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1. Introduction
Suslin was the first who introduced the Grassmannian complex and Bloch-Suslin complex [13].
Later, Goncharov used geometric configurations in order to define the motivic complexes (see
[5–8]). Cathelineau [1,2] and Gangle [4] studied variants (Infinitesimal and Tangential) of these
motivic complexes and gave an expected form of tangent groups. Siddiqui in [10,11] defined the
tangent groups TB2(F) and TB3(F) and its complexes for the first order. He used geometric
configurations to construct cross ratio, triple-ratio and Siegel cross-ratio identity and then
proposed various morphisms between Grassmannian complex and first order tangent complex.
In [9] we extended his work to second order by defining second order tangent groups TB2

2(F) and
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TB2
3(F) and other ingredients like cross ratio, Goncharov’s triple-ratio and Siegel’s cross ratio

identity. Using these groups we formed tangent complexes for weight two and three and then
connected these complexes to the Grassmannian complex. We also proved the commutativity of
resulting diagrams.

In this work we are going to extend this notion to a general order “n”. For this we define
n-th order tangent group TBn

2 (F) of weight 2 along with its functional equations. We define a
map ∂εn to construct the following tangent complex of general order

∂εn : TBn
2 (F)−→ F ⊗F×⊕

2∧
F .

Using the results from [12] we determine the coefficients of the cross ratio, Siegel’s cross-ratio
identity and determinants of order n. After these constructions we move to find morphisms of
connection π2

0,εn and π2
1,εn between Grassmannian complex and Cathelineau’s tangent complex.

We show both the maps π2
0,εn and π2

1,εn are well defined. At last we prove that the diagram (5.1d)
is commutative.

2. Newton-Girard Identities
Girard was the first who established in 1629 some identities between the coefficients of
polynomial and its roots (see [3]). Later, Newton reformed these relations and proposed a
general form which was a recursive formula, i.e., suppose f (y) be a polynomial like

f (y)= yn + c1 yn−1 + c2 yn−2 + c3 yn−3 + . . .+ cn−1 y+ cn

with “n” of its roots r1, r2, . . . rn. We use the notation “δk ’ for the sum of k-th powers of roots as

δk = rk
1 + rk

2 + . . .+ rk
n where k ∈Z+ and δk = 0 for k > n .

Then for every k > 0 we obtain an identity in recursive form which we call Newton’s identity

δk + c1δk−1 + c2δk−2 + s3ck−3 + . . .+ ck−1δ1 +kck = 0 .

This identity allows us to deduce relations below
δ1 + c1 = 0 ,

δ2 + c1δ1 +2c2 = 0 ,

δ3 + c1δ2 + c2δ1 +3c3 = 0 ,

δ4 + c1δ3 + c2δ2 + c3δ1 +4c4 = 0 .

 (1)

By considering most generalized form of the polynomial

f (y)=
n∑

i=0
ti yi .

Now assume that tk = 0 for k < 0, we define δk for k > 0 as

δk = rk
1 + rk

2 + . . .+ rk
n .

By interchanging “k” to “(−k)” we obtain

δ−k = r−k
1 + r−k

2 + . . .+ r−k
n .
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Finally, we can conclude the general form of Newton’s identity as

t j(n− j)+ t j+1δ−1 + t j+2δ−2 + t j+3δ−3 + . . .+ tnδ j−n = 0; j 6 n . (2)

Furthermore, we can deduct the following results

M1 = t1

s
,

M2 = 2t2

s
− t2

1

s2 ,

M3 = 3t3

s
− 3t1t2

s2 + t3
1

s3 ,

M4 = 4t4

s
− 4t1t3

s2 − 2t2
2

s2 + 4t2
1t2

s3 − t4
1

s4 .


