operator A has a unique fixed point. This

completes the proof. �
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3. Main Results

We are now in a position to prove that the problem (1.1) has extremal solutions.

Theorem 3.1. Let the following assumptions hold:

(H1): f ∈ C(J × R
2,R), 0 ≤ α(t) ≤ t, Pk, Qk ∈ C(R2,R) for k = 1, . . . , m

and if there exists a point ť ∈ J such that α( ť) ∈ {t1, t2, . . . , tm}, then

ť ∈ {t1, t2, . . . , tm},

(H2): y0, z0 ∈ PC1(J ,R)∩C2(J ,R) are lower and upper solutions of problem (1.1),

respectively, and y0 ≤ z0 on J.

(H3): there exist K, M, N ∈ C(J ,R+) such that

[ f (t,u, v)− K(t)w]− [ f (t, ū, v̄)− K(t)w̄]

≤ K(t)(w̄−w) +M(t)(ū− u) + N(t)(v̄− v),

for y0(α(t))≤ v ≤ v̄ ≤ z0(α(t)), y0(t)≤ u≤ ū≤ z0(t), t ∈ J,

(H4): there exist constants Lk, L∗
k
; k = 1, . . . , m, such that

Pk(r(tk), r ′(tk))− Pk(r̄(tk), r̄ ′(tk)) = Lk[r
′(tk)− r̄ ′(tk)],

Qk(r(tk), r ′(tk))−Qk(r̄(tk), r̄ ′(tk))≥ L∗
k
[r ′(tk)− r̄ ′(tk)],

for y0(tk)≤ r(tk)≤ r̄(tk)≤ z0(tk), k = 1, . . . , m,

(H5): the functions K, M, N ∈ C(J ,R+) and constants Lk ≥ 0, L∗
k
≥ 0, k = 1, . . . , m,

satisfy (2.3), (2.15) and (2.16).

Then problem (1.1) has extremal solutions in [y0, z0] = {w ∈ PC1(J ,R) : y0(t) ≤

w(t)≤ z0(t), t ∈ J}.

Proof. Consider the following sequence:



































−y ′′
n
(t) = F yn−1(t)− K(t)[y ′

n
(t)− y ′

n−1
(t)]−M(t)[yn(t)− yn−1(t)]

−N(t)[yn(α(t))− yn−1(α(t))], t ∈ J ′,

∆yn(tk) = Pk(yn−1(tk), y ′
n−1
(tk)) + Lk[y

′
n
(tk)− y ′

n−1
(tk)], k = 1, . . . , m,

∆y ′
n
(tk) =Qk(yn−1(tk), y ′

n−1
(tk)) + L∗

k
[y ′

n
(tk)− y ′

n−1
(tk)], k = 1, . . . , m,

yn(0) = yn(T ),

y ′
n
(0) = y ′

n
(T ),



































−z′′
n
(t) = Fzn−1(t)− K(t)[z′

n
(t)− z′

n−1
(t)]−M(t)[zn(t)− zn−1(t)]

−N(t)[zn(α(t))− zn−1(α(t))], t ∈ J ′,

∆zn(tk) = Pk(zn−1(tk), z
′
n−1
(tk)) + Lk[z

′
n
(tk)− z′

n−1
(tk)], k = 1, . . . , m,

∆z′
n
(tk) =Qk(zn−1(tk), z

′
n−1
(tk)) + L∗

k
[z′

n
(tk)− z′

n−1
(tk)], k = 1, . . . , m,

zn(0) = zn(T ),

z′
n
(0) = z′

n
(T ),

for n= 1,2, . . . . Moreover, by Lemma 2.4, we have y1, z1 are well defined.



Periodic Boundary Value Problems for the Second Order Impulsive Differential Equations 161

We show first that

y0(t)≤ y1(t)≤ z1(t)≤ z0(t), t ∈ J . (3.1)

Let v = y0 − y1. By Definition 2.1 of a lower solution of (1.1), we have

v′′(t) = y ′′
0
(t)− y ′′

1
(t)

≥ F y0(t)− F y0(t)− K(t)[y ′
1
(t)− y ′

0
(t)]−M(t)[y1(t)− y0(t)]

−N(t)[y1(α(t))− y0(α(t))]

≥ K(t)[y ′
0
(t)− y ′

1
(t)] +M(t)[y0(t)− y1(t)] + N(t)[y0(α(t))− y1(α(t))],

or

v′′(t)≥ K(t)v′(t) +M(t)v(t)+ N(t)v(α(t)),

and

∆v(tk) = ∆y0(tk)−∆y1(tk)

= Pk(y0(tk), y ′
0
(tk))− Pk(y0(tk), y ′

0
(tk))− Lk[y

′
1
(tk)− y ′

0
(tk)]

= Lk v′(tk), k = 1, . . . , m,

∆v′(tk) = ∆y ′
0
(tk)−∆y ′

1
(tk)

≥ Qk(y0(tk), y ′
0
(tk))−Qk(y0(tk), y ′

0
(tk))− L∗

k
[y ′

1
(tk)− y ′

0
(tk)]

= L∗
k
v′(tk), k = 1, . . . , m,

v(0) = y0(0)− y1(0)

v(T ) = y0(T )− y1(T )

)

⇒ v(0) = v(T ),

v′(0) = y ′
0
(0)− y ′

1
(0)

v′(T ) = y ′
0
(T )− y ′

1
(T )

)

⇒ v′(0) ≥ v′(T ).

