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1. Introduction

In this paper, we define bicomplex Tetranacci and bicomplex Tetranacci-Lucas quaternions
by combining bicomplex numbers and Tetranacci, Tetranacci-Lucas numbers and give some
properties of them. Before giving their definition, we present some information on bicomplex
numbers and also on Tetranacci and Tetranacci-Lucas numbers.

The bicomplex numbers (quaternions) are defined by the four bases elements 1,1, j,ij where
i,J and ij satisfy the following properties:

i2=-1, j°=-1, ij=ji.
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A bicomplex number can be expressed as follows:
q=aog+iai+jas+ijag=(ag+iai)+jlag+iag)=z¢+jz1,
where ag,a1,a92,as are real numbers and z(,z; are complex numbers. So the set of bicomplex

number is
BC ={z¢+jz1:20,21 € C,j2 =-1}L

Moreover, for any bicomplex numbers q = ag +ia; +jas +ijas and p = bg+ib1 + jbo +ijbs
and scaler A € R, the addition, subtraction and multiplication with scalar are defined as

componentwise, i.e
q+p=(ap+bo)+ila1+b1)+ jlag+ba)+ijlas+bz),
q—-p=(aog—bp)+ila;—b1)+jlag—b2)+ijlas—b3),
Ag =Aag+ilay+ jrlag+ijlas
respectively, and product (multiplication) is defined as follows:
g xp =(apbo—aibi—agbs +asbs)+ilapb1+ai1bo—agbs—asbs)
+ jlapbg —a1bg+agsbg—asby)+ijlagbs+aibs+agbi +asby).

Multiplication of basis elements of bicomplex numbers can be done according to Table 1}

Table 1. Multiplication table

x 11| j|ij

11| j|ij

i 0|1 ij | —j
J| i -1 i
ij | ij| —j|—i|-1

There are three different conjugations (involutions) for bicomplex numbers, namely
%

q; =

* =

q;

q;j=ao—ta1—jaz+tijag=2z9—-Jj21,

ap—iai+jag—ijag =29+ jz1,

ag+ial—jag—ijag=2z9—jz1,

for g =ag+iai+ jaz+ijas. The squares of norms of the bicomplex numbers which arise from

the definitions of conjugations are given by

2 2 2 2 2 .
N7 (q)=lq; x q;kl =lag+ai—a5—az+2jlapas +aias)l,

N]z(q) =|q; x q;l = Iag +a% —a% —a% +2i(apa1 +azas)l,
Nizj(q) =|q;; x qul = Ia% +a% +a§ +a§ +2ij(agas —agal)l.
We now give some basic informations on quaternions. Quaternions were formally invented
by Irish mathematician W. R. Hamilton (1805-1865) as an extension to the complex numbers
and for some background about this type of hypercomplex numbers we refer the works, for
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example, in [3], [6], [23]. The field H of quaternions is a four-dimensional non-commutative
R-field generated by four base elements 1,7, and %k that satisfy the following rules:

i2=2=k2=ijk=-1 (1.1)
and
ij=k=—ji, jk=1=-kj, ki=j=—ik. (1.2)
Briefly BC, the set of bicomplex numbers, has the following properties:

* Quaternions and bicomplex numbers are generalizations of complex numbers, but one
difference between them is that quaternions are non-commutative, whereas bicomplex
numbers are commutative.

* Real quaternions are non-commutative, and don’t have zero divisors and non-trivial
idempotent elements. But bicomplex numbers are commutative, have zero divisors and
non-trivial idempotent elements:

ij=Ji,
G+ -)=i*—ij+ji—-j*=0,

1+ij)2_1+ij
2 2

¢ All above norms are isotropic. For example, for N;, we calculate N;(q) for g =1+1ij as

N2 +ij)=A+ij)A-ij)=1%—ij+ij—(ij)*=0.

* BC is a real vector space with the addition of bicomplex numbers and the multiplication
of a bicomplex number by a real scalar.

¢ BC forms a commutative ring with unity which contains C.

* BC forms a two-dimensional algebra over C, and since C is of dimension two over R, the
bicomplex numbers are an algebra over R of dimension four.

* BC is a real associative algebra with the bicomplex number product x.

For more details about these type of numbers (quaternions), we refer to, for example, the
works [13], [[18]], among others.