(3)

In general notation

Mn = ntn

s
−

n−1∑
r=1

tn−r

s
Mr (4)

here, we used Mi =−δ−k ∀ i = 0,1,2, . . . and t0 = s.
When we consider the case t0 = 1− s the above identities will become

N1 = −t1

s−1
,

N2 = −2t2

s−1
− t2

1

(s−1)2 ,

N3 = −3t3

s−1
− 3t1t2

(s−1)2 − t3
1

(s−1)3 ,

N4 = −4t4

s−1
− 4t1t3

(s−1)2 − 2t2
2

(s−1)2 − 4t2
1t2

(s−1)3 − t4
1

(s−1)4


(5)

the general form will be

Nn = ntn

1− s
−

n−1∑
r=1

tn−r

1− s
Nr . (6)

3. Tangent Group of Order 3 in Weight 2
Let F[ε]4 be a truncated polynomial ring over an arbitrary field F then we call the Z-module
TB3

2(F) a tangent group of order 3 if it is generated by
〈
s; s′, s′′, s′′′

] ∈Z[F[ε]4] and quotient by
the expression〈

s; s′, s′′, s′′′
]−〈

t; t′, t′′, t′′′
]+〈

t
s

;
(

t
s

)′
,
(

t
s

)′′
,
(

t
s

)′′′]
−

〈
1− t
1− s

;
(

1− t
1− s

)′
,
(

1− t
1− s

)′′
,
(

1− t
1− s

)′′′]
+

〈
s(1− t)
t(1− s)

;
(

s(1− t)
t(1− s)

)′
,
(

s(1− t)
t(1− s)

)′′
,
(

s(1− t)
t(1− s)

)′′′]
, s, t 6= 0,1, s 6= t , (7)

where
〈
s; s′, s′′s′′′

]= [s+s′ε+s′′ε2+s′′ε3]−[s] and s, s′, s′′, s′′′ ∈ F. The expressions
( t

s
)′, ( t

s
)′′, ( 1−t

1−s
)′,( 1−t

1−s
)′′, (

s(1−t)
t(1−s)

)′
and

(
s(1−t)
t(1−s)

)′′
are defined in [9] and [11]. Others are given below(

t
s

)′′′
= t′′′

s
− s′

s

(
t
s

)′′
− s′′

s

( s
s

)′− s′′′

s

(
t
s

)
,
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(
1− t
1− s

)′′′
= s′′′

(1− s)

(
1− t
1− s

)
+ s′′

(1− s)

(
1− t
1− s

)′
+ s′

(1− s)

(
1− t
1− s

)′′
− s′′′

(1− s)
,(

s(1− t)
t(1− s)

)′′
= B

s3(1− t)3 ,

where

B = (t′)2s3 − tt′′s3 +2tt′′s2 −2(t′)2s2 − tt′′s+ (t′)2s+ tst′s′− ts′t′

+ t3ss′′− t3(s′)2 − t3s′′− t2ss′′+ t2(s′)2 + t2s′′

Consider the diagram

C5(A2
F[ε]4

)
d // C4(A2

F[ε]4
)

d //

π2
1,ε3
��

C3(A2
F[ε]4

)

π2
0,ε3
��

TB3
2(F)

∂
ε3 // F⊗F×⊕∧2F

(F)

here ∂ε3 is a map which behaves like

∂ε3
(〈s; t1, t2, t3]3

2
)= {

3t3

s
−

(
3t1t2

s2 − t3
1

s3

)}
⊗ (1− s)+

{
3t3

1− s
−

(
3t1t2

(1− s)2 − t3
1

(1− s)3

)}
⊗ s

+
{

3t3

s
−

(
3t1t2

s2 − t3
1

s3

)}
∧

{
3t3

1− s
−

(
3t1t2

(1− s)2 − t3
1

(1− s)3

)}
, (8)

where

〈s; t1, t2, t3]3
2 ∈ TB3

2(F); s, t1, t2, t3 ∈ F; s 6= 0,1 .

To minimize the complication we express the map π2
0,ε3 as π2

0,ε3 =π1 +π2

π1(V∗
02)=

2∑
i=0

(−1)i
{(

3
( (v∗i v∗i+1)

ε3

(vivi+1)
−

(v∗i v∗i+1)
ε2(v∗i v∗i+1)

ε

(vivi+1)2

)
+

(v∗i v∗i+1)3
ε

(vivi+1)3

)
⊗ vivi+2)

(vi+1vi+2)

}
; imod3,

(9)

π2(V∗
02)=

2∑
i=0

(−1)i
{

3
(v∗i v∗i+1)

