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1. Introduction
The theory of mathematical inequalities is fairly linked with the concept of convex functions
and many crucial inequalities have been got and structured for this family of functions.
The unearthing of this idea has opened up a very productive, advanced and comprehensive
discipline of mathematics, namely, convex analysis. Convexity is the most fundamental,
important, natural notion in mathematics and presented over 100 years ago. In the last
few years, several extensions and generalizations have been made for convexity. These
generalizations and extensions in the theory of inequalities have made precious contributions
in different areas of mathematics. In this point of view, the new generalized concepts are quasi-
convex [17], ϕ-convex [19], λ-convex [20], approximately convex [23], midconvex functions [24],
pseudo-convex [29], strongly convex [31], logarithmically convex [35], h-convex [39], delta-convex

http://doi.org/10.26713/cma.v10i4.1210 
https://orcid.org/0000-0001-5373-4663
https://orcid.org/0000-0002-0944-2134


694 Generalization of Favard’s and Berwald’s Inequalities for Strongly Convex Functions: M. A. Khan et al.

[36], Schur convexity [14–16] and others [1–3,10–13,26,34,38,40–44,46].

The main aim of this article is on the inequalities related to strongly convex function.

Definition 1 (see [31]). Let Ψ be a real-valued function defined on the interval [λ1,ξ1] and c be
positive real number. Then, the function Ψ is said to be strongly convex with modulus c if the
inequality

Ψ(ηu1 + (1−η)v1)≤ ηΨ(u1)+ (1−η)Ψ(v1)− cη(1−η)(u1 −v1)2 (1)

holds for all u1,v1 ∈ [λ1,ξ1] and η ∈ [0,1]. From (1) we clearly see that

Ψ (u1)−Ψ (v1)≥Ψ′
+ (v1) (u1 −v1)+ c (u1 −v1)2 . (2)

Now, we are going to present some basic theory of majorization.

For fixed n ≥ 2, let β= (β1,β2, . . . ,βn) and ζ= (ζ1,ζ2, . . . ,ζn) be two n-tuples of real numbers
such that

β
↓
1 ≥β↓

2 ≥ . . .≥β↓
n, ζ

↓
1 ≥ ζ↓2 ≥ . . .≥ ζ↓n,

β(1) ≥β(2) ≥ . . .≥β(n), ζ(1) ≥ ζ(2) ≥ . . .≥ ζ(n),

be their ordered components.

Definition 2 ([35, p.319]). The n-tuple β is said to majorizes ζ ( or ζ is to be majorized by β ),
i.e., βÂ ζ, if

m∑
i=1

β
↓
i ≥

m∑
i=1

ζ
↓
i

holds for m = 1,2, . . . ,n−1, and
n∑

i=1
βi =

n∑
i=1

ζi.

In literature the following theorem is well-known as majorization theorem and a suitable
reference for its proof is Olkin and Marshall (see [32, p. 11], see also [35, p. 320]). The result is
due to Littlewood, Hardy and Polya (see [22, p. 75]) and can also be found in Karamata [27].
For a detailed regarding the matter of priority can be found in [30, p. 169].

Theorem 1. Let [λ1,ξ1] be an interval in R and suppose β = (β1,β2, . . . ,βn), ζ = (ζ1,ζ2, . . . ,ζn)
are n-tuples such that βi,ζi ∈ [λ1,ξ1], for i = 1,2, . . . ,n, then

n∑
i=1
Ψ

(
βi

)≥ n∑
i=1
Ψ (ζi) (3)

holds for every continuous convex function Ψ : [λ1,ξ1]→R if and only if βÂ ζ holds.

A weighted version of Theorem 1 was proved by Fuchs in [21] (see also [35]):

Theorem 2. Let β = (β1,β2, . . . ,βn), ζ = (ζ1,ζ2, . . . ,ζn) be two decreasing n-tuples and p =
(p1, p2, . . . , pn) be a real n-tuple such that

m∑
i=1

piβi ≥
m∑

i=1
piζi, for m = 1,2, . . . ,n−1
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and
n∑

i=1
piβi =

n∑
i=1

piζi.