Tetranacci sequence {M,},>9 and Tetranacci-Lucas sequence {R,},>0 are defined by the
fourth-order recurrence relations

M,=M, 1+M, o+M, s+M,_ 4, My=0M=1,Ms=1,M3=2 (1.3)
and
R,=R,1+R, 9+R,, 3+R,,_4, Ro=4,R1=1,R9=3,R3="17 (1.4)

respectively. More detail on these sequences can be found, for example, in [101, [14], [15], [19],
[21] and [22].

The sequences {M,},>0 and {R,},>0 can be extended to negative subscripts by defining

M_,=-M_,-y~-M_(n_2)—M_n_3)+ M_(;,_4)
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and
R_p,=-R_(n-1)—R_(n-29—R-(n-3)+ R-(n-4)
for n =1,2,3,..., respectively. Therefore, recurrences (1.3) and (1.4) hold for all integer n.

Table 2 presents the first few values of the Tetranacci and Tetranacci-Lucas numbers with

positive and negative subscripts:

Table 2. Tetranacci and Tetranacci-Lucas Numbers with non-negative and negative indices

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
M, O 1 1 2 4 8 15 29 56 108 208 401 773 1490
M, 0 O O 1 -1 0 0 2 -3 1 0 4 -8 5
R, 4 1 3 7 15 26 51 99 191 367 708 1365 2631 5071
R, 4 -1 -1 -1 7 -6 -1 -1 15 -19 4 -1 31 53

It is well known that for all integers n, usual Tetranacci and Tetranacci-Lucas numbers can

be expressed using Binet’s formulas
a,n+2 IBn+2 Yn+2 6n+2

—,3)(04—}/)(04—6)+(,6 a)(B—y)p—05) (Y—a)()f—ﬁ)()f—5)+(6—04)(5—,6)(6—}/)

(see for example [24] or [10]), or

-1 -1 -1 5-1
My= 2Lty Pl guor, Yo pony 021 o (1.5)
Ba—8 56-8 5y-8 56 -8

(see for example [7]]) and

R,=a"+p"+y" +6"

M, =

respectlvely, where a,,y and 6 are the roots of the equation x* — x3 — x% — x — 1 = 0. Moreover,

a= \/——wz w‘l, w——\/——w2 oL,

i “1'3
y=i_ l \/__w2__w 1 :1_1 __\/__wz__w |
1 2 42

13 1/3
11 [ -65 563 —65 /563
w= |—+|—+1/— — .
12 54 108 54 108
Note that the Binet form of a sequence satisfying (1.3) and (1.4) for non-negative integers
is valid for all integers n. This result of Howard and Saidak [11] is even true in the case of

higher-order recurrence relations.
The generating functions for Tetranacci sequence {M,},>0 and Tetranacci-Lucas sequence
{Rn}nzo are

(0,0]
Z::Mnx”: T =

respectively.

x s . 4-3x—2x% -3
55 and ) Rux= 2_ 3 _ 4’
—x%—x°—x =0 l-x—x%-x°-x
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2. The Bicomplex Tetranacci and Tetranacci-Lucas
Quaternions and their Generating Functions,
Binet’s Formulas and Summations Formulas

In this section we define the bicomplex Tetranacci and Tetranacci-Lucas quaternions and give
generating functions and Binet formulas for them. First, we give some information about
bicomplex type quaternion sequences from the literature.

Nurkan and Giiven [17]] (see also [16]) introduced nth bicomplex Fibonacci and nth bicomplex
Lucas numbers (quaternions) as

BF,=Fp+Fp1i+Fyioj+Fy3ij
and
BLy,=Lp+Lp+1i+Lpsoj+Lnisty

respectively, where F',, and L, are the nth Fibonacci and Lucas numbers, respectively. Various
families of bicomplex number (quaternion) sequences have been defined and studied by a
number of authors. See, for example, [11, [2], [4], [8], [9] for second order bicomplex quaternion
sequences and [5]], [[12]]] for third order bicomplex quaternion sequences.

We now define bicomplex Tetranacci and Tetranacci-Lucas quaternions over the algebra BC.