ε3

(vivi+1)
−3

(v∗i v∗i+1)
ε2(v∗i v∗i+1)

ε

(vivi+1)2 +
(v∗i v∗i+1)3

ε

(vivi+1)3

∧
(
3

(v∗i v∗i+2)
ε3

(vivi+2)
−3

(v∗i v∗i+2)
ε2(v∗i v∗i+2)

ε

(vivi+2)2 +
(v∗i v∗i+2)3

ε

(vivi+2)3

)}
; imod3, (10)

π2
1,ε3(V∗

03)= 〈r(v0, . . . ,v3); rε(V∗
03), rε2(V∗

03), , rε3(V∗
03)]3

2 , (11)

where V∗
0m = (v∗0 , . . . ,v∗m).

Proposition 3.1. Commutation holds for the diagram (F) of complexes.i.e.

∂2
ε3 ◦π2

1,ε3 =π2
0,ε3 ◦d .

Proof. Since all maps are already defined so we need direct calculations which gives the
conclusion below

∂2
ε3 ◦π2

1,ε3(V∗
03)=

{
3
( (v∗o v∗3 )ε3

(v0v3)
+ (v∗1 v∗2 )ε3

(v1v2)
− (v∗0 v∗2 )ε3

(v0v2)
− (v∗1 v∗3 )ε3

(v1v3)
+ (v∗o v∗2 )ε

(v0v2)
(v∗o v∗2 )ε2

(v0v2)

+ (v∗1 v∗3 )ε
(v1v3)

(v∗1 v∗3 )ε2

(v1v3)
− (v∗o v∗3 )ε

(v0v3)
(v∗o v∗3 )ε2

(v0v3)
− (v∗1 v∗2 )ε

(v1v2)
(v∗1 v∗2 )ε2

(v1v2)

)
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+ (v∗o v∗3 )3
ε

(v0v3)3 + (v∗1 v∗2 )3
ε

(v1v2)3 − (v∗0 v∗2 )3
ε

(v0v2)3 − (v∗1 v∗3 )3
ε

(v1v3)3

}
⊗ (v0,v1)(v2,v3)

(v0,v2)(v1,v3)

+
{

3
( (v∗0 v∗2 )ε3

(v0v2)
+ (v∗1 v∗3 )ε3

(v1v3)
− (v∗0 v∗1 )ε3

(v0v1)
− (v∗2 v∗3 )ε3

(v2v3)
− (v∗0 v∗2 )ε2

(v0v2)
(v∗0 v∗2 )ε
(v0v2)

− (v∗1 v∗3 )ε2

(v1v3)
(v∗1 v∗3 )ε
(v1v3)

+ (v∗0 v∗1 )ε2

(v0v1)
(v∗0 v∗1 )ε
(v0v1)

+ (v∗2 v∗3 )ε2

(v2v3)
(v∗2 v∗3 )ε
(v2v3)

)

+ (v∗0 v∗2 )3
ε

(v0v2)3 + (v∗1 v∗3 )3
ε

(v1v3)3 − (v∗0 v∗1 )3
ε

v0v1)3 − (v∗2 v∗3 )3
ε

(v2v3)3

}
⊗ (v0,v3)(v1,v2)

(v0,v2)(v1,v3)
. (12)

Next, we move to evaluate the other side π2
0,ε3 ◦d(V∗

03). Since, we have

π2
0,ε3 ◦d(V∗

03)=π1 ◦d(V∗
03)+π2 ◦d(V∗

03) . (13)

Applying, the definitions ofπ2, π2 and d

π1 ◦d(V∗
03)= Ãlt(0123)

{ 2∑
i=0

(−1)i
{(

3
(v∗i ,v∗i+1)

ε3

(vi,vi+1)
−3

(v∗i ,v∗i+1)
ε2(v∗i ,v∗i+1)

ε

(vi,vi+1)2 +
(v∗i ,v∗i+1)3

ε

(vi,vi+1)3

)
⊗ (vi,vi+2)

(vi+1,vi+2)

}}
; imod3 . (14)

Furthermore, we use the facts p⊗ q
r = p⊗ q− p⊗ r in the expansion of inner sum. This gives

us total 18 terms which can further be classified into the terms like
(u)

ε3
u ⊗ v,

(u)
ε2 (u)ε
u2 ⊗ v and

(u)3ε
u3 ⊗v. Now, if we expand through the sum of alternation then total number of terms will be

raised up to ninety. After cancellations and simplifications we acquire an expression identical
with (12).