Then for every continuous convex function Ψ : [λ1,ξ1]→R, the following inequality holds
n∑

i=1
piΨ

(
βi

)≥ n∑
i=1

piΨ (ζi) . (4)

The following majorization theorem for positive weight and monotonic condition on single
tuple can be found in the literature [45].

Theorem 3. Let Ψ : [λ1,ξ1] → R be strongly convex function with modulus c. Suppose
β = (β1,β2, . . . ,βn), ζ = (ζ1,ζ2, . . . ,ζn) and p = (p1, p2, . . . , pn) are positive n-tuples such that
βi,ζi ∈ [λ1,ξ1], pi ≥ 0 for i = 1,2, . . . ,n and satisfying

m∑
i=1

piβi ≥
m∑

i=1
piζi, for m = 1,2, . . . ,n−1

and
n∑

i=1
piβi =

n∑
i=1

piζi.

(a): If the n-tuple ζ is decreasing, then the following inequality holds
n∑

i=1
piΨ

(
βi

)≥ n∑
i=1

piΨ (ζi)+ c
n∑

i=1
pi

(
βi −ζi

)2 . (5)

(b): If the n-tuple β is increasing, then the following inequality holds
n∑

i=1
piΨ (ζi)≥

n∑
i=1

piΨ
(
βi

)+ c
n∑

i=1
pi

(
ζi −βi

)2 . (6)

The following theorem is in fact the generalization of majorization theorem for positive
weight and monotonic condition on single tuple [45].

Theorem 4. Let ϕ be a strictly increasing function from (λ1,ξ1) onto (λ2,ξ2) and Ψ ◦ϕ−1

be a strongly convex functions on [λ2,ξ2] with respect to c. Suppose β = (β1,β2, . . . ,βn),
ζ = (ζ1,ζ2, . . . ,ζn) and p = (p1, p2, . . . , pn) are positive n-tuples such that βi,ζi ∈ (λ1,ξ1) for
i = 1,2, . . . ,n and satisfying

m∑
i=1

piϕ(βi)≥
m∑

i=1
piϕ(ζi), for m = 1,2, . . . ,n−1

and
n∑

i=1
piϕ(βi)=

n∑
i=1

piϕ(ζi).

Then the following statements are true:
(a): If the n-tuple ζ is decreasing, then the following inequality holds

n∑
i=1

piΨ
(
βi

)≥ n∑
i=1

piΨ (ζi)+ c
n∑

i=1
pi

(
ϕ(βi)−ϕ(ζi)

)2 . (7)
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(b): If the n-tuple β is increasing, then the following inequality holds
n∑

i=1
piΨ (ζi)≥

n∑
i=1

piΨ
(
βi

)+ c
n∑

i=1
pi

(
ϕ(ζi)−ϕ(βi)

)2 . (8)

The following theorem is a generalization of discrete weighted Favard’s inequality [28]:

Theorem 5. Let Ψ : (0,1)→R be convex function and β= (β1,β2, . . . ,βn), ζ= (ζ1,ζ2, . . . ,ζn) and
p= (p1, p2, . . . , pn) be positive n-tuples.

(i): If β

ζ
is decreasing n-tuple and β is an increasing n-tuple, then the following inequality

holds
n∑

i=1
piΨ

(
ζi∑n

i=1 piζi

)
≥

n∑
i=1

piΨ

(
βi∑n

i=1 piβi

)
. (9)

If ζ is decreasing n-tuple, then the reverse inequality holds in (9).

(ii): If β

ζ
is an increasing n-tuple and ζ is an increasing n-tuple, then the following inequality

holds
n∑

i=1
piΨ

(
βi∑n

i=1 piβi

)
≥

n∑
i=1

piΨ

(
ζi∑n

i=1 piζi

)
. (10)

If β is decreasing n-tuple, then the reverse inequality holds in (10).

If Ψ is strictly convex function and β 6= ζ, then the strict inequalities hold in (9) and (10) and
their reverse cases.