Definition 1. The nth bicomplex Tetranacci quaternion is
and the nth Tetranacci-Lucas quaternion is

BCR,=R,+iR, .1+ JjRyo+ijR,.3. (2.2)

It can be easily shown that {BCM,}, >0 and {BCR ,}, >0 can also be defined by the recurrence

relations:

BCM,, =BCM,,_1+BCM,,_o + BCM,,_3 + BCM,,_4 (2.3)
and

BCR, =BCR, -1 +BCR,,—2 +BCR,_3 +BCR,_4 (2.4)

with the intial conditions
BCMo=i+j+2ij, BCM1=1+i+2j+4ij,
BCMo=1+2i+4j+8ij, BCM3s=2+4i+8;7+15i;
and
BCRo=4+i+3j+7ij, BCRy=1+3i+7+15ij,
BCRo=3+7i+15j+26ij, BCR3="7+15i+26j+51i;.
The sequences {BCM,,},,>0 and {BCR,},>0 can be extended to negative subscripts by defining
BCM -, = -BCM_(n-1) —BCM_(n-2) —BCM _(,-3) + BCM _(,—4)
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and
BCR_, = -BCR_(;-1) —BCR_(;,—2) —BCR_(,—3) + BCR_(,—4)
for n =1,2,3,..., respectively. Therefore, recurrences (2.3) and (2.4) hold for all integer n.

The first few bicomplex Tetranacci and Tetranacci-Lucas quaternions with positive subscript
and negative subscript are given in Table |3|and Table

Table 3. Bicomplex Tetranacci quaternions

n BCM, BCM_,
0 i+j+2ij i+j+2ij
1 1+1+25+4ij J+ij
2 1+2i+4;+8ij ij

3 2+4i+8j+15ij 1

4 4+8i+155+29ij -1+
5 8+ 151 +295 +56ij —i+j
6 15+29i+56;+108ij —j+ij
7 29+56i+108;+208i; 2—-1ij

Table 4. Bicomplex Tetranacci-Lucas quaternions

n BCR, BCR_,

0 4+i+3j+7ij 4+i+3j+7ij
1 1+3i+7+15ij -1+4i+j+3ij
2 3+7i+155+26ij -1-i+4j+1ij
3 7+151+26j5+51ij —1-i—j+4ij
4 15+26i +515+99ij T—i—j—1ij
5 26+51i+99;+191ij —-6+T7i—j—1ij
6 51+99:1+191;+367ij -1-6i+7j—1ij
7 99+191i+367j+708ij -1-i—-6j+7ij

For two bicomplex Tetranacci quaternions BCM, and BCM}; and for skaler A € R, the
addition, substraction and multiplication with scalar are defined as componentwise, i.e.,

BCM, +BCMp = (Mp +Mp)+ iMpi1+ Mpi1) + j(Mpio + Mpi9) +1j(Mpi3 + Mp3),
BCM, —-BCMy = (M, —Mp)+i(Mps1—Mpi1) + j(Mpi2 —Mpi2) +1j(My3— Mpy3),
ABCM,, =AM, +iAM 1+ jAM 10+ 1jAM ;43
respectively, and product (multiplication) is defined as follows:

BCM,, x BCMp = (MM — My 1Mp1— MyoMpio+ My 3Mp,3)
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+iMpyMp1+ My 1My — My oMy 3— My 3Mp12)

+JMuMpio— My 1My 3+ My oMy, — My 3Mp 1)

+ijMyMpi3+ My 1My o+ MpoMp 1+ My 3My)
=BCM; x BCM,,.

Similarly, for two bicomplex Tetranacci-Lucas quaternions BCR, and BCR} and for skaler 1 € R,
the addition, substraction and multiplication with scalar are defined as componentwise, i.e.,

BCR, +BCR, =R, Rp)+i(Rypi1+Rpi1) + j(Rpi2 2 Rpy2) +ij(Ryy3+ Rpy3),
ABCR, = AR, + iARp+1+ jARp12+ijAR 43
respectively, and product (multiplication) is defined as follows:

BCR, x BCR, = (R,Ry —Ry11Rrs1 —Rpyi2Rpi2+ Ry 3Ry y3)
+i(RyRr+1+Rn+1Rr —RyioRpy3— Ryv3Re+2)
+j(RpRir+2—Rypi1Rp+3 + RpsoRr —RpigRp+1)
+1j(RpRp+g3+ Ryr1Rps2+ RyvoRpv1+ RpssRy)

=BCR;, x BCR,,.
Note that
BCM, x BCM,, = (M2~ M2, |~ M? o+ M2, )+ 2i(M, M1~ M, oMy 3)
+2j(MpMp 2 — My 1My 13) + 21 j(Mp My 13+ My 1M, 19)
and

BCR, x BCR, =(R2-R2,, —~R2,,+R2,,)+2i(R,Rp+1— Rp+2Rn+3)

+2j(RnRy+2—Rp+1Rn+3) + 21 j(RyRyi3 + Ryr1Rn42).