Then, by Lemma 2.2, v ≤ 0, which implies y0(t) ≤ y1(t), t ∈ J . In a similar way,

we can show that z0(t)≥ z1(t), t ∈ J .

Next, we will show that y1(t)≤ z1(t), t ∈ J . Let p = y1 − z1 then, we obtain

p′′(t) = Fz0(t)− K(t)[z′
1
(t)− z′

0
(t)]−M(t)[z1(t)− z0(t)]

−N(t)[z1(α(t))− z0(α(t))]− F y0(t) + K(t)[y ′
1
(t)− y ′

0
(t)]

+M(t)[y1(t)− y0(t)] + N(t)[y1(α(t))− y0(α(t))]

= Fz0(t)− F y0(t) + K(t)[y ′
1
(t)− y ′

0
(t)− z′

1
(t)+ z′

0
(t)]

+M(t)[y1(t)− y0(t)− z1(t) + z0(t)]

+N(t)[y1(α(t))− y0(α(t))− z1(α(t))+ z0(α(t))], (3.2)
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or

p′′(t)≥ K(t)p′(t)+M(t)p(t)+ N(t)p(α(t)),

and

∆p(tk) = ∆y1(tk)−∆z1(tk)

= Pk(y0(tk), y ′
0
(tk)) + Lk[y

′
1
(tk)− y ′

0
(tk)]

−Pk(z0(tk), z
′
0
(tk))− Lk[z

′
1
(tk)− z′

0
(tk)]

= Lk p′(tk), k = 1, . . . , m,

∆p′(tk) = ∆y ′
1
(tk)−∆z′

1
(tk)

= Qk(y0(tk), y ′
0
(tk)) + L∗

k
[y ′

1
(tk)

−y ′
0
(tk)]−Qk(z0(tk), z

′
0
(tk))− L∗

k
[z′

1
(tk)− z′

0
(tk)]

≥ vL∗
k
p′(tk), k = 1, . . . , m,

p(0) = y1(0)− z1(0)

p(T ) = y1(T )− z1(T )

)

⇒ p(0) = p(T ),

p′(0) = y ′
1
(0)− z′

1
(0)

p′(T ) = y ′
1
(T )− z′

1
(T )

)

⇒ p′(0) ≥ p′(T ).

Still by Lemma 2.2, p ≤ 0, which implies y1(t)≤ z1(t), t ∈ J as required.

Using mathematical induction, we can show that

y0(t)≤ y1(t)≤ · · · ≤ yn(t)≤ zn(t)≤ · · · ≤ z1(t)≤ z0(t),

for t ∈ J and n= 1,2, . . .. Employing a standard argument, we have

lim
n→∞

yn(t) = y(t), lim
n→∞

zn(t) = z(t)

uniformly on t ∈ J , and the limit functions y , z satisfy problem (1.1). Moreover,

y , z ∈ [y0, z0].

In the next step we will show that y is the minimal solution and z is the maximal

solution of (1.1). To prove it we assume that u is any solution of problem (1.1)

such that u ∈ [y0, z0]. Let yn−1(t) ≤ u(t) ≤ zn−1(t), t ∈ J , for some positive

integer n. Put v = yn − u. Then

v′′(t) = −F yn−1(t) + K(t)[y ′
n
(t)− y ′

n−1
(t)] +M(t)[yn(t)− yn−1(t)]

+N(t)[yn(α(t))− yn−1(α(t))]+ Fu(t) (3.3)

or

v′′(t)≥ K(t)v′(t) +M(t)v(t)+ N(t)v(α(t)),
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and

∆v(tk) = ∆yn(tk)−∆u(tk)

= Pk(yn−1(tk), y ′
n−1
(tk)) + Lk[y

′
n
(tk)− y ′

n−1
(tk)]− Pk(u(tk),u

′(tk))

= Lkv′(tk), k = 1, . . . , m,

∆v′(tk) = ∆y ′
n
(tk)−∆u′(tk)

= Qk(yn−1(tk), y ′
n−1
(tk)) + L∗

k
[y ′

n
(tk)− y ′

n−1
(tk)]−Qk(u(tk),u

′(tk))

≥ L∗
k
v′(tk), k = 1, . . . , m,

v(0) = yn(0)− u(0)

v(T ) = yn(T )− u(T )

«

⇒ v(0) = v(T ),

v′(0) = y ′
n
(0)− u′(0)

v′(T ) = y ′
n
(T )− u′(T )

«

⇒ v′(0) ≥ v′(T ).

Hence, yn ≤ u, t ∈ J , by Lemma 2.2. Similarly like the above, we can show that

u(t)≤ zn(t), t ∈ J . This yields yn(t)≤ u(t)≤ zn(t), t ∈ J .

Finally, if n→∞, then

y0(t)≤ y(t)≤ u(t)≤ z(t)≤ z0(t), t ∈ J .

This completes the proof. �
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