The following theorem is a generalization of discrete weighted Berwald’s inequality [28]:

Theorem 6. Let Ψ,ϕ : [0,∞) → R be such that ϕ is continues and strictly increasing function
and Ψ be a convex function with respect to ϕ that is Ψ ◦ϕ−1 be convex. If β = (β1,β2, . . . ,βn),
ζ= (ζ1,ζ2, . . . ,ζn) and p= (p1, p2, . . . , pn) are positive n-tuples and κ is such that

n∑
i=1

piϕ(βi)=
n∑

i=1
piϕ(κζi)

(i): If β

ζ
is decreasing n-tuple and β is an increasing n-tuple, then the following inequality

holds
n∑

i=1
piΨ (κζi)≥

n∑
i=1

piΨ
(
βi

)
. (11)

If ζ is decreasing n-tuple, then (11) holds in the reverse direction.

(ii): If β

ζ
is an increasing n-tuple and ζ is an increasing n-tuple, then the following inequality

holds
n∑

i=1
piΨ

(
βi

)≥ n∑
i=1

piΨ (κζi) . (12)

If β is decreasing n-tuple, then (12) holds in the reverse direction.

If Ψ◦ϕ−1 is strictly convex function and β 6= κζ, then the strict inequalities hold in (11) and (12)
and their reverse cases.

The following lemma is given in [28]:
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Lemma 1. Let u= (u1,u2, . . . ,un) be a positive n-tuple and b= (b1,b2, . . . ,bn) be increasing real
n-tuple, then

m∑
i=1

biui

n∑
i=1

ui ≤
n∑

i=1
biui

m∑
i=1

ui, for m = 1,2, . . . ,n. (13)

If b is decreasing real n-tuple, then (13) holds in the reverse direction.

If β= (β1,β2, . . . ,βn) and ζ= (ζ1,ζ2, . . . ,ζn) are n-tuples with ζi 6= 0, for i = 1,2, . . . ,n, then we
can define the n-tuple β

ζ
by

(
β1
ζ1

, β1
ζ2

, . . . , βn
ζn

)
.

For more recent results related to strongly convex functions, majorization inequality for
convex functions, Favard’s and Berwald’s inequalities we recommend [4–9,18,25,28,33,37,45].

The main purpose of the article is to establish the extension of Favard’s and Berwald’s
inequalities for strongly convex functions. The given results improve the previously results. Our
approach may have further applications in the theory of majorization.

2. Main Results
In the following theorem we present a generalization of discrete weighted Favard’s inequality
for strongly convex functions.

Theorem 7. Let Ψ : (0,1)→R be strongly convex function with respect to c, β= (β1,β2, . . . ,βn),
ζ = (ζ1,ζ2, . . . ,ζn) and p = (p1, p2, . . . , pn) be positive n-tuples. Also, let β = βi∑n

i=1 piβi
and ζ =

ζi∑n
i=1 piζi

.

(a): If β

ζ
is decreasing n-tuple and β is an increasing n-tuple, then the following inequality

holds
n∑

i=1
piΨ

(
ζ
)
≥

n∑
i=1

piΨ
(
β
)
+ c

n∑
i=1

pi

(
ζ−β

)2
. (14)

If ζ is decreasing n-tuple, then (14) holds in the reverse direction.

(b): If β

ζ
is an increasing n-tuple and ζ is an increasing n-tuple, then the following inequality

holds
n∑

i=1
piΨ

(
β
)
≥

n∑
i=1

piΨ
(
ζ
)
+ c

n∑
i=1

pi

(
β−ζ

)2
. (15)

If β is decreasing n-tuple, then (15) holds in the reverse direction.

If Ψ is strictly strongly convex function and β 6= ζ, then the strict inequalities hold in (14) and
(15) and their reverse cases.

Proof. Using Lemma 1 for u=pζ and b= β

ζ
, we obtain

n∑
i=1

piβi

m∑
i=1

piζi ≤
m∑

i=1
piβi

n∑
i=1

piζi, for m = 1,2, . . . ,n,

i.e.,
m∑

i=1
pi

(
ζi∑n

i=1 piζi

)
≤

m∑
i=1

pi

(
βi∑n

i=1 piβi

)
.
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If β is increasing, then using Theorem 3(b), we obtain
n∑

i=1
piΨ

(
ζ
)
≥

n∑
i=1

piΨ
(
β
)
+ c

n∑
i=1

pi

(
ζ−β

)2
.