Moreover, three different conjugations for the bicomplex Tribonacci quaternion BCM,, =
M,+iM, .1+ jM,,o+ijM, .3 are given as
(BCM )] =M, —iMy 1+ jMpio—ijMpys3,
BCMy); =My +iMpi1— jMyso—ijMn.s,
BCMp);; =My —iMpi1— jMpi2+ijMp.3,
and the squares of norms of the bicomplex Tribonacci quaternion are given by
N2(BCM,) = (BCM,,); x (BCM,); |
=M+ M2~ M =My g+ 2§(My My + My i1 My 13)],
N¥BCM,) = [(BCM,); x (BCM,,)’]
= \Mo+ Mo M~ My g+ 2i(MyMp i1+ My oMy is)l,
([EBCM )= (BCM,);; x (BCM,); il
= M2+ M2+ M2, + M2, o+ 2ij(MyMy i3~ M, oMpi1)l.
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Similarly, we can give three different conjugations and the squares of norms for the bicomplex
Tribonacci-Lucas quaternion BCR, =R, +iR,+1+ jRy+2+ijR 3.

Now, we will state Binet’s formula for the bicomplex Tetranacci and Tetranacci-Lucas
quaternions and in the rest of the paper we fix the following notations.

d=1+ia+ja’+ija’,
B=1+ip+jp* +ijp’,
V=1+iy+iy* +ijy°,
5=1+i6+j6%+1j6°.

Theorem 2. (Binet’s Formulas) For any integer n, the nth bicomplex Tetranacci quaternion is

n+2 2 Rrn+2
BCM,, = aa + hp
—Pa—-yNa—-06) (B—a)B-y)B-0)
n+2 56n+2
+ rY + (2.5)
(y —a)y — )y — 5) b-—a)6-P)6-7v)
“‘1An—1 p- n-1_ y-1_ .1, 6-1+,
= +——566"" 2.6
sa—8"% Thp- sﬁﬁ y—syy 568 (2.6)
and the nth bicomplex Tetranacci-Lucas quaternion is
BCR, = @a" + Bp" +7y" +66™. 2.7
Proof. Using Binet’s formula of the Tetranacci-Lucas numbers we have
BCR, =R, +iRy+1+jRyi2+ijRy43
— (an +,5n +Yn +6n)+ i(an+1 +ﬁn+1 +Yn+1 +5n+1)
+J-(an+2 +ﬁn+2 +,}/n+2 +5n+2)+ ij(an+3 +ﬁn+3 +,yn+3 +6n+3)
=@a" +Bp" +7y" +66".
Note that using Binet’s formula (1.5) of the Tetranacci numbers we have
BCM, =M, +iMp1+ Mo+ ijMn+3
5a-8 5,6 8 5)/ 8 556 -8
(a-1 -1 y—1 5-1 )
+ + + + o"
L(5a—8a 55-8" "5y-8’ "hi s
“L gty Pl g Y7L ey E(gnu)
5 8 56-8 5y -8 556 -8
+LJ( -1 n2+16 lﬁn+2+ Y_1Yn+2+ 5_16n+2)
56-8 5y -8 56 -8
-1 -1 6-1 -
aa® ﬁ—ﬁﬁn 1 ?Yn_1+ _6571—1.
5a 8 56-8 57/ -8 556 -8
This proves (2.6). Similarly, we can obtain (2.5). O

Next, we present generating functions.
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Theorem 3. The generating functions for the bicomplex Tetranacci and Tetranacci-Lucas
quaternions are

& _(i+j+2ij)+(1+j+2ij)x+(j+2ij)x2+(j+ij)x3

BCM,x" = 2.8
=5 n¥ 1-x—x2—x3—x* 28)
and
4+i+3j+7ij)+(-3+2i+4j+8ij)x
o0 +(—2+3i +5j +4ij)x? +(=1+4i+j+3ij)x’
BCR,x" = 531 (2.9)
=0 l1-x—x%-x°—x
respectively.
Proof. Let

o0
gx)=) BCM,x"
n=0

be generating function of the bicomplex Tetranacci quaternions. Then using the definition of the
bicomplex Tetranacci quaternions, and substracting xg(x), x?g(x), x3g(x) and x*g(x) from g(x)
and using the recurrence relation BCM,, = BCM,,_1 + BCM,,_o + BCM,,_3+BCM,,_4, we obtain

(1-x-x2— 2% —xHg(x) = BCMy + (BCM 1 — BCMo)x + (BCMs — BCM 1 — BCM{)x?
+(BCM3 — BCMo — BCM; — BCM)x>.
Now using
BCM_1=j+1ij
BCMo=1i+j+2ij
BCMi=1+1+2j+4ij
BCMo = 1+2i+4j+8ij
BCMs = 2 +4i +8j + 151

we obtain
(i+j+2ij)+(1+j+2ij)x+(j+2ij)x2+(j+ij)x3
g) = 2_ 3 _ . :
l-x—x*—x°—x
Similarly, we can obtain (2.9). O

Next we present some summation formulas of Tetranacci numbers.

