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1. Introduction
The concepts of the graph to the elements (zero-divisors) of a ring was introduced by Beck in [8]
and discussed the coloring of a commutative ring. The zero-divisor graph of a commutative ring
has been studied extensively by several authors like Anderson [2], and Atani [3,5]. Moreover,
Atani and others establish the properties of zero divisor graphs in semirings and introduced
unit graph in semirings in [3,5]. In this paper, our focus is on semi unit elements of semirings
and their graphs.

For the sake of completeness, we state some definitions and notations used throughout this
paper. In this paper, we refer S to be commutative semi ring with multiplicative identity and
absorbing zero, unless mentioned otherwise. A non-zero element a ∈ S is said to be semi unit
if there exists, r, s ∈ S such that 1+ r.a = s.a (c.f. [7]). The set of all semi units of S is denoted
by Su and the set of all non-semi units is denoted by Nu in this paper. Every unit is a semi
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unit, by taking r = 0 in definition. In a ring every semi unit is a unit. An ideal K is said to
be k-ideal (Subtractive ideal) such that if x, x+ y ∈ K then y ∈ K (c.f. [10]). A k-ideal which is
also maximal ideal is called maximal k-ideal. P is maximal k-ideal of S if and only if S/P is a
semi field [7]. Let P be an ideal of a semi ring S, P is a prime k-ideal of S if and only if S/P
is a semi domain [4]. Let S be a semi ring with non-zero identity. S is said to be a local semi
ring if and only if S has a unique maximal k-ideal. The k-closure cl(I) of ideal I is defined by
cl(I) = {a ∈ S;a+ c = d for some c,d ∈ I} which is indeed the smallest k-ideal of S containing
I [10].

An ideal I of semiring S is called a partitioning ideal(Q-ideal) if there exists a subset Q of
S such that: S =∪{q+ I : q ∈Q}. If q1, q2 ∈Q then (q1 + I)∩ (q2 + I) 6= if and only if q1 = q2. If I
is a Q-ideal of a semiring S then I is a k-ideal of S, by [12, Lemma 2]. For basic concepts of
semirings, we refer [1,9,11].

There are some special families of graphs as complete graph is a simple graph in which
any two vertices are adjacent. A graph is connected if there is a path between any two vertices.
A graph is bipartite if its vertex set can be partitioned into two subsets X and Y so that every
edge has one end in X and one end in Y . If ξ is simple and every vertex in X is joined to every
vertex in Y , then ξ is called a complete bipartite graph. An isomorphism between two simple
graphs X and Y as a bijection θ : V (X )→V (Y ) which preserves adjacency. For undefined terms
related to graph theory, we refer [16].

2. Results of Semi Units
Firstly, we discuss some results on semiunit elements, which are helpful to study the graphs of
semiunits.

Lemma 2.1 ([7]). Let S be a semiring and let a ∈ S. Then a is a semi-unit of S if and only if a
lies outside each k-maximal ideal of S.

Lemma 2.2 ([7]). If x ∈ S be a commutative semi ring, then cl(Sx) is a k-ideal of S.

Proposition 2.3. Every ideal generated by a non-semi unit in a commutative semiring S is
proper ideal and contain in some k-maximal ideal.

Proof. Consider a be a non-semi unit in S. It is observed that Sa is an ideal. Also, Sa ⊆ cl(Sa)
which is k-ideal, whereas every k-ideal of semi ring contained in some k-maximal ideal by
([15, Corollary 2.2]), so there must exist some k-maximal ideal M (say) such that 〈a〉 = Sa ⊆
cl(Sa)⊆ M implies that 〈a〉 = Sa ⊆ M.

Proposition 2.4. The set of semi units Su of semi ring S are closed under multiplication.

Proof. Consider a,b ∈ Su, such that

1+ r.a = s.a and 1+ t.b = u.b for some r, s, t,u ∈ S .
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Let a.b is a non-semiunt. By using Proposition 2.1, we get that there exist a proper ideal 〈ab〉,
which contain in some k-maximal ideal M such that 〈ab〉 ⊆ M implies that ab ∈ M. M is an
ideal therefore sab, rab ∈ M, for all r, s ∈ S. Also, we have 1+ r.a = s.a or b+ r.a.b = s.a.b ∈ M
this implies that b+ r.a.b ∈ M, since M is k-ideal therefore b ∈ M which is a contradiction.

Theorem 2.5. Let the set of all non-semiunits Nu is not an ideal then Nu is not closed under
addition.

Proof. By hypothesis, we have Nu is not an ideal.
Let a ∈ S and x ∈ Nu. We will show that a.x ∈ Nu. Suppose on contrary that a.x ∈ Su. It gives

1+ (a.x).r = (a.x).s for some r, s ∈ S

that is 1+ x.(a.r) = x.(a.s) or 1+ x.r1 = x.s1, where r1 = a.r, s1 = a.s ∈ S, this implies that x
is semi unit, which is contradiction. Therefore, a.x ∈ Nu. Then by hypothesis, we have some
distinct non-semi units x, y ∈ Nu such that x+ y ∈ Su.

3. Semi Unit Graphs
Consider S is commutative semi ring and Su denotes of set of all semi unit elements in S.
We develop a semi unit graph, denoted by ξ, by taking every element as vertex. If x, y ∈ S (x 6= y)
then x and y are adjacent if x+ y ∈ Su, otherwise they are disjoint vertices therefore we are
considering simple graphs. We shall discuss about its properties, characteristics and different
shapes of Semi Unit graphs in this section.

Theorem 3.1. Consider a Semi ring S, then the Semi unit graph is complete if and only if
Su = S− {0}.

Proof. If Su = S− {0}, then Su is zero-sum free, since S is semi ring otherwise it will be a ring
(c.f. [6, Lemma 2.1]). This shows that Su is closed under addition, so every two vertices of Su

are adjacent. Also 0 is adjacent with all other elements of S as 0+ x = x ∈ Su , therefore graph is
complete.

Conversely, suppose ξ is complete graph then every vertex x ∈ S of graph is connected with
all other vertices. As 0 ∈ S, therefore 0 is also adjacent to every x ∈ S and 0+ x = x then by
definition of semiunit graph x ∈ Su, this implies that all non-zero elements x ∈ Su, that is
Su = S− {0}.

Theorem 3.2. Let S be a Semi ring with multiplicative identity 1. If Nu makes k-ideal then ξ

is connected graph.

Proof. Consider S is semi ring with and the set of all non-semi units Nu makes k-ideal. Let
x, y ∈ Nu , then x+ y ∈ Nu , that there is no edge between them. Now consider x ∈ Nu , and u ∈ Su

then x+u must be semi unit. Suppose on contrary that x ∈ Nu , and x+u ∈ Nu then by hypothesis
u ∈ Nu which is contradiction, so x+u ∈ Su, there is always an edge between a semi unit and
non- semi unit in this semi ring, so all vertices must be connected at least through identity 1.
Hence graph is connected.

Communications in Mathematics and Applications, Vol. 10, No. 3, pp. 519–530, 2019



522 Semi Unit Graphs of Commutative Semi Rings: Y. Ahmed and M. Aslam

Proposition 3.3 ([7]). Let S be a semiring. Then S is a local semiring if and only if the set of
non-semi-unit elements of S is a k-ideal.

From previous Theorem 3.2 and Proposition 3.3, we can easily conclude the following result.

Corollary 3.4. The Semi unit graph of Local Semi ring S (|S| ≥ 2), with identity 1 is always
connected.

Theorem 3.5. If S be a commutative semi ring without identity, the semi unit graph is totally
disconnected.

Proof. Let S be a commutative semi ring without identity then Su =; and suppose on contrary
that there exist elements a,b ∈ S, such that there is an edge between a and b, that a+b is semi
unit, which is a contradiction. Hence graph is totally disconnected.

Proposition 3.6. Let S be a commutative semi ring then 1 ≤ |ξ| < ∞ (i.e. semiunit graph is
finite), if and only if S is finite or not a semi field.

Proof. For S is finite, then it is trivial.
If S is infinite, then |ξ| is finite if number of semi units |Su | are finite, since addition in S is
well defined. If U(S) is set of all unit elements of S then U(S)⊆ Su and here |ξ| is finite which
tells that S cannot be infinite semi field (otherwise every element is unit so also semi unit in
semi field).
Conversely, Suppose that S is infinite semi field then Su =U(S) =∞ then |ξ| =∞ since 0 is
adjacent with all semiunits (units). Thus 1≤ |ξ| <∞ if and only if S is not a semi field.

Proposition 3.7. If two semi ring R,S are isomorphic then their graphs ξ(R) and ξ(S) are also
isomorphic.

Proof. Clearly, |R| = |S|, therefore number of vertices are equal. Now, we will prove that the
adjacency of vertices are also preserved. Firstly, we shall show that image of semi unit is also
semi unit under the isomorphism between R and S. Consider that isomorphism between R
and S, f : R → S, such that f (r) = s. Let a is semi unit in R. Then, 1+ va = wa, for v,w ∈ R,
therefore

f (1+va)= f (wa)=⇒ f (1)+ f (v) f (a)= f (w) f (a)

implies that 1s + vsas = wsas, where 1s is identity in S, vs,ws,as ∈ S. This shows that as is
semiunit in S and f maps semiunit of R to semiunit of S.

Now to check the edges, if x, y ∈ R such that x+y ∈ (Su)R , semi units in R. Then, f (x), f (y) ∈ S,
such that f (x)+ f (y)= f (x+ y) ∈ (Su)S , semi units in S. Hence, whenever R, S are isomorphic
then so is there semi unit graphs.

By Theorem 2.5, the following proposition is straight forward.

Proposition 3.8. Let S be a semi ring with identity with Nu is non-ideal.Then there exist some
non adjacent vertices in Nu
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Before establishing next results, we state some definitions of graph theory (see [16]). The
distance (or length) between two vertices x, y in a graph is the number of edges in a shortest
path connecting them and denoted by d(x, y). The maximum distance in the graph G is called
diameter of graph which is denoted by diam(G). The girth of a graph is the length of a
shortest cycle contained in the graph.

Proposition 3.9. Let S be a semi ring and Nu is an ideal. If a,b ∈ S, a 6= b then the length of
the path between a to b is 1,2,3,4, otherwise a is not adjacent with b, that is d(a,b) ∈ {1,2,3,4
or ∞}.

Proof. We shall discuss three cases to prove the above theorem

Case 1: If a,b ∈ Su then a+b ∈ Su or a+b ∈ Su. If a+b ∈ Su then d(a,b)= 1. If a,b ∈ Su such
that a+b ∉ Su then 0 is adjacent to both a and b, so there is path a — 0 — b between a and b,
therefore d(a,b)= 2.

Case 2: If a ∈ Su, b ∉ Su. If a+ b ∈ Su then d(a,b) = 1. If there exist some c ∈ Su such that
b+ c ∈ Su then there is path b — c — 0 — a with d(a,b)= 3. On the other hand, if for all c ∈ Su

such that b+ c ∉ Su , then d(a,b)=∞. Similarly, if a ∉ Su , b ∈ Su , then the same situation arises.

Case 3: If a,b ∈ Nu such that a+b ∈ Su then d(a,b)= 1.
If a,b ∈ Nu such that a+b ∈ Nu , and there is some possibility to find c,d ∈ Su such that a+c ∈ Su

and b+d ∈ Su, then there is shortest path a — c — 0 — b — d with d(a,b)= 4.
Otherwise, if there is no path to connect a and b then d(a,b)=∞.

Example 3.10. (1) In every semi field S, provided that it is not a field then every non-
zero element is a unit hence semi unit in S, and Su is closed under addition that is for
all a,b ∈ Su = S − {0}, there is a+ b ∈ Su = S − {0} so d(a,b) = 1 for all a,b ∈ S, therefore the
graph is complete.

(2) Consider a set S = {0,1,2,3,4,5} with binary operation + as maximum and × as minimum.
Here 0 treats as zero of the set while 5 behaves as multiplicative identity. This, clearly makes
a S to be semi ring with multiplicative identity. Su = {5} and Nu = {0,1,2,3,4}. Consider two
vertices 1,4 there is no direct edge between them but if we take the paths 5 — 1 and 5 — 4
them there is a path 1 — 5 — 4, hence d(1,4)= 2.

(3) Consider S = Z6 with usual addition and multiplication, where Su = {1,5}, if we consider the
path between 0 and 3, then there is no edge in them but a path exists by taking 0 — 1 — 4 — 3
or 0 — 5 — 2 — 3, so d(a,b)= 3.

(4) Consider a semi ring N0 = {0,1,2,3, . . .}. Here 1 is identity and only semi unit in this semi
ring, d(1, i)=∞ for all i ∈ N and its graph is disconnected.

Proposition 3.11. Let S be a finite local semi ring with identity, then its semi unit graph has
length of path d(a,b) ∈ {1,2} for all a,b ∈ S.

Proof. (1) If a,b ∈ Su such that a+b ∈ Su, then d(a,b)= 1.
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If a,b ∈ Su such that a+b ∈ Nu then there is path a — 0 — b, so d(a,b)= 2.

(2) If a ∈ Su , b ∈ Nu . As S is local semiring therefore Nu is maximal k-ideal (c.f. Proposition 3.3)
this implies that a+b ∈ Su. Hence d(a,b)= 1. Similarly, when b ∈ Su, a ∈ Nu.

(3) If a,b ∈ Nu then a+ b ∈ Nu. Then for some u ∈ S there exist a path a — u — b for some
u ∈ Su. Hence d(a,b)= 2.

Theorem 3.12. (a) If S is local semi ring with zero and 0 is the only non-semi unit (or a semi
field with 0) then diamξ= sup{d(x, y), x, y ∈ S}= 1.

(b) If S is finite local semi ring and |Nu| ≥ 2, then diamξ= 2.

Proof. (a) We know that if S is local semi ring with 0 is the only non-semi unit then the ξ is
complete (c.f. Theorem 3.1).

Consider x, y ∈ Su = S− {0}, thenx+ y ∈ Su in semi ring the semi units are zero-sum free this
implies that there is a path x — y i.e. d(x, y)= 1. Moreover, there is path x — 0 — y with size 2.
But smallest distance d(x, y)= 1. Hence, diamξ= 1.

(b) Here |Nu| ≥ 2, so if a,b ∈ Nu then a+ b ∈ Nu. But Nu is k-maximal ideal so a ∈ Nu and
u ∈ Su , there must a+u,b+u ∈ Su . So by taking the path a — u — b, d(a,b)= 2, and therefore
diamξ= 2.

Theorem 3.13. In Local semi ring S such that |Nu| ≥ 2

(a) If |Su| ≥ 2, then gr(ξ) ∈ {3,4}

(b) If |Su| < 2, then gr(ξ)=∞
Proof. (a) When |Su| ≥ 2, then there exist two or more then two semi units and we have x+y ∈ Su

and x+ z ∈ Su for all x ∈ Nu and y, z ∈ Su.
If y+ z ∈ Su. So, there is cycle z → x → y → z. Hence girth (ξ) = 3. While if y+ z ∉ Su, then for
any t ∈ Nu , such that x+ t, y+ t ∈ Su then there is cycle x → y→ t → z → x therefore it is cycle of
length 4 and girth is greater than 3.

(b) When |Su| < 2, so there is only one semi unit. Consider x ∈ Nu and u ∈ Su so x+u ∈ Su . Also,
for every x, y ∈ Nu so x+ y ∈ Nu. Therefore, there is no cycle. Hence girth(ξ)=∞.

A graph G is called multi-graph if it allows loops and multiple edges otherwise it is called
simple graph.

Proposition 3.14. Consider S is semiring with multiplicative identity 1. If Su is the set of all
semi units and 2 ∉ Su, then after allowing loops and multiple edges on ξ, it remains the simple.

Proof. S is semiring therefore addition is well defined and there contain no multiple edges. We
will show that there is also no loop on any x ∈ S. We have 1+1= 2 ∉ Su , i.e. there is no loop at 1.
Now suppose on contrary that x+ x = 2.x ∈ Su . It gives 1+ (2.x).r = (2.x).s, for some r, s ∈ S. This
implies that 1+2.(x.r)= 2.(x.s) or 1+2.r1 = 2.s1 where r1 = x.r, s1 = x.s ∈ S which tells that 2 is
semi unit, which is contradiction therefore 2.x ∉ Su . Hence no loop in whole graph therefore its
multiple graph is simple graph.
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Theorem 3.15. Let S be a semi ring, then the semi unit graph ξ is a closed complete graph if
and only if S is semi field with char(S)= 2.

Proof. Suppose that the semi unit graph ξ is a closed complete graph. We will prove that S is
semi field with char(S)= 2. Let 0 6= r ∈ S, the zero of S is adjacent to r, so every element is semi
unit (by definition of semi unit graph) implies that Nu = {0}.
Before going to show that every non-zero element is unit, we shall prove that char(S)= 2. As
0+0 = 0 ∉ Su, therefore there is no loop at 0. The graph is closed complete therefore there
would be no loop on any vertex of graph. Hence the graph is simple. This implies that x+ x ∉ Su ,
because 0 has no loop so all vertices must have no loops. As x+ x ∈ Nu = {0}, therefore 2x = 0, for
every x ∈ S. This shows that charS = 2.

Now, to check that every r is unit element. We have shown that every non-zero r ∈ S is semi
unit, and 1+ r.a = r.b for some a,b ∈ S.

Adding r.a on both sides, we get 1+2r.a = r(b+a) or 1= r.(b+a), so r is unit element too.
Hence S is semi field with char(S)= 2.

Conversely, suppose that S is semifield with char(S)= 2 therefore every non zero element is
a unit so also semi unit and every semi unit must be zero sum free in semi field, that shows for
all different x, y ∈ Su, x+ y ∈ Su. Hence it is complete graph without any loop, as char(S) = 2
implies that the possibility of formulation of loop is ruled out so complete closed graph.

Remark 3.16. Each finite semi field is either a field or isomorphic to Boolean semi field
([13, Corollary 5.9]). Boolean field does not have Char(2) so we take fields as Char(2).

Example 3.17. Let S = {0,1,a,1+a}, then with following operations, S is field of Char2

+ 0 1 a 1+a
0 0 1 a 1+a
1 1 0 1+a a
a a 1+a 0 1

1+a 1+a a 1 0

× 0 1 a 1+a
0 0 0 0 0
1 0 1 a 1+a
a 0 a 1+a 1

1+a 0 1+a 1 a

Its graph is complete closed semi unit graph as shown in Figure 1a.

Theorem 3.18. Let R be a semi ring with multiplicative identity and S is additive group in R
with multiplicative identity, then

(a) If 2 ∉ Su, then the semi unit graph ξ of S is |Su|-regular graph.

(b) If 2 ∈ Su , then for all x ∈ Su , we have deg (x) = |Su|−1 and for all x ∈ Nu we have deg(x)= |Su|.

Proof. (a) Suppose x ∈ S and S is additive group S therefore S+ x = S. If Su is the set of all
semi units u of S, then there exist some xu ∈ S such that xu + x = u. Clearly, xu is uniquely
determined by u. If 2 ∉ Su, then x+ x = 2.x ∉ Su. It tells that xu 6= x, so xu is adjacent in graph
with x only, therefore we can define a mapping

θ : Su → Nξ(x),
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where Nξ(x) is set of neighborhood vertices of x such that θ(u)= xu , this function is clearly well
defined and bijective therefore |Nξ(x)| = |Su|, that deg(x) = |Su|, so the graph is |Su|-regular
graph.

(b) As S is group under addition therefore S+ x = S therefore for every u ∈ Su, there exists
xu ∈ S such that xu + x = u. Clearly xu is uniquely determined by u. Now suppose that 2 ∈ Su

and x ∈ Nu so that 2.x ∈ Nu (by Theorem 2.5). This tells us that xu 6= x since x+x is not semiunit
so xu is not adjacent to x, therefore the previous observation of (a) is still valid, which shows
that

deg(x)= |Su| .
Next suppose that 2 ∈ Su, and x ∈ Su, then 2.x ∈ Su (by Proposition 2.2). In this case we have
xu 6= x for u 6= 2x and xu = x for u = 2x. Now define a mapping θ : Su → Nξ[x] (where Nξ[x] is
set of neighborhood vertices including x itself), such that θ(u) = xu. This is well-defined and
bijective therefore deg(x)= |Nξ[x]|−1, as loops are not considered in simple graphs.

Example 3.19. (1) Consider a semi ring B(5,1),where both operation of addition and
multiplication has mod 5−1 = 4. These operations are completely elaborate in the following
tables.

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 0 1 2
2 2 3 0 1 2 3
3 3 0 1 2 3 0
4 0 1 2 3 0 1
5 1 2 3 0 1 2

× 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 0 1
2 0 2 0 2 0 2
3 0 3 2 1 0 3
4 0 0 0 0 0 0
5 0 1 2 3 0 1

Here we take out additive group S = {0,1,2,3}, with identity 1 and Su = {1,3} with 2 ∉ Su ,so
its semi unit graph is 2-regular graph as in Figure 1b.

(2) Consider a semi ring B(5,2),where both operation of addition and multiplication has mod
5−2= 3. Here we take out additive group S = {0,1,2}, with identity 1 and Su = {1,2} with 2 ∈ Su

then deg(x)= 2 if x ∈ Su and deg(x)= 1 if x ∉ Su as shown in Figure 1c.

0

1+a

1a

(a)

0

2

13

(b)

0

12

(c)

Figure 1
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Theorem 3.20. Let S be a commutative semi ring and M be a Q- maximal ideal of S such that
|S/M|= 2 and 2 ∉ Su . Then ξ(S) is complete bipartite graph.

Proof. Let V1 = M and V2 = S\M . Here M is Q-ideal therefore M is k-ideal (c.f. [12, Lemma 2]),
and |S/M| = 2 therefore S/M = {M, M+a}, for some a ∈Q, is a semiring with M is zero of S/M.
Here M is k-maximal ideal so Nu ⊆ M =V1 implies that Su ⊆ M+a = S\M =V2. First we show
that Nu = M. Suppose on contrary that there exist some x ∈ Nu ⊆ M and x ∈ M+a, implies that
M = M+a, by definition of Q partitioning, which is a contradiction. Hence Nu = M, therefore
we have V (ξ)=V1 ∪V2 and V1 ∩V2 =φ, and V1 and V2 makes partition of V (ξ) into two subsets.

It is clear that no pair of distinct elements of V1 are adjacent.Now to prove that ξ(S) is
bipartite, we now only to show that no two elements of V2 are adjacent. Then by hypothesis,
there is some a ∈ Q (a must be semi unit) such that S = M ∪ (M + a). Now for distinct,
x, y ∈ S\M = M+a. Suppose on contrary that x and y are adjacent then x+y ∈ Su = S\M = M+a.
therefore x+ y= (m1+a)+ (m2+a) = m1+m2+2.a =m3+2.a, we have 2 ∉ Su , therefore 2a ∉ Su

hence x+ y = m3 +2a = m4 ∈ M. This implies that semiunit x+ y ∈ M, which is contradiction,
therefore the elements of V2 are non-adjacent among themselves. Hence ξ(S) is bipartite graph.

Now, we have to prove that ξ(S) is complete bipartite. Let x ∈V1 and y ∈V2. If x+ y ∉V2 =
Su = S\M, then x+ y ∈V1 = M, and M is Q-ideal therefore k-ideal therefore y ∈ M which is a
contradiction. Thus x+ y ∈ Su so x and y are adjacent. Therefore each vertex of V1 is joined to
each vertex of V2. Hence ξ(S) is completely bipartite.

Example 3.21. Consider a set S = {
1, 1

2 , 1
4 , 1

8 , . . . ,0
}
, This is semi ring with binary operation

addition is max and multiplication is usual multiplication. Here only semi unit is identity 1,
while all others are non-semi units. These non-semi units makes maximal ideal, with
Q-partitioning. Here Q = {1}, such that M, M+1 make partitioning, it makes complete bipartite
graph.

A semi ring S is Noetherian (respectively, Artinian) if any non-empty set of k-ideals of S has
a maximal member (respectively, minimal member) with respect to set inclusion. The definition
is equivalent to the ascending chain condition (respectively, descending chain condition) on
k-ideals of S. Every finite Semi ring is Noetherian or artinian Semi ring.

Proposition 3.22 ([13]). Let S be an Artinian cancellative semi ring. Then

(i) Every element of S is either a semi unit or a nilpotent element.

(ii) S is a local semi ring.

The following theorem is straight forward from Proposition 3.15 and previous results.

Theorem 3.23. (a) Let S be an Artinian cancellative semi ring with identity then is connected.

(b) Let S be an Artinian cancellative semi ring, then for any non-semi unit x, deg (x) = |Su|.
(c) Let S be an Artinian cancellative semi ring then for all semi units x, deg(x)= |S|−1.

(d) Let S be an Artinian cancellative semi ring then d(a,b)= 1 or 2, for all a,b ∈ S.

(e) Let S be an Artinian cancellative semi ring then diam(ξ)≤ 2.
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Example 3.24. Consider an artinian semi ring Z+ ∪ {0,∞}. Here Su = {1,2,3, . . . ,∞} and
Nu = {0}, we can easily check all the above mentioned results of Theorem 3.23 are valid.

Let G be a connected graph. The minimum number of vertices whose removal makes G
either disconnected or reduces G in to a trivial graph is called its vertex connectivity, denoted
by k(G)

Theorem 3.25. If S is local semi ring then ξ is connected then k(ξ)= |Su|.

Proof. Consider S is local semi ring then non-semi units Nu make k-maximal ideal (by
Proposition 3.3), and for every x ∈ Nu and u ∈ Su implies that x+u ∈ Su . So, there is connection
between every non-semi unit and unit. To make the graph disconnected we shall disconnect
semiunits from non-semiunits i.e. there must not edge between semiunits with non-semi units,
so k(ξ)= |Su|.

Corollary 3.26. If S is Artinian semi ring then ξ is connected, while k(ξ)= |Su|.

Corollary 3.27. If S is finite local semi ring and Su = 1, then semi unit graph ξ is connected,
complete with k(ξ)= |Su| = 1.
Gelfand semiring is defined in [10]. It is a semiring S with identity 1, such that 1+a is a unit
for all a ∈ S. In Gelfand semiring the sum of two units is always a unit [9].

Lemma 3.28. In a Gelfand semi ring S (|S| ≥ 3) with non-zero identity along with unit elements
(U(S)≥ 2) then the girth of semi unit graph is 3.

Proof. If a,b ∈ S then 1+a,1+b ∈ Su . Also, the sum of two units in a Gelfand semi ring is also
unit ([10, Proposition 4.50]) so this will create a cycle 1 — 1+a — 1+b — 1. Hence the girth of
its semiunit graph is 3.

A cycle that passes through every vertex in a graph is called a Hamilton cycle and a graph
with such a cycle is called Hamiltonian. Ore’s theorem states that if deg(x)+deg(y) ≥ n for
every pair of distinct non-adjacent vertices x and y of graph G of n vertices (n ≥ 3) then G is
Hamiltonian [14]. The following theorem investigate about Semiunit graph to be Hamiltonian.

Theorem 3.29. In a local semi ring S, if |S| ≥ 3 with |Su| = |Nu|, then ξ(S) is Hamiltonian
graph.

Proof. Consider S to be local semiring then Nu is a k-ideal and so every semi unit is adjacent
with every non semi unit. For any x ∈ Nu the degree d(x) = |Su| = |Nu|, so if there exist non-
adjacent vertices then for any non-adjacent vertices x, y ∈ Nu,

d(x)+d(y)= |Su|+ |Su| = |S| (3.1)

also, if x, y ∈ Su, then

d(x)+d(y)≥ |Nu|+ |Nu| = |Nu|+ |Nu| = |S| . (3.2)

From (3.1) and (3.2), we have d(x)+d(y)≥ |S|, therefore this makes Hamiltonian Graph.
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Conclusion
The research in this area aims at exploring the relationship between the semirings and graph
theory. Here, we discuss semi unit elements and their graphs which enables us to characterize
the semirings in terms of semi units and non-semi units. In this paper, we have defined semi
unit graphs ξ(S) and have discussed some basic properties. Further, we have studies the
connectedness, diameter, girth, completeness and connectivity of ξ(S). These graphs pave the
way for the further research to find chromatic and clique number of semi unit graph and to find
the applications in Biology, Chemistry and Computer sciences.
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