In similar fashion we can prove the remaining cases.

Theorem 8. Under the assumptions of Theorem 7.

(a): If β

ζ
is decreasing n-tuple and β is an increasing n-tuple, then the following inequality

holds
n∑

i=1
piΨ

(
ζ
)
≥

n∑
i=1

piΨ
(
β
)
+ c

n∑
i=1

pi

(
ζ

2 −β2)
. (16)

If ζ is decreasing n-tuple, then (16) holds in the reverse direction.

(b): If β

ζ
is an increasing n-tuple and ζ is an increasing n-tuple, then the following inequality

holds
n∑

i=1
piΨ

(
β
)
≥

n∑
i=1

piΨ
(
ζ
)
+ c

n∑
i=1

pi

(
β

2 −ζ2)
. (17)

If β is decreasing n-tuple, then (17) holds in the reverse direction.

Proof. Since Ψ is strongly convex function with respect to c, therefore Ψ(x)− cx2 is convex
function. Applying this convex function on (9), we have

n∑
i=1

piΨ
(
ζ
)
− c

n∑
i=1

piζ
2 ≥

n∑
i=1

piΨ
(
β
)
− c

n∑
i=1

piβ
2
,

which is equivalent to (16). Similarly, from (10) we can deduce (17).

Remark 1. From (16) we can easily obtain Theorem 5 (9), because for convex function Ψ(x)= x2

we obtain
n∑

i=1
pi

(
ζ

2 −β2)≥ 0. Similarly from (17) we can easily deduce Theorem 5 (10).

Corollary 1. Let Ψ : [0,∞)→R be strongly convex function with respect to c, p= (p1, p2, . . . , pn)
be positive n-tuple. Assume that β= βi∑n

i=1 piβi
, z1 = i−1∑n

i=1 pi(i−1) and z2 = n−i∑n
i=1 pi(n−i) .

(a): If β is positive increasing concave n-tuple, then
n∑

i=1
piΨ (z1)≥

n∑
i=1

piΨ
(
β
)
+ c

n∑
i=1

pi

(
z1 −β

)2
. (18)

(b): If β is an increasing convex real n-tuple and β1 = 0, then
n∑

i=1
piΨ

(
β
)
≥

n∑
i=1

piΨ (z1)+ c
n∑

i=1
pi

(
z1 −β

)2
. (19)

(c): If β is positive decreasing concave n-tuple, then
n∑

i=1
piΨ (z2)≥

n∑
i=1

piΨ
(
β
)
+ c

n∑
i=1

pi

(
z2 −β

)2
. (20)

(d): If β is decreasing convex real n-tuple and βn = 0, then
n∑

i=1
piΨ

(
β
)
≥

n∑
i=1

piΨ (z2)+ c
n∑

i=1
pi

(
z2 −β

)2
. (21)

Proof. (a): Taking ζ1 = ε < β1
β2

, ζi = i −1 for 2 ≤ i ≤ n and by concavity of β, we have βi
ζi

for
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1≤ i ≤ n is decreasing n-tuple. Thus, by using Theorem 7 (14), we have

p1Ψ

(
ε

p1ε+∑n
i=2 pi(i−1)

)
+

n∑
i=2

piΨ

(
i−1

p1ε+∑n
i=2 pi(i−1)

)

≥
n∑

i=1
piΨ

(
β
)
+ c

n∑
i=1

pi

(
ε+ (i−1)

p1ε+∑n
i=2 pi(i−1)

−β
)2

.

By taking ε→ 0, we obtain

p1Ψ (0)+
n∑

i=2
piΨ

(
i−1∑n

i=2 pi(i−1)

)
≥

n∑
i=1

piΨ
(
β
)
+ c

n∑
i=1

pi

(
(i−1)∑n

i=2 pi(i−1)
−β

)2
,

which is equivalent to (18).