Lemma 4. For n =1 we have the following formulas:

n
(@) ¥ Mp=g(Mpsz+2My+My-1-1),
p:

n
b % Mzp1= $(2Mapio+ Moy — Map_1—2),
p:

n
(c) Zlep = 22Mapi1+ Maop_1— Moo —2).
p:
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The above Lemma is given in Soykan [20, Corollary 2.7]. It now follows that for every integer

n=0,

n n 1
S My=Mo+ Y My==(My9+2M, +M, 1 -1), (2.10)
p=0 p=1 3

n n 1

Y Mop1=Mi+) Myp,1= §(2M2n+2 + Mo, —Moy,—1+1), (2.11)
p=0 p=1

n n 1

Y Mypy=Mo+ ) My, = §(2M2n+1 +Mop_1—Mop_o—2). (2.12)
p=0 p=1

In the following Lemma we present some summation formulas of Tetranacci-Lucas numbers.

Lemma 5. For n =1 we have the following formulas:

n
(@) ¥ Rp=3Rp2+2R,+R,1-10),
p=1
(b) ZIR2p+1 = 2(2Rgn+2 + Ron —Rap-1—11),
p:
(© ¥ Rop= 1(2R2p+1+Ron-1—Raon—2-2).
p:

The above Lemma is given in Soykan [20, Corollary 2.8]. It now follows that for every integer

n=0,

n n 1

Y Rp=Ro+ Y Rp=-{Rypi2+2R,+R,_1+2), (2.13)
p=0 p=1 3

n n 1

Y Ropi1=Ri+ ) Ropi1=+=(2Ron+2+Ray —Roy-1-8), (2.14)
p=0 p=1 3

n n 1

Z Rop =Ro+ Z Rop = =(2R9,41 +R2y-1— Rg,—2 +10). (2.15)
p=0 p=1 3

Next we present some summation formulas of bicomplex Tetranacci quaternions.

Theorem 6. For n =0 we have the following formulas:

n 1
(@) Y BCM, = 3(BCM s + 2BCM,, + BCM g = (L4 + 47 +70) (2.16)
p=0

n 1
(b) Y BCMy,41 = 3 2BCMop o+ BCMay — BCM oy 1 +(1-2i =2/ - 51))
p=0

L 1
© Y BCM,, = 3CBCMap i1 +BCMon 1 ~BCMap g — (2 i+ 2/ +217)).
p=0
Proof. (a) Using (2.1) and (2.10), we obtain

n n n n n

Y BCMp=) Mp+i) Mpi+j) Mpio+ij ) Mpys

p=0 p=0 p=0 p=0 p=0

=Mo+...+My)+iM1+...+ My 1)+ jMo+...+ My 0)+ij(Ms+...+ M, .2)
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and so
3 i BCM, =Mp2+2My, + M, 1 -1 +i(Mpi3+2Mp 1+ M, —1-3M)
p=0
+J(Mp+a+2Mpio+Myi1—1-3(Mo+My))
+1j(My+5+2My3+ Myio—1-3(Mo+ M1+ My))
=BCM, o+ 2BCM, + BCM,,_1+c,
where
c=-1+4+i(-1-3My)+j(-1-3(Mo+M1))+ij(—-1-3(Moy+ M1+ My))
=-1-i-4j-"Tij.
Hence

n 1
) BCM, = g(BCM,Hg +2BCM, + BCM,,_1 — (1 +i +4j + 7ij)).

p=0
This proves (2.16).
(b) and (c) follows from the identities (2.11) and (2.12). O

In the following Theorem, we give some summation formulas of bicomplex Tetranacci-Lucas

quaternions.

Theorem 7. For n =0 we have the following formulas:

n 1
(@) Y BCR, = 3(BCRy 5+ 2BCRy, + BCR 1 + (2 - 10i - 13/ - 22i). (2.17)
p=0
n 1
(b) Y BCRop+1 = 5 (2BCR; 3+ BCRy —~BCRy 1 —(8+ 20+ 11+ 114))
p=0

L 1
(© Y BCRy, = 5 (2BCR; 11 +BCRy 1 ~BCRyp o +(10-8i -2~ 11i).
p=0
Proof. (a) Using (2.3) and (2.13), we obtain (2.17).
(b) and (c) follows from the identities (2.14) and (2.15).