3.1 Generalized Tangential Dialogarithmic Group
Let F[ε]4 be a truncated polynomial ring over an arbitrary field F then the Z-module TBn

2 (F)
is called tangent group of order “n” if it is generated by

〈
s; sε, sε2 , . . . , sεn

]n
2 ∈ Z[F[ε]n+1] and

quotient by the expression〈
s; sε, sε2 , . . . , sεn

]−〈
t; tε, tε2 , . . . , tεn

]+〈
t
s

;
(

t
s

)
ε

,
(

t
s

)
ε2

, . . . ,
(

t
s

)
εn

]
−

〈
t−1
s−1

;
(

t−1
s−1

)
ε

,
(

t−1
s−1

)
ε2

, . . . ,
(

t−1
s−1

)
εn

]
+

〈
s(t−1)
t(s−1)

;
(

s(t−1)
t(s−1)

)
ε

,
(

s(t−1)
t(s−1)

)
ε2

, . . . ,
(

s(t−1)
t(s−1)

)
εn

]
, s, t 6= 0,1, s 6= t , (15)

where〈
s; sε, sε2 , . . . , sεn

]= [s+ sεε+ sε2ε2 + . . .+ sεnεn]− [s]; (s, sε, . . . , sεn ∈ F) ,(
t
s

)
εn

= tεn

s
− sε

s

(
t
s

)
ε(n−1)

− sε2

s

(
t
s

)
ε(n−2)

− . . .− sε(n−1)

s

(
t
s

)
ε

− sεn

s

(
t
s

)
,(

t−1
s−1

)
εn

= sεn

1− s

(
t−1
s−1

)
+ sε(n−1)

1− s

(
t−1
s−1

)
ε

+ . . .+ sε
1− s

(
t−1
s−1

)
ε(n−1)

− tεn

1− s
,(

s(t−1)
t(s−1)

)
εn

= sεn

t(1− s)

(
s(t−1)
t(s−1)

)
+ sεn−1

t(1− s)

(
s(t−1)
t(s−1)

)
ε

+ . . .+ sε
t(1− s)

(
s(1− t)
t(1− s)

)
ε(n−1)

− tεn

t(1− s)
.
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For n = 1,2, we obtain the groups TB2(F) and TB2
2(F) which are discussed in [9,12], where

using these two groups, the tangent or Cathelineau Complexes are formed and are connected
with Grassmannian complex.

4. Tangential Analogue of n-th order Complex
We have described the group TBn

2 (F) earlier and now we propose a map ∂εn in order to establish
dialogarithmic tangent complex of order “n” i.e.

∂εn : TBn
2 (F)−→ F ⊗F×⊕

2∧
F .

The map ∂εn has already been defined for n = 1,2 as

∂ε : 〈s; t]2 7→ t
s
⊗ (1− s)+ t

1− s
⊗ s+ t

s
∧ t

1− s
; s, t ∈ F,

∂ε2 : 〈s; t1, t2]2
2 7→

(
2t2

s
− t2

1

s2

)
⊗ (1− s)+

(
2t2

(1− s)
+ t2

1

(1− s)2

)
⊗ s+

(
2t2

s
− t2

1

s2

)
∧

(
2t2

(1− s)
+ t2

1

(1− s)2

)
;

s, t1, t2 ∈ F,

(see [11] and [9] for details). From (8), we have

∂ε3
(〈s; t1, t2, t3]3

2
)= {

3t3

s
−

(
3t1t2

s2 − t3
1

s3

)}
⊗ (1− s)+

{−3t3

s−1
−

(
3t1t2

(s−1)2 + t3
1

(s−1)3

)}
⊗ s)

+
{

3t3

s
−

(
3t1t2

s2 − t3
1

s3

)}
∧

{−3t3

s−1
−

(
3t1t2

(s−1)2 + t3
1

(s−1)3

)}
. (16)

Here, we use the results of (2), to rebuild these maps. So, we write

∂ε : 〈s; t1]2 7→ M1 ⊗ (1− s)+N1 ⊗ s+M1 ∧N1 ,

∂ε2 : 〈s; t1, t2]2
2 7→ M2 ⊗ (1− s)+N2 ⊗ s+M2 ∧N2 ,

∂ε3 : 〈s; t1, t2, t3]3
2 7→ M3 ⊗ (1− s)+N3 ⊗ s+M3 ∧N3 ,

the pattern above allows us to propose a similar morphism for a general order n.