(b): If β is an increasing convex real n-tuple and β1 = 0, then βi
i−1 for 2 ≤ i ≤ n is increasing.

Since βi
i−1 for 2≤ i ≤ n is increasing and also ζi = i−1 for 2≤ i ≤ n is increasing, thus by using

Theorem 7 (15), we get
n∑

i=2
piΨ

(
βi∑n

i=2 piβi

)
≥

n∑
i=2

piΨ

(
i−1∑n

i=2 pi(i−1)

)
+ c

n∑
i=2

pi

(
βi∑n

i=2 piβi
− i−1∑n

i=2 pi(i−1)

)2
,

which can be written as

p1Ψ

(
0∑n

i=1 piβi

)
+

n∑
i=2

piΨ

(
βi∑n

i=1 piβi

)

≥ p1Ψ

(
0∑n

i=1 pi(i−1)

)
+

n∑
i=2

piΨ

(
i−1∑n

i=1 pi(i−1)

)
+ c

n∑
i=1

pi

(
βi∑n

i=1 piβi
− i−1∑n

i=1 pi(i−1)

)2
,

which is equivalent to (19).
In similar fashion we can prove the remaining cases.

Corollary 2. Under the assumptions of Corollary 1.

(a): If β is positive increasing concave n-tuple, then
n∑

i=1
piΨ (z1)≥

n∑
i=1

piΨ
(
β
)
+ c

n∑
i=1

pi

(
z2

1 −β
2)

. (22)

(b): If β is an increasing convex real n-tuple and β1 = 0, then
n∑

i=1
piΨ

(
β
)
≥

n∑
i=1

piΨ (z1)+ c
n∑

i=1
pi

(
β

2 − z2
1

)
. (23)

(c): If β is positive decreasing concave n-tuple, then
n∑

i=1
piΨ (z2)≥

n∑
i=1

piΨ
(
β
)
+ c

n∑
i=1

pi

(
z2

2 −β
2)

. (24)

(d): If β is decreasing convex real n-tuple and βn = 0, then
n∑

i=1
piΨ

(
β
)
≥

n∑
i=1

piΨ (z2)+ c
n∑

i=1
pi

(
β

2 − z2
2

)
. (25)

Proof. Since Ψ is strongly convex function with respect to c, therefore Ψ(x)− cx2 is convex
function. Applying this convex function on [28, Corollary 2.4], we deduce (22), (23), (24)
and (25).
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Remark 2. From (22) we can easily obtain Corollary 2.4 (2.9) in [28] because for convex function

Ψ(x)= x2 we obtain
n∑

i=1
pi

(
z2

1 −β
2)≥ 0. Similarly for the remaining cases.

The following theorem is discrete weighted Berwald’s inequality for strongly convex function.

Theorem 9. Let ϕ,Ψ : [0,∞)→R be functions such that ϕ is a strictly increasing function and
Ψ is a strongly convex function with respect to ϕ that is Ψ◦ϕ−1 is strongly convex function with
respect to c. Suppose β, ζ and p are positive n-tuples and κ is such that

n∑
i=1

piϕ(βi)=
n∑

i=1
piϕ(κζi) (26)

(a): If β

ζ
is decreasing n-tuple and β is an increasing n-tuple, then the following inequality

holds
n∑

i=1
piΨ (κζi)≥

n∑
i=1

piΨ
(
βi

)+ c
n∑

i=1
pi

(
ϕ(κζi)−ϕ(βi)

)2 . (27)

If ζ is decreasing n-tuple, then (27) holds in the reverse direction.

(b): If β

ζ
is an increasing n-tuple and ζ is an increasing n-tuple, then the following inequality

holds
n∑

i=1
piΨ

(
βi

)≥ n∑
i=1

piΨ (κζi)+ c
n∑

i=1
pi

(
ϕ(βi)−ϕ(κζi)

)2 . (28)

If β is decreasing n-tuple, then (28) holds in the reverse direction.