3. Matrices and Determinants Related with Tetranacci and
Tetranacci-Lucas Quaternions

We define the square matrix B of order 4 as:

1111
1 000
B= 0100
0010
such that detB = —1.
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Induction proof may be used to establish

Mn+1 Mn+Mn—1+Mn—2 Mn+Mn—1 Mn
B" = Mn Mn—1+Mn—2+Mn—3 Mn—1+Mn—2 Mn—l (3 1)
Mn—l Mn—2+Mn—3+Mn—4 Mn—2+Mn—3 Mn—2 ’
Mn—2 Mn—3+Mn—4+Mn—5 Mn—3+Mn—4 Mn—3
Matrix formulation of M, and R, can be given as
Mu.s) (11 1 1\"(M;
M,2| [1 0 0 O Mo
Mua|=l0 1 0 of [a (3.2)
M, 0 010 M,
and
Rnows) (11 1 1\*(Rs
R,.2] (1 0 0 O R
R,.1| 101 0 0 R4 (3.3)
R, 0 010 Ry

Induction proofs may be used to establish the matrix formulations M,, and R,,.

Now, we define the matrices Bys and Bg as

BCMs5
BCM,4

By = BCM;

BCM 4+ BCM; + BCM,
BCMs +BCMs9 + BCM;
BCMo +BCM + IBCMO

BCM,4 + BCM;
BCMs +BCM-
BCMs + BCM,

BCM,4
BCMs5
BCMo

BCM,+BCM, BCM;

BCMy BCM;+BCMy+BCM_q

and
BCR4 +BCR3
BCR3+ BCRo

BCR4
BCR3

BCR4 +BCR3 + BCRo
EBCR3+[BCR2+[BCR1
[EBCR3 BCR2+BCR1+[EBCRO BCR2+BCR1 [BCRQ
BCRo [EBCR1+[EBCRO+[EBCR_1 [EBCR1+[BCRO BCR,

These matrices By and Bg can be called bicomplex Tetranacci quaternion matrix and bicomplex

Tetranacci-Lucas quaternion matrix, respectively.

BCR5

B = BCR4

Theorem 8. For n =0, the followings are valid:

" (BCM,.5 BCM,.s+BCM,.5+BCM,.o
[BCMn+4 [EBCMn+3 +[BCMn+2 + [EBCM,H_l
BCM,.3 BCM,.s+BCM,.1+BCM,
BCM,, .o BCM,,.1 +BCM,, + BCM,,_1

BCR,+5 BCR,+4+BCR,.3+BCR, 2
BCR,+4 BCR,.3+BCR, 9+BCR, 1
BCR,+3 BCR,+2+BCR,.1+BCR,
BCR,+2 BCR,.1+BCR,+BCR,_1

[BCMn+4
[BCMn+3
BCMn+2
[BCMn+1

BCR,+4
[BG:Rn+3
[EBCRn+2
[BG:RTL+1

BCM 4 +BCM,, 3

[BCM,H_g + [EBCM,H_Q

BCM,H_Z + [BCM,H_l
BCM, .1 +BCM,

BCR,+4+BCR,,+3

BCR,+3+BCR,, 49

BCR, .2 +BCR, 1
BCR,+1+BCR,

3.4)

(a) By

S

(3.5)

(b) Bpr

SO F oMM
SO H oR oK
HOOHFH Hoo R
S OO H ocooco R

Proof. We prove (a) by mathematical induction on n. If n = 0 then the result is clear. Now, we

assume it is true for n = &, that is

BCMp.5 BCMpi4+BCMp, 3+BCMp o
BCMp.4 BCMp,3+BCMp,o+BCMp,q
[EBCMk+3 [EBCMk+2+[EBCMk+1+[EBCMk
BCMp.9 BCMp1+BCM,+BCMp_q

BCMp 4 +BCMp. 3

BCMp.3+BCMy. o

[BCMk+2 + [EBCMk+1
BCMp1+BCM,

BCMp 44
BCMp+3
BCMp+2
BCMp+1

ByB* =
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If we use (2.3), then we have BCM .4 =BCM}p,3+BCM} 0 +BCM} 1 +BCM}. Then by induction
hypothesis, we obtain