∂εn : 〈s; t1, t2, . . . tn]n
2 7→ Mn ⊗ (1− s)+Nn ⊗ s+Mn ∧Nn (17)

where Mn and Nn are defined in (4) and (6), respectively. Our aim is to connect this analogue of
Grassmannian sub-complex and the n-th order complex in tangential settings. The result of
connection of both complexes gives the diagram below.

C5(A2
F[ε]n+1

)
d // C4(A2

F[ε]n+1
)

d //

π2
1,εn

��

C3(A2
F[ε]n+1

)

π2
0,εn
��

TBn
2 (F)

∂εn
// F ⊗F×⊕∧2 F

(5.1d)

For n = 1,2, the map π2
0,εn is given in [9] but here we describe maps π2

0,ε and π2
0,ε2 in a different

fashion that is in terms of Newton’s relations. This enables us to write this map for the higher
values of n.
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So, we use the notations V∗
0n=(v∗0 , . . . ,v∗n); ai j=(v∗i ,v∗i+1)

ε j , bi j=(v∗i ,v∗i+2) and zi=(v∗i+1,v∗i+2)
∀ 1≤ i, j ≤ n. Consider the polynomials

g(t)=
n∑

l=0
ail tl ; h(t)=

n∑
l=0

bil tl ,

g(t)= ai0 +ai1t+ai2t2 +ai3t3 + . . .+aintn ,

h(t)= bi0 +bi1t+bi2t2 +bi3t3 + . . .+bintn ,

then the Newton’s identities for these polynomial will be

Mi1 = ai1

ai0
,

Mi2 = 2ai2

ai0
− a2

i1

a2
i0

,

Mi3 = 3ai3

ai0
− 3ai1ai2

a2
i0

+ a3
i1

a3
i0

,

Mi4 = 4ai4

ai0
− 4ai1ai3

a2
i0

− 2a2
i2

a2
i0

+ 4a2
i1ai2

a3
i0

− a4
i1

a4
i0

,

these relations can be generalized recursively as under

Min = nain

aio
−

n−1∑
p=1

ai(n−r)

ai0
Mip . (18)

Similarly, for the polynomial h(t)

Ni1 = bi1

bi0
,

Ni2 = 2bi2

bi0
− b2

i1

b2
i0

,

Ni3 = 3bi3

bi0
− 3bi1bi2

b2
i0

+ b3
i1

b3
i0

,

Ni4 = 4bi4

bi0
− 4bi1bi3

b2
i0

− 2b2
i2

b2
i0

+ 4b2
i1bi2

b3
i0

− b4
i1

b4
i0

with general term

Nin = nbin

bio
−

n−1∑
r=1

bi(n−r)

bi0
Nir . (19)

Now, using above relations we have

π2
0,ε(V

∗
02)=

2∑
i=0

(−1)i
(
Mi1 ⊗ bi0

zi0
+Mi1 ∧Ni1

)
, imod3 ,

π2
0,ε2(V∗

02)=
2∑

i=0
(−1)i

(
Mi2 ⊗ bi0

zi0
+Mi2 ∧Ni2

)
, imod3 .
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Hence for order “n” one can write as

π2
0,εn(V∗

02)=
2∑

i=0
(−1)i

(
Min ⊗ bi0

zi0
+Min ∧Nin

)
, imod3 . (20)

Now, we come to define π2
1,εn . For n = 1,2 it is already defined in [9] and see (11) for n = 3 then

we can propose such map for a general number.

π2
1,εn(V∗

03)= 〈r(V03); rε(V∗
03), rε2(V∗

03), . . . , rεn(V∗
03)]n

2 . (21)

Lemma 4.1. The map π2
0,εn is free of the choice of volume form Ω.

Proof. From (20), we have

π2
0,εn(v∗0 ,v∗1 ,v∗2 )=

2∑
i=0

(−1)i
(
Min ⊗ bi0

zi0
+Min ∧Nin

)
, imod3 , (22)

where Min = nain
xio

−
n−1∑
r=1

ai(n−r)
ai0

Mir and Nin = nain
bio

−
n−1∑
r=1

bi(n−r)
bi0

Nir . Clearly, the map τ2
0,εn consists of

two different expressions of the form Min ⊗ bi0
zi0

and Min ∧Nin. Since value of the expression

Min ⊗ bi0
zi0

will remain unchanged if we interchange Ω with λΩ (see [7, Proposition 3.7]) and the
same result holds for Min ∧Nin. Hence π2

0,εn has no dependence on Ω.

Lemma 4.2. π2
0,εn ◦d(V∗

03) is free of the size of vectors vi ∈V2.

Proof. Using definitions of τ2
0,εn and d when we evaluate the composition τ2

0,εn ◦d(V∗
03) we obtain

the combination of homogeneous ratios of determinants like
∆(v∗i ,v∗j )εn

∆(vi ,v j)
. As we have the property

{λ∆(v∗i ,v∗j )}εn

{λ∆(vi,v j)}
=
λ∆(v∗i ,v∗j )εn

λ∆(vi,v j)
=
∆(v∗i ,v∗j )εn

∆(vi,v j)
which ensures the validity of required result.

Proposition 4.3. Commutativity holds for the diagram (5.1d).

∂εn ◦π2
1,εn =π2

0,εn ◦d .

Proof. Chose a tuple (V∗
03) ∈ C4

(
A2

F[ε]n+1

)
, then definition (21) gives us

π2
1,εn(V∗

03)= 〈r(v0, . . . ,v3); rε(V∗
03), rε2(V∗

03), . . . , rεn(V∗
03)]n

2

employing the description of ∂εn given in (17)

∂εn ◦π2
1,εn(V∗

03)=
(

ntn

s
−

n−1∑
r=1

tn−r

s
Mr

)
⊗ (1− s)+

(
ntn

1− s
−

n−1∑
r=1

tn−r

1− s
Nr

)
⊗ s

+
(

ntn

s
−

n−1∑
r=1

tn−r

s
Mr

)
∧

(
ntn

1− s
−

n−1∑
r=1

tn−r

1− s
Nr

)
, (23)

where s = r(V03); t1 = rε(V∗
03); t2 = r2

ε (V
∗
03) up to tn = rεn(V∗

03).

The phrases ntn
s −

n−1∑
r=1

tn−r
s Mr and ntn

1−s −
n−1∑
r=1

tn−r
1−s Nr contains expressions like (α)εn , (α)εi (α)ε j ;

i+ j = n, (α)εi (α)ε j (α)εk , i+ j+k = n, . . . .
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After tensoring with s = (v0,v3)(v1,v2)
(v0,v2)(v1,v3) , we get terms of the form (α)εn ⊗ (k, l), (α)εi (α)ε j ⊗ (k, l);

i+ j = n, (α)εi (α)ε j (α)εk ⊗ (k, l), i+ j+k = n and so on. The coefficients of these terms will occur
according to the pattern of Newton identities.

To find value of right hand side π2
0,εn ◦d we use the formula (20)

π2
0,εn ◦d(V∗

03)= Ãlt(0123)

(
2∑

i=0
(−1)i

(
Min ⊗ yi0

zi0
+Min ∧Nin

))
, imod3 , (24)

where Min and Nin are defined earlier. First we expand the inner sum which gives us terms of
the type Mi j ⊗a and Mi j∧Mkl , where Mi j and Mkl are Newton’s identities which are defined
in (18) and (19). By substituting these values in (24) and applying the alternation sum we only
need a little simplification to achieve the required result.

5. Conclusion
In this work we have shown that the higher order tangent group TBn

2 (F) and its defining
relations are valid for higher orders. The above results motivate us to compute higher order
tangent groups for weight 3. One can find the group TBn

3 (F) and use it to construct the higher
order tangent to Goncharov’s complex for weight 3 or even higher.
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