Proof. Under the given condition in [28] it has been shown that
m∑

i=1
piϕ(βi)≥

m∑
i=1

piϕ(κζi), for m = 1,2, . . . ,n−1. (29)

Since Ψ◦ϕ−1 is strongly convex function and β is an increasing n-tuple. So, by using (29), (26)
and Theorem 4, we have

n∑
i=1

piΨ (κζi)≥
n∑

i=1
piΨ

(
βi

)+ c
n∑

i=1
pi

(
ϕ(κζi)−ϕ(βi)

)2 . (30)

Since Ψ◦ϕ−1 is strongly convex function and ζ is an decreasing n-tuple. So, by using (29), (26)
and Theorem 4, we have

n∑
i=1

piΨ
(
βi

)≥ n∑
i=1

piΨ (κζi)+ c
n∑

i=1
pi

(
ϕ(βi)−ϕ(κζi)

)2 . (31)

In similar fashion we can prove the remaining cases.

Theorem 10. Under the assumptions of Theorem 9.

(a): If β

ζ
is a decreasing n-tuple and β is an increasing n-tuple, then the following inequality

holds
n∑

i=1
piΨ (κζi)≥

n∑
i=1

piΨ
(
βi

)+ c
n∑

i=1
pi

{(
ϕ(κζi)

)2 − (
ϕ(βi)

)2
}

. (32)

If ζ is decreasing n-tuple, then reverse inequality holds in (32).
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(b): If β

ζ
is an increasing n-tuple and ζ is an increasing n-tuple, then the following inequality

holds
n∑

i=1
piΨ

(
βi

)≥ n∑
i=1

piΨ (κζi)+ c
n∑

i=1
pi

{(
ϕ(βi)

)2 − (
ϕ(κζi)

)2
}

. (33)

If β is decreasing n-tuple, then reverse inequality holds in (33).

Proof. Since Ψ◦ϕ−1 is strongly convex function with respect to c, therefore Ψ(x)− c(ϕ(x))2 is
convex function. Applying this convex function on (11), we have

n∑
i=1

piΨ (κζi)− c
n∑

i=1
pi

(
ϕ(κζi)

)2 ≥
n∑

i=1
piΨ

(
βi

)− c
n∑

i=1
pi

(
ϕ(βi)

)2

which is equivalent to (32). Similarly, from (12) we can deduce (33).

Remark 3. From (32) we can easily obtain Theorem 6 (11), because for convex function

Ψ(x) = x2 we obtain
n∑

i=1
pi

{(
ϕ(κζi)

)2 − (
ϕ(βi)

)2
}
≥ 0. Similarly, from (33) we can easily deduce

Theorem 6 (12).

Corollary 3. Let ϕ,Ψ : [0,∞) → R be such that ϕ is strictly increasing function and Ψ be a
strongly convex function with respect to ϕ that is Ψ◦ϕ−1 is strongly convex function with respect
to c. Assume that p= (p1, p2, . . . , pn) is positive n-tuple and κ1 and κ2 are such that

n∑
i=1

piϕ(βi)=
n∑

i=1
piϕ {(i−1)κ1} (34)

and
n∑

i=1
piϕ(βi)=

n∑
i=1

piϕ {(n− i)κ2} (35)

(a): If β is positive increasing concave n-tuple, then
n∑

i=1
piΨ {(i−1)κ1}≥

n∑
i=1

piΨ
(
βi

)+ c
n∑

i=1
pi

{
ϕ{(i−1)κ1}−ϕ(βi)

}2 . (36)

(b): If β is an increasing convex n-tuple and β1 = 0, then
n∑

i=1
piΨ

(
βi

)≥ n∑
i=1

piΨ {(i−1)κ1}+ c
n∑

i=1
pi

{
ϕ(βi)−ϕ{(i−1)κ1}

}2 . (37)

(c): If β is positive decreasing concave n-tuple, then
n∑

i=1
piΨ {(n− i)κ2}≥

n∑
i=1

piΨ
(
βi

)+ c
n∑

i=1
pi

{
ϕ{(n− i)κ2}−ϕ(βi)

}2 . (38)