ByB*1 =ByB"B

BCMp,s BCMp,i4+BCMp,3+BCMp, 9o BCMp 4+BCMp,3 BCMp. 4
[EBCMk+4 [BCMk+3+[BCMk+2+|BCMk+1 [BCMk+3+[BCMk+2 [EB([:Mk+3
BCM}, .3 BCMp o+ BCMp, 1 + BCM, BCMp .o +BCMp,1 BCMp.o
[EBCMk+2 [EBCMk_,_1+[EBCMk +[EBCMk_1 [BCMk+1+[E|3Q:Mk [EBCMk_,_l

[EBCMk+6 BCMk+5+[EBCMk+4+|BCMk+3 [EBCMk+5+[BCMk+4 [EBCMk+5
BCMp,s BCMp,iq+BCMp,3+BCMp, 9 BCMp q+BCMp,3 BCMp.4
[EBCMk+4 [BCMk+3+[BCMk+2+|BCMk+1 [BCMk+3+[BCMk+2 [EBCMk+3
BCM}, .3 BCMp o+ BCMp, 1 + BCM, BCMp .o +BCMp,1 BCMp.o

Thus, (3.4) holds for all non-negative integers n.
Eq. (3.5) can be similarly proved. O

S O = =
SO = O =
= o O =
S O O =

Corollary 9. For n = 0, the followings hold:
(a) [EB([:M,H.?, = [EBG:M3Mn+1 +(BCMs +BCM + [EBCM())Mn +(BCM; + [EBCMQ)Mn_l + BCMzMn_g
(b) [EBCR,L+3 = [EBCRgM,Hl +(BCRy + BCR; + [B(CR())M,-L +(BCR1 + [EBCRQ)Mn_l + [BCRzMn_g.

Proof. The proof of (a) can be seen by the coefficient of the matrix By and (3.1). The proof of (b)
can be seen by the coefficient of the matrix Bg and (3.1). O

4. Five-Diagonal Matrix with Fourth Order Sequences and
Applications

In this section we give another way to obtain nth term of the bicomplex Tetranacci and
Tetranacci-Lucas quaternions. For this we need the following theorem.
Theorem 10. Let {x,} be any fourth-order linear sequence defined recursively as follows:

Xp =TXp_1+SXp_9+itx,_3+ux,_4, n=4

with the initial conditions xg = a, x1 = b, x9 = ¢, x3 =d. Then for all n =0, we have

a -1 0 O O O O 00 0 O
b 0 -1 0 0 0 O 00 0 O
c 0 O -1 0 O O 00 0 O
d 0 0 0O -1 0 O 00 0 O
0 u t s r -1 0 0 0 O 0
=10 0 u t s r -1 00 0 O
n
s r -1 0
t s r -1
0 O 0 0 0 0 0 u t s T |t Dx(nsl)
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Proof. We proceed by induction on n. Since

a -1 0 O
a -1 O
a -1 b 0 -1 0
xo=lalix1=a, x1= ‘b 0 =b, x9= b 0 -1 =c, xg3= e 0 0 -1 =d,
o ¢ 0 Olgg d 0 0 0

4x4
the equality holds for n =0,1,2,3. Now we assume that the equality is true for 4 <k <n. Then

we will complete the inductive step n + 1 as follows: Note that

a -1 0 0 0O O O - 0 0 O
b 0 -1 0 0 0 0 0 0 0
c 0 0 -1 0 0 O 0 0 0
d 0 0 0 -1 0 0 0 0 0
0 u t s r -1 0 0 O 0
Xpn+1 = .
0 0 0 0 O 0 O r -1 0
0 0 0 0 O 0 O s r -1
0 0 0 0 O 0 O R O P
and
a -1 0 0 0 0 O 0 0
b 0 -1 0 0 0 0 0 0
c 0 0 -1 0 0 O 0 0
d 0 0 0 -1 0 0 0 0
Xps1=r(=1)2@2D 0w ¢ s r -1 0 0 0
0O 0 0 0 0 0 O ro-1
0 0 0 0 0 0 O ST s Dxnad)
a -1 0 0 O 0 O 0 0
b 0 -1 0 0 0 O 0 0
c 0 0 -1 0 0 O 0 0
d 0 0 0 -1 0 0 0 0
+(~1)(~*+@+Dlo ¢t s r -1 0 0 0
0 0 0 0 0 0 O ro-1
0 0 0 0 0 0 0 ES e x (e D)
and so
a -1 0 0 O O O - 0
b 0 -1 0 0 O O - 0
c 0 0 -1 0 0 0 - 0
o= rr4gld 00 0 -1 0 0 - 0
TR G w f s r -1 0 - 0
0 0 0 0 0 0 O .
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a -1 0 0 0 o o0 --- 0
b 0 -1 0 0 o o0 --- 0
c O 0O -1 0 o o0 --- 0
+d 0 0 -1 0 0 - 0
0 u t s r -1 0 -+ 0
0 O 0 0 0 0 O t
nxn
Now it follows that
a -1 O 0 0 0 o --- 0
b 0 -1 0 0 0 o --- 0
c 0 0 -1 0 O O --- 0
d 0 0 0O -1 0 o --- 0
= +8x,_1+t
I ZTIn TS 4 s r -1 0 - 0
0 0 0 0 0 0 0 t (n-1)x(n-1)
a -1 0 0 0 o o0 --- 0
b 0 -1 0 O o o --- 0
c O 0O -1 0 o o0 - 0
+al o o0 o0 -1 o O - 0
0 u t s r -1 0 - 0
o 0 0O 0 o0 0O o0 Ul (- Dx(n—1)
a -1 0 0 O O O - 0
b 0 -1 0 0 0 o --- 0
c 0 0 -1 0 0 O -- 0
d o0 0 -1 0 o --- 0
= +8Xp_1+txXp_0+
P TSIl TER2 Ty s 21 0 - 0
0 0 0 0 0 0 0 Ul(n-1)x(n-1)
a -1 0 0 0 0 0 0
b 0 -1 0 0 0 O 0
c O 0O -1 0 0 0 0
_ _ -1 0 0 0
— + o4 u(—1) D nld 0 0 O
rn +8%n-1 + -2 +u(=1) 0 u ¢t s r -1 0 0
0 O 0 0 0 0 0 -1 (n-2)x(n-2)
=rx, +8Xp-1+itxp—2+Uux,_3.
This completes the inductive step and the proof of the theorem. O

Note that in our cases r =s =t =u = 1. As a corallary of the above theorem, in the following
we present another way to obtain nth term of the bicomplex Tetranacci and Tetranacci-Lucas

quaternions.
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Corollary 11. For all n =0, we have

BCMy -1 O 0 0 0 0 0 0 O 0
BCM; O -1 O 0 0 0 0 0 O 0
BCMy; O 0O -1 O 0 0 0O 0 O 0
BCMs O 0 0O -1 O 0 0 0 O 0
0 1 1 1 1 -1 O 0O 0 O 0
(a) BCM,, = 0 0 1 1 1 1 -1 0O 0 O 0
0 0 0 0 0 0 11 -1 0
0 0 0 0 0 0 0 11 1 -1
0 0 0 0 0 0 1 1 (i Dx(n+1)
BCRy, -1 O 0 0 0 0 0 0 O 0
BCRy 0 -1 O 0 0 0 0 0 O 0
BCRy O 0O -1 0 0 0 0 0 O 0
BCRs O 0 O -1 0 0 0 0 O 0
0 1 1 1 1 -1 0 0 0 O 0
(b) BCR,, = 0 0 1 1 1 1 -1 0 0 O 0
0 0 0 0 0 0 -1 0
0 0 0 0 0 0 0 11 1 -1
0 0 0 0 0 0 0 1 1 1 1 (ntDx(ns1)
Proof. (a) follows from (2.3) and Theorem (b) follows from (2.4) and Theorem O

5. Conclusion

Recently, there have been so many studies of the sequences of numbers in the literature and the
sequences of numbers were widely used in many research areas, such as physics, engineering,
architecture, nature and art. BC, the set of bicomplex numbers, is a complex Clifford Algebra
which is the simplest example, and the only commutative one, see [13, p. 65]. If we use together
sequences of integers defined recursively and bicomplex numbers, we obtain a new sequences
such as bicomplex Fibonacci quaternions, bicomplex Pell quaternions, bicomplex Padovan
quaternions.

Various families of bicomplex number (quaternion) sequences have been defined and studied
by a number of authors. Some authors studied on second order bicomplex quaternion sequences
such as [[1]], [2], [4], [8], [9] and some authors studied on third order bicomplex quaternion
sequences such as [5], [12]. In this work, we introduce (fourth order) bicomplex Tetranacci
and bicomplex Tetranacci-Lucas quaternions and prove some important properties of them.
The methods used in this paper can be used for the other linear recurrence sequences, too. It is
our intention to continue the study and explore properties of some type of bicomplex number
sequences, such as bicomplex generalized Tetranacci quaternions and other fourth and fifth
order bicomplex quaternions.
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