(d): If β is an decreasing convex n-tuple and βn = 0, then
n∑

i=1
piΨ

(
βi

)≥ n∑
i=1

piΨ {(n− i)κ2}+ c
n∑

i=1
pi

{
ϕ(βi)−ϕ{(n− i)κ2}

}2 . (39)

Proof. (a): Taking ζ1 = ε < β1
β2

, ζi = i −1 for 2 ≤ i ≤ n and by concavity of β, we have βi
ζi

for
1≤ i ≤ n is decreasing n-tuple. Thus, from (34), we have

n∑
i=1

piϕ(βi)= p1ϕ(εκ1)+
n∑

i=2
piϕ {(i−1)κ1} .
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By using Theorem 9 (27), we get

p1Ψ(εκ1)+
n∑

i=2
piΨ (κ1(i−1))≥

n∑
i=1

piΨ
(
βi

)+ c
n∑

i=1
pi

{(
ϕ(κ1ε)+ϕ(κ1(i−1))

)− (
ϕ(βi)

)}2 .

and taking ε→ 0, we obtain (36).

(b): If β is an increasing convex n-tuple and β1 = 0, then βi
i−1 for 2≤ i ≤ n is increasing. Since βi

i−1
for 2≤ i ≤ n is increasing and also ζi = i−1 for 2≤ i ≤ n is increasing, thus by using Theorem 9
(28), we have

n∑
i=2

piΨ
(
βi

)≥ n∑
i=2

piΨ {(i−1)κ1}+ c
n∑

i=2
pi

{
ϕ(βi)−ϕ{(i−1)κ1}

}2

p1Ψ(0)+
n∑

i=2
piΨ

(
βi

)≥ p1Ψ(κ10)+
n∑

i=2
piΨ {(i−1)κ1}+ c

n∑
i=1

pi
{
ϕ(βi)−ϕ{(i−1)κ1}

}2 ,

which is equivalent to (37).
In similar fashion we can prove the remaining cases.

Corollary 4. Under the assumptions of Corollary 3.

(a): If β is positive increasing concave n-tuple, then
n∑

i=1
piΨ {(i−1)κ1}≥

n∑
i=1

piΨ
(
βi

)+ c
n∑

i=1
pi

{(
ϕ{(i−1)κ1}

)2 − (
ϕ(βi)

)2
}

. (40)

(b): If β is an increasing convex n-tuple and β1 = 0, then
n∑

i=1
piΨ

(
βi

)≥ n∑
i=1

piΨ {(i−1)κ1}+ c
n∑

i=1
pi

{(
ϕ(βi)

)2 − (
ϕ{(i−1)κ1}

)2
}

. (41)

(c): If β is positive decreasing concave n-tuple, then
n∑

i=1
piΨ {(n− i)κ2}≥

n∑
i=1

piΨ
(
βi

)+ c
n∑

i=1
pi

{(
ϕ{(n− i)κ2}

)2 − (
ϕ(βi)

)2
}

. (42)

(d): If β is decreasing convex n-tuple and βn = 0, then
n∑

i=1
piΨ

(
βi

)≥ n∑
i=1

piΨ {(n− i)κ2}+ c
n∑

i=1
pi

{(
ϕ(βi)

)2 − (
ϕ{(n− i)κ2}

)2
}

. (43)

Proof. Since Ψ◦ϕ−1 is strongly convex function with respect to c, therefore Ψ(x)− c(ϕ(x))2 is
convex function. Applying this convex function on [28, Corollary 2.9], we deduce (40), (41), (42)
and (43).

Remark 4. From (40) we can easily obtain Corollary 2.9(2.26) in [28] because for convex function

Ψ(x)= x2 we obtain
n∑

i=1
pi

{(
ϕ{(i−1)κ1}

)2 − (
ϕ(βi)

)2
}
≥ 0.

Similarly, we can obtain the remaining cases.

3. Conclusion
In the article, we generalize the discrete weighted version of the well known Favard’s and
Berwald’s inequalities to the strongly convex function by use of majorization theory. Our
obtained results are the improvements and generalizations of some previously results. The given
ideas and methods may lead to a large number of follow-up